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Effect of valence dielectric screening on ionized-impurity scattering in semiconductors
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The effect of valence dielectric screening on ionized-impurity scattering is considered for n-type
silicon, germanium, and gallium arsenide. The validity of the two ionized impurity potentials
developed by Csavinszky and Resta, incorporating the spatial dependence of the dielectric function,
is critically examined. The relevance of Friedel sum rule is briefly discussed using quantum statis-
tics. The relaxation time for electrons is evaluated using Born phase shifts. The results are com-
pared with earlier published work.

I. INTRODUCTION

The scattering of charge carriers by ionized impurities
in a doped semiconductor has been widely studied in
terms of the Brooks-Herring' (BH) theory which uses the
Born approximation. Several attempts have been made
to improve the BH treatment by removing one or more of
its simplifying assumptions or by allowing for the effects
neglected in that theory.

In the BH theory, the dielectric response of the valence
electrons to the field of the ionized impurity is taken to be
described by the static dielectric constant of the semicon-
ductor. Csavinszky ' introduced impurity-ion potentials
which included the dispersive screening of the dielectric
medium. The impurity-ion potentials derived by him
were also used. by others to calculate the ionized-
impurity-scattering-limited mobilities. Unfortunately,
these impurity-ion potentials were shown to be incorrect
and were subsequently corrected " Following an ap-
proach that is different from Csavinszky's, Resta'
developed a screening theory in a doped semiconductor at
nonzero temperature. The theory was applied by Resta
and Resca' (RR) to calculate the ionized-impurity-
scattering-limited mobility in Si. The departure from the
BH result was found to be negligible at both high and low
concentration limits. At intermediate concentrations also
the departure was not more than 5% at 300 K. It should
be mentioned that RR used classical statistics in their
analysis and thus the Friedel' sum rule which is a
quantum-mechanical result did not enter in their work.
Using Fermi-Dirac statistics, Scarfone and Richardson'
found that increasing doping above 10' cm in Si at 300
K the mobility decreases monotonically from the BH
value. The change from the BH value is less than 10%
for concentrations as high as 10 ' cm . The boundary
conditions used by them have, however, been criticized. '

In the present work, we examine the effect of spatial
variation of the dielectric function on the ionized-
impurity-limited mobility of n-type, Si, Ge, and GaAs at
300 K by computing the relaxation time for the Fermi
wave vector KF from the Born phase shifts that satisfy
the Friedel sum rule for a concentration of 10 ' cm

The method of partial wave was first applied by Blatt'
to calculate the scattering due to the screened Coulomb
potential. While Blatt's results apply mostly to nondegen-

crate semiconductors, Csavinszky' employed a variation-
al technique to obtain analytic approximations for the
zero-order phase shifts in the limit of extreme degeneracy.
Neither of these authors attempted to satisfy the Friedel'
sum rule. This shortcoming was corrected by Krieger and
Strauss' who provided a phase-shift treatment for the
scattering of degenerate electrons by a screened Coulomb
potential. In a more recent paper Brownstein corrected
some errors in Ref. 18. Boardman and Henry ' have per-
formed the phase-shift analysis for the nondegenerate
scattering problem, using the generalized Friedel sum
rule. Meyer and Bartoli have done a full partial-wave
analysis of the ionized-impurity scattering for Si, Ge, and
GaAs over a wide range of temperatures and concentra-
tions. Their calculations show a more than 10% reduc-
tion in mobility from the BH value for Ge with an impur-
ity concentration of 10 cm at 300 K. None of them
have taken into account the spatial variation of dielectric
function in the impurity-ion potential.

In Sec. II we examine critically the validity of the two
theories developed by Csavinszky and Resta to incorpo-
rate the dispersive screening of the dielectric medium in
the impurity-ion potential. In Sec. III the details of the
relaxation-time calculations based on the Born phase
shifts are presented. Care was taken to satisfy the Friedel
sum rule while incorporating the spatial variation of
dielectric function.

II. GENERALIZATION OF THE DINGLE POTENTIAL

The first attempt at generalizing Dingle's model of
the screening of impurity ion in doped semiconductors at
nonzero temperature by incorporating valence screening
effect is due to Csavinszky ' who has used the relation

E(r)=IC '(r)D(r),
which should be treated as an approximation to the usual
nonlocal relation in the linear-response theory,

E(r)= I e '(r, r ')D(r ')d r' .

It can be seen that Eq. (2) results in Eq. (1) if
e '(r, r ')=If '(r)5(r —r '). E '(r) in Eq. (1}is the re-
ciprocal of the "spatially variable dielectric function"
E(r)," while e(r) is the spatial dielectric function. " In
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FIG. 1. k-dependent dielectric functions e(k), solid line, and

E (k), dashed line.

-50—
Ig

C
4t
0

Q
C0

-100—

5
EJ

E
Q C
Qy %l
C -150—
4t I

I
I
l
I
I
I
f
I
I

I

I

I
t

what follows, both K(r) and e(r) are taken to be spheri-
cally symmetric.

Using the nonlocal relation, Eq. (2), Resta' obtained an
integro-differential equation for the screened point-charge
potential. It is easy to establish the relation between K(r)
and e(r), "

1

K(r)
1 d 1

(r ) 'dr E(r)' (3)

The dielectric function e(r) is obtained on the basis of a
model due to Cornolti and Resta, solved variationally by
Csavinszky and Brownstein. Knowing e(r), one can ob-
tain K(r) from Eq. (3). We have plotted for comparison
e(k) and K(k) for GaAs with Z =1 in Fig. l. e(k) is re-
lated to e(r) by

1 e d3k
2n 2 k'e(k)

Similarly one can obtain K(k) from K(r). e(r) and K(r)
are also plotted for GaAs in Fig. 2. It is easy to see that
K(r) approaches e(r) for r )R, the screening radius. The

FIG. 3. Screened impurity-ion potentials in k space for the
impurity concentration 10' cm for GaAs at 300 K. P~(k),
solid line, and Pc(K), dashed line.
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discontinuity in the slope of K(r) at r =R is a conse-
quence of the form of e(r) obtained in Ref. 26.

Morrow has shown the approximate equivalence of
the impurity-ion potentials Pz(r) and Pc(r) obtained by
Resta and Csavinszky, respectively. %'hile these poten-
tials can be nearly equal, a substantial difference exists be-
tween the Fourier components P~(k) of the potential
PJt (r) (Ref. 12) and those obtained with e(k) replaced by
K(k) in P~(k). The latter is designated as Pc(k). Pz(k)
and Pc(k) are plotted in Figs. 3 and 4 for GaAs at 300 K
for the concentrations 10' and 10 ' cm . In view of the
local approximation in Csavinszky's approach, we are us-
ing e(k) instead of K(k) in our calculations of Born phase
shifts described in the next section. Geetha and Balasu-
bramanian have compared the various screened impurity
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FIG. 2. Spatial variation of dielectric functions e(r), solid

line, and E (r), dashed line.
FICi. 4. Same as Fig. 3, but for an impurity concentration of

10 'cm
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potentials in a doped semiconductor. Csavinszky's earlier
and incorrect impurity-ion potentials have beeri used for
comparison. The screened-ion potentials with spatial
variation of the dielectric function have been used in the
literature for calculating the concentration-dependent
donor binding energies.

III. CALCULATION OF RELAXATION TIME

Material

Si
Ge
GaAs

m /mo

0.2981
0.2240
0.0681

Xo

11.94
16.00
13.20

TABLE II. Material parameters. m* is the effective mass;
mo is the free-electron mass; Ko is the static dielectric constant.

In the Born approximation, the phase shifts are much
less than unity and are given ' by

2' +F oe .2 2I jf (K~r) V(r)r dr,

where the superscript 8 indicates that the Born approxi-
mation is used and ji(Kzr) is a spherical Bessel function.
If the Born approximation is valid, then the phase shifts
for the conventional screened Coulomb potential (Dingle)
obey the Friedel sum rule. This result was pointed out by
Stern and also by Krieger and Strauss. ' If the scatter-
ing potential differs from the conventional screened
Coulomb one, then the Dingle screening length RD must
be adjusted to satisfy the Friedel sum rule in the Born ap-
proximation. This approach was used by Chatto-
padhyay and also by Boardman and Henry. '

With the scattering potential given by the Dingle
form,

Eq. (10), Pi(x) are the Legendre functions of the first
kind.

We have computed 5f and 5i in Si, Ge, and GaAs at
300 K for the Fermi wave vector corresponding to the
concentration of 10 ' cm . For the latter case RD is ad-
justed to satisfy the Friedel sum rule (degenerate case),

Z= Q (2l+1)5f,~ l=o

where v is the number of equivalent conduction-band
minima and Z is the valence of the impurity atom minus
the valence of the host atom in the crystal. The adjusted
values of RD come out as 4.037, 6.172, and 16.151 A for
Si, Ge, and GaAs, respectively. These may be compared
with the unadjusted values 4.037, 6.171, and 16.137 A,
respectively. The total momentum cross section

2

( )
Ze r /RD-
Kor

one obtains from Eq. (5)

fi K~Kp 2K~RD

(6)

(7)
—1 =n;

AK~
Oym*

4m.
oz.—— 2 g (1+1)sin (5i —5f+, ) .

%Pl P

The inverse relaxation time is given by

(12)

(13)

e,ff(k)=e(k)+KpRD k (9)

Substituting eP~(r) in Eq. (5) in the place of V(r), we ob-
tain

iii~Ze +E &/(I k /2K')—
5BE dk,

p ke,ff (k)
(10)

where the superscript BE indicates the use of the effective
dielectric function e,ff(k) in the Born approximation. In

TABLE I. Ratio of relaxation times. ~& is the relaxation
time using Dingle potential and Born phase shifts; ~~E is the re-
laxation time using the modified Dingle potential and the Born
phase shifts; ~~H is the relaxation time in the BH theory.

Material

Si
Ge
GaAs

&a ~&mr

0.9954
0.9977
0.9998

1.0873
1.2113
1.3420

where Qf(x) are the Legendre functions of the second
kind. From Ref. 12

( )
2Ze I sin(kr)

dk
nr P ke ff(k)

where

where n; is the impurity concentration. The results for Si,
Ge, and GaAs are given in Table I. The results are com-
pared with BH values. The scattering cross section in the
BH theory is calculated from

or =
2 ln(1+b) (14)

2KFy 1+b

where b =4K~Ra, y= , k~ap, and ap —fiKp/rn'e——, be-

ing the effective Bohr radius. The material parameters
are given in Table II.

From Table I, it is clear that the inverse relaxation time
is increased by about 10—30% which will result in the
corresponding reduction of mobility in the degenerate
case. The qualitative reduction in inobility due to the in-
clusion of the spatial dispersion of the dielectric function
has been already pointed out in Ref. 15. However, as
pointed out in the Introduction, the boundary conditions
used in that reference have been questioned. The present
work shows that the spatial variation of dielectric func-
tion must be included in the impurity-ion potential for the
calculation of the ionized impurity-limited mobility for
degenerate semiconductors.

To test the validity of the Born phase shifts used in our
calculations we have done the calculations for Ge, as an
example, by exactly solving for the partial-wave phase
shifts as indicated below. The values of few phase shifts
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0.13961
0.036 91
0.01348
0.005 27
0.002 13

0.15209
0.037 71
0.01370
0.005 32
0.002 15

TABLE III. Phase shifts. 5I is the Born phase shift using
modified Dingle potential; 5~ is the full partial-wave phase
shift using modified Dingle potential.

l GABE
APE

have therefore employed a technique discussed by those
authors which allows one to find the phase shifts by locat-
ing the zeros of Rt and the corresponding jt at sufficiently
large distance from the origin. In Eq. (15), U (x)
=V(r)/E and V(r) is replaced by ega(r) and then
solved: Ptt(r) at various r are computed by using a fast-
Fourier-transform routine. From Table III it is clear that
there is not much difference between 5t and 5t for the
corresponding l values. The latter method takes longer
computer time and thus we have done our calculations by
computing Born phase shifts.

Rt sm(x —,' lsr+5t), — (16)

where 5t is the phase shift of the lth partial wave. We

are given in Table III for Dingle screening radius RD.
The superscript PE indicates the use of effective dielectric
function e,ff (k) in the partial-wave method.

The radial part of the Schrodinger equation

'+ l(l+1) + U(x) —1 Rt ——0, (15)
Bx X

where U(x) = V(r)/E, x =kr, and E =A'~k2/2m* is
solved by the combined Runge-Kutta and predictor-
corrector methods. Boardman and Henry ' have pointed
out that when Eq. (15) is solved numerically, one must
often integrate to very large r value before the wave func-
tion obtains the form of a sine function, i.e.,

IV. CONCLUSIONS

In summary, we find that the valence dielectric screen-
ing is significant in computing ionized-impurity-limited
relaxation times for high-impurity concentrations. The
screened ionized-impurity potential may be better chosen
by appropriate Fourier transformation of the potential in
k space.
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