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The structure factors F, of eight high-order [0.64 < (sinf)/A < 1.56 A“l] reflections were mea-
sured for a number of wavelengths to an accuracy of a few thousandths of an electron per atom.
Most of these have never been measured before to this level of accuracy. A monolithic double-
crystal diffractometer of novel design was employed in measuring thin-crystal Laue-case rocking
curves which exhibit fine structure strongly dependent on F,. Computer fitting of the theoretical
curve to the measured one yields F,. An energy-dispersive mode of operation allowed simultaneous
measurements of the rocking curves of a whole family of planes to be carried out. The F, values
obtained, whxle in excellent agreement with previously measured and theoretical ones for
(sin@)/A <1 A- !, are consistently and increasingly lower than the theoretical relativistic Hartree-
Fock Fj values for (sinf)/A > 1 A-!. This systematic trend most probably reflects the inadequacy
of the Debye parameter B calculated from medium- and low-order F,’s for high- order reflections.
Assuming different vibrational amplitudes for intermediate- and mner—shell electrons, our data yield
Biow=0.463240.0041 A2 for reflections up to 880 [(sin)/A=1.04 A- 1, in excellent agreement
with: previous measurements, and Bpg, =0.5085+0.0035 A? for reflections higher than 10100
[(sin8)/A >1.30 A- 1. We also find no anharmonic contribution to the temperature factor of F,
within the limit of accuracy of the experiment, in good agreement with previous x-ray measurements
and some neutron measurements, but in contradiction to some of the neutron forbidden-222-
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reflection results.

I. INTRODUCTION

The charge distribution in a perfect single silicon crys-
tal has recently received much experimental'=® and
theoretical'©~ 1 attention, which has been further stimu-
lated by the renewed interest in the thermal behavior of
atoms,'®17 the band structure of semiconductors, and the
scattering process of radiation by crystalline material.
The systematic sets of measured structure factors by De
Marco and Weiss?, Hattori et al.,! and, in particular, the
high-precision ones of Tanemura and Kato, Kato and
Tanemura,® and Aldred and Hart* proved to be invaluable
in elucidating the details of the charge distribution in sil-
icon. The most extensive of these, that of Aldred and
Hart* (AH), has been repc:a.tedly“'”’14 used to test the va-
lidity of various theoretical models proposed for the
charge distribution of silicon atoms in the crystals. The
10~ 3-electron level of accuracy achieved proved to be suf-
ficiently high for the determination of the nonspherical
centrosymmetric and antisymmetric corrections to the
free-atom spherical charge distribution, the effective har-
monic vibrational amplitude of the atom, the upper limit
to the anharmonic component of the effective one-atom
potential, and the superiority of the Kohn-Sham-Gaspar
exchange term!® over the Slater'® one in the
orthogonalized-plane-wave (OPW) band-structure calcula-
tions of Stuckel and Euwema,'? and also led to the detec-
tion of an unsuspected expansion of the valence shell by a
few percent.*!> All high-precision structure factor mea-
surements mentioned above were done by variants of the
Pendellosung?® method using film detection, which, al-
though capable of achieving a few thousandths of an elec-
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tron per atom accuracy in Fj, determination, is difficult,
through lack of intensity, to apply to high-order reflec-
tions. For this reason, no high-accuracy structure factors
have been published for reflections higher than 880, i.e.,
for (sinf)/A > 1.0416 AL Thus, a number of important
issues, especially the relat1v1stic effects on the inner-core
wave functions, the magnitude of the anharmonic term in
the effective one-particle potential of the atom, and the
temperature and momentum transfer behavior of the
Debye-Waller factor (the contributions of which are par-
ticularly large at high-order reflections), remained outside
the reach of high-accuracy x-ray measurements.

A few years ago Bonse and co-workers®?! proposed a
variant of the Pendellosung method for obtaining the
structure factor F; from the fine structure of Laue-case
rocking curves of two thin crystals. This technique em-
ploys photon counting, which is faster and more reliable
than film detection. Their separated-crystal measure-
ments achieved accuracies of only ~15X1073 e/atom
due to the uncertainties in the crystal thickness measure-
ments, even for the low-order 440 reflection. They were
also confronted with stability problems which are particu-
larly serious for the subsecond-of-arc fringe widths ob-
tained even in medium-order reflections from silicon.
Least-squares fitting of data to theory is quite impossible
in the presence of drift.

In a very recent paper, published while the present pa-
per was in its final draft, Teworte and Bonse?? (TB) report
structure factors for 16 reflections ranging from 111 to
880 for Ag Ka; and Mo Ka, radiations, measured using
a separated-crystal Laue-Laue diffractometer. All of
these reflections, except two, were previously measured by
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Aldred and Hart,* and the two sets agree to within the ex-
perimental errors for all points. Note that the errors
quoted by Teworte and Bonse for their own data are prob-
able errors, i.e., 0.67450, where o is the standard devia-
tion, while those they quote for the Aldred and Hart data
are root-mean-square deviations. Assuming for the mo-
ment that the root-mean-square deviations are equal to
the standard deviations, and calculating the mean o given
by

1 N
o= Fg Ui/Fi)’

where the summation goes over all N reflections, and F;
and o; are the structure factor and its standard deviation
for the ith reflection, respectively, we obtain, for the
Teworte and Bonse data, an ke=0.00135 and
T 18 ka=0.00134, while for the Aldred and Hart room-
temperature data we obtain T Ag‘K,,_o 00146 and
8 k,=0.00137. The difference in accuracy between
the two experiments appears to be marginal at best. How-
ever, in their detailed analysis, Price et al.'* pointed out
that the errors quoted by Aldred and Hart for their own
data are root-mean-square deviations of the 20 individual-
ly measured values from the mean, rather than the
standard deviations in the mean, o

The actual values of o for the Aldred and Hart data are
therefore smaller by a factor of (20—1)!/2~4 than those
quoted in Refs. 4 and 22, which would make them smaller
than those of Teworte and Bonse?? by a factor of 3—4.
The incompatibility of the claimed accuracy of the
Teworte and Bonse data versus the Aldred and Hart data
is graphically demonstrated by Fig. 6 in Ref. 22, where al-
though the TB data carry smaller error bars than those of
the BH data, due to the difference between the rms devia-
tions and the probable errors, as discussed above, the
scatter in the data points about the straight line fitted to
them is actually larger for the TB data than for the BH
data. This is borne out by the relative errors in the slope
and the intercept of the fitted line, calculated by Teworte
and Bonse for their own, and for the data of AH. These
are 60% and 11% for the TB data and 23% and 7.5% for
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the AH data. The above discussion indicates that the
factor-of-2 improvement in accuracy claimed by Teworte
and Bonse?? over the ten year old data of Aldred and
Hart* is unsubstantiated by the errors they quote for their
data.

Recently, a novel monolithic thln-crystal diffractometer
was developed by Cusatis ef al.” and the present authors,’
which, in conjunction with energy-dispersive data collec-
tion and nonlinear least-squares computer fitting tech-
niques, proved capable of achieving thousandths-of-an-
electron accuracies in atomic scattering factor determina-
tion even for high-order reflections. The method was ful-
ly discussed in a previous publication® along with some
preliminary data.

Here we present the full results of a study of high-order
scattering factors. A set of eight structure factors ranging
from 444 [(sin6)/A=0.63783 A~!] up to 14140
[(sinf)/A=1.8228 A —!] were measured, and those up to
12 120 are interpreted for a number of wavelengths to an
accuracy of a few thousandths of an electron. The general
method and the monolithic double-crystal diffractometer
used in these measurements are briefly described in the
next section; Sec. III contains a summary of the necessary
basic structure-factor formalism of Dawson.!® In Sec. IV
the structure factors obtained are presented along with
some relevant theoretical results, followed by a full discus-
sion in Sec. V.

II. EXPERIMENTAL METHOD

The Laue-case rocking curves of two thin, perfect crys-
tals are known to exhibit fine structure.””®2!=23 The de-
tails of this structure are extremely sensitive to the value
of the structure factor F; for the plane and wavelength
used. Thus it is possible, under practical conditions, to
determine the structure factor experimentally from the
measured rocking curve to an accuracy of about 13X 103
e/atom. This is the basic idea behind the method used in
the measurements reported here.

For symmetric Laue-case geometry, the intrinsic reflec-
tion curve is given by?*

Ix(y)=exp(—put /cosOp) | sin[ (2 /Ag)y? +v*)1 21 /(2 +42)12 |2, (1a)

where

=X X5/ | X X5 | -

X}, is the complex electric susceptibility. For silicon, where ReX}, > ImX},, Eq. (1a) can be written as?

Ig(y)=[exp(—put /cosOg)/2(1+y2)]{cosh[ute(1+y?)~1/2/cosOp ] —cos[ (27t /Ag)(1+y?)/2]} , (1b)

where u, t, and 6y are the linear coefficient of absorption, the crystal thickness, and the Bragg angle, respectively. y is
the angular parameter, and A, is the extinction length given by?

y =(0—05)(5in203)/(C | Xy | ),

Here, 6 is the glancing angle for a given ray,

Ag=A(cos03)/(C | Xy, |) .

A is the wavelength, and C is the polarization factor,
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1, o polarization

C= | cos20p |, w polarization.

X, for silicon is given by

X =Xpy +iXpi =(r A2 /7V) | Fy | +i(ud/2m)€ ,
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where 7, is the classical electron radius, ¥ is the unit-cell volume, Fj, is the temperature modified structure factor, and €

is the temperature modified ratio |Xy; | /| Xo; |

e=e€pexp(—M)= {

M =B (sinfg /A)? is the Debye-Waller factor and ag=1if
all Miller indices of the plane used are even and
h+k+1=4n; a,= 1/v2 if all indices are odd and a;=0
for any other combination.?? ¢ is a constant related to the
photoelectric absorption coefficient. For thickness ¢ of
order of a few Ay and ut of order unity, the reflection
curve given in Eq. (1b) will exhibit oscillatory structure
due to the cosine term. For the range of wavelengths and
planes investigated here, the difference between Eq. (1a)
and the approximate Eq. (1b) was found, by computer
simulations, to be negligible. Note that the Debye-Waller
factor is included in two different quantities: € and Fj,.
The significance of this will be discussed later.

If we assume the radiation source to be unpolarized, the
measured rocking curve is given by the sum of the convo-
lutions of two intrinsic reflection curves of the two polari-
zation states:

IM)=I,3 [ IZ"OIZ"(0+A)d6, (3)

o,

where A is the angle of rotation of one crystal relative to
the other.

The structure factor F; for a given plane and wave-
length is obtained from the measured rocking curve by fit-
ting Eq. (3) to the data using a multiparameter nonlinear
least-squares procedure?® which optimizes both Fj, and
the thicknesses ¢; and #, of both crystals. Convergence is
well below 0.1% for all parameters optimized. This pro-
cedure eliminates the need for a separate measurement of
t; and ¢,, which is the dominant source of error in the
previous as well as the very recent F, measurements of
Bonse and Teworte.>??> The value of ¢ used in the fitting
was linearly interpolated from those of Hildebrandt
et al.’” The p values were interpolated using the Vic-
toreen relation?® from the measured values of Hildebrandt
et al®® The Debye parameter B =0.4680 A 2 obtained by
Price et al.'* from a full matrix least-squares refinement
of the Aldred and Hart* data were employed for calculat-
ing € in Eq. (1).

The monolithic double-crystal diffractometer used to
measure the rocking curves is shown in Fig. 1. Its “two
crystals” are nominally 275-um-thick wafers carved out
of a single block of perfect silicon crystal. A rotation of
one wafer relative to the other is done by bending a leaf
spring cut into the monolith in between the wafers using a
linear?® force transducer made of an electromagnet and a
small permanent rare-earth, epoxy-bonded magnet at-

agexp(—M)[(1—q)cos26p +q cos40p],  polarization.

agexp(—M)(1—2gsin’0p), o polarization

(2)

[

tached to the blocks carrying the wafers. Such an ar-
rangement allows extremely high resolution, and repeat-
able and smooth’ rotations to be carried out electrically
rather than mechanically with a corresponding high im-
munity to vibrations, temperature variations, etc. Stabili-
ty was better than 0.001 seconds of arc per day.

The use of an energy-dispersive Ge detector in conjunc-
tion with the continuous radiation from a tungsten target
x-ray tube made possible the simultaneous measurements
of a series of rocking curves of the same family by record-
ing the various harmonics separately. This procedure not
only decreases measurement time considerably, but also
minimizes the influence of possible sources of errors such
as residual drifts, small nonlinearities in the scan, etc.,
which influence all harmonics equally, thus leaving the
ratios of the deduced structure factors unchanged. More
conventional single-wavelength scans with Mo K& and
Ag K@ radiations were also done. Unlike separated-
crystal diffractometers,®?? the monolith is highly immune
to vibrations, and simple rubber pads inserted between the
Op-defining rotary table and the table carrying the x-ray
tube were found to render any vibrationally induced
smearing of the oscillatory patterns undetectable. The
monolith was shielded from room-temperature vibrations
by a polystyrene enclosure and two metallic ones. The
temperature was monitored by the microcomputer con-
trolling the experiment,®! and varied by less than 0.1 K
during a 12-h data run. Data collection was done in the
signal-averaging mode’? to minimize the influence of pos-
sible source-intensity drifts.

FIG. 1. Monolithic thin-wafer Laue case diffractometer; A,
x-ray beam; B, wafers; C, leaf spring; D, electromagnet; E, per-
manent magnet; F, solid-state detector.
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A sum of seven 12-h runs collected in the energy-
dispersive mode for a series of /4 & O planes at 85 =30° is
plotted in Fig. 2. The high stability and repeatability of
the monolith is manifested in the sharp, unsmeared
features, the high contrast, and the fact that the curves
are completely symmetric within the statistical accuracy
limits of the data. This last feature is convincing proof of
the absence of angular drifts which plague separated-
crystal spectrometers, as indicated by the asymmetric
rocking curves of Ref. 8. Moreover, it is an indispensible
tool in identifying spurious structure resulting from
simultaneous reflections or any other source. Note the
structure seen in the 10100 curve at A=0.122 seconds of
arc to the right of the central peak. Its absence from the
same position to the left of the peak identifies it as being
spurious. Note also the fast decrease in the widths of the
curves as the order of the plane increases. The finite
dynamic range of the linear force transducer limits the
number of curves which can be measured simultaneously
with reasonable resolution. It is, however, sufficiently
easy to alter the magnet current range so as to cover a
very wide range of planes with adequate resolution by a
small number of sets of such simultaneous measurements,
with ample overlap between sets to ensure complete con-
sistency. Another effect seen in the figure is the decrease
in the amount of structure with the increase of the order
of reflection. This is due to the increase in the extinction
length as both the wavelength of the harmonics used for
the higher-order planes and their F, values decreases.
Since the fitting procedure locks into the shape rather
than the absolute intensity of the curve, the absence of
structure gradually impairs convergence and eventually
limits the order of the rocking curve which can be
analyzed for a given ¢, ¢,, and A. In such cases the obvi-
ous solution is to increase the crystal thickness, i.e., the
ratio ¢/A,. On the other hand, an increase in ¢ causes a
corresponding decrease in the intensity due to absorption,
thus lowering the amount of structure in the outer wings
of the rocking curve which can be detected above a given
level of statistical noise. Owing to the complicated rela-
tions between the various parameters involved, it is diffi-
cult to set precise analytic limits on .

The data in Table I indicate, however, that even for ex-
tinction lengths as large as Ay=550 um, wafers with
t =275 um, i.e., t/Ay=0.5, corresponding to the 999 re-
flection with Ag K@ radiation, are sufficiently thick to al-
low high-accuracy determination of Fj. Even for the
14140 curves, with A=0.3205 A, for which the extinc-
tion length was Ag=2 mm, one fringe was found on each
side of the central peak. Note that in this case,
t/Ay=0.14. Absorption also imposes some limits on ¢.
While our measurements extended only up to ut=3 (440
at O =48°), where well-defined fringes were obtained, in
the closely related traverse Pendellosung measurements of
Fehlmann and Fujimoto,1 fringes were obtained for
ut >4.5.

In view of the above discussion, the limits of?
ut <1—2 and ¢ larger than several times® A, given by
Teworte and Bonse for their separated-crystal measure-

ments, seem to be too restrictive. Those limits were, how-

ever, dictated by the quality of their data and by the
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FIG. 2. Family of & A O rocking curves measured simultane-
ously in the energy-dispersive mode with 65 =30°. The plot is
the sum of seven 12-h data runs. Note the sharp features, and
the complete symmetry which indicates high stability. A spuri-
ous structure is seen in the 10100 curve at A=0.122 seconds of
arc to the right of the central peak (indicated by an arrow).

method of analysis employed, in which F, is extracted
from the height of the extrema on the outer parts of the
wings of the rocking curves, so as to minimize the influ-
ence of angular drifts® on their final results. They require,
therefore, a large number of fringes in an angular range
where the intensity is much smaller than in the vicinity of
A=0. Thus, it is crucial to limit both absorption and the
ratio t/A, severely. In contrast, the stability of our
monolithic diffractometer, and its high immunity to
external influences, which is manifested in completely
symmetric and high-contrast rocking curves, allows com-
puter fits to the complete curve to be carried out. Thus,
we are able to obtain high-accuracy structure factors even
where only few fringes are present in the rocking curves,
as demonstrated in Figs. 4—6. Further details and a full
discussion of our method are given in Ref. 9.

III. STRUCTURE FACTOR

For an atom in a crystal having a charge density p(T),
the atomic scattering amplitude is defined by!°

F(K)= fammp( Plexp(iK-T)dv .

Following Dawson,'® we assume that the charge distri-

bution follows the site symmetry of the atoms, which is
43m (T,) in silicon. This leads to a nonspherical charge
distribution, which can be written as

p(F)Zﬁc(?)+8Pc(?)+Pa(?) >

where the first term is spherically symmetric, the second
is centrosymmetric but not spherically symmetric, and the
third is antisymmetric. The atomic scattering amplitude
will have a corresponding form,

FR)=F (k) +8f.(K)+ fo(K) .

Note that the spherically symmetric term f,(k) includes
the wusual dispersion correction term f'(A), and



- TABLE II. Theoretical silicon structure factor data in Dawson’s formalism (Ref. 10).

(sinB)/A

10* (j¢)
1970

10° B

10* (js)

B,
—0.2667
—0.1
-0.1

10 (js)
—208.2

3

0.1924

"

(A-

0.63783

hkl
444
660
880

777

1.538
—1.407
—1.407

626.5

—1

+1

-8

817.6
2154
154.9

2274

—71.82

—16.40

—11.54
—5.863
—5.288
—3.233
—2.101

+1

0.78118

53.95
38.17

+8 +1

42

1.04157
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1.538
1.538
—1.407

—0.2667
—0.2667

0.1924
0.1924

1.11621 +1 +1 +1 -1
-1

1.275 66
1.30197

81.47
73.80

45.98

19.58
17.68
10.87

+1

+8
-8

e

888

0.1

—0.2667

—0.1

41

10100
999

1.538
—1.407

0.1924

+1

143512

30.37

7.105

1.56236 +38 +1

12120

k =4m(sin@)/A is the momentum transfer. The two
correction terms to the spherical charge distribution can
be expanded in Kubic harmonics,>? yielding

FaK)=fos(K) 4+ farK) 4+,
8f.(K)=8f, 4(K)+8f, g(K)+ - ,
where
fa,i(E)z_Aiai(ji>’ Sfc,i(E)=Bibi<ji> ) (4)
a; and b; are constant, and
As=hkl /(h3+ k241232,
By=(h*+k* 1% /(R4 K24 172 — %, (5)
Be=A}+B,/22— 3 ,

where A, k, and [ are the Miller indices of the plane in-
volved. (j;) is

Gilk)y =(—1Y4r fow rP *2exp(—ar™)j;(kr)dr ,  (6)

where j; is the spherical Bessel function of order i. For
silicon, Dawson obtained,'® using pre-1970 data,

p=2, m=2, a=088A"2 a;=1.11, by,=—0.32.
D

The structure factor Fj,=F(hkl) is written in the
Dawson formalism as

Fh=Q(achc+bfaTc+ccha+dfaTa) ’ (8)
where, in the above notation,

fc =ﬁ +8fc,4+8fc,6+ )

fa=fa,3+fa,7+ T,

Q =38a,, and a, b, ¢, and d are 1 or O depending on 4,
k,and I. T, and T, are temperature factors whose expli-
cit form depends on the effective one-particle potential as-
sumed. Since, here, the main anharmonic term is third
order, the simplest potential is of the form

V(R =Vo(r)+5alx?+y2+2z2)+Bxyz .

As shown by Dawson and Willis,>* this yields the tem-
perature factors

T, =exp(—k2kpT /2a)=exp{ —B[(sinf) /A]?}
=exp(—M) ,
T, =T, (kg T)X(873/VNB/a>)hkl ,

9)

where kg is the Boltzmann constant. The second Miller
index and the momentum transfer, both denoted k for
reasons of convention, should not be confused. At room
temperature,¥® a=7.85x10"12 ergsA =2, B can be
determined, in principle, by temperature-dependent neu-
tron measurements of the “forbidden” 222 reflection. The
situation at present is, however, rather uncleara Nunes3®
derived an upper limit of 8<0.5X 10! ergs A —3 from
such measurements. Aldred and Hart* reduced this limit
by a factor of 2, using their high-accuracy structure factor
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data. In contrast, the neutron 222 integrated reflectivity
data of Roberto et al.’ yield a definite value of
B=(0.542+0.054)x 10~ ergs A ~3. For this value of j3,

T,/T,=2.7x10"3hkl (10)

at room temperature. For the highest-order 4 A h reflec-
tion measured by us, 999, this is a 2% effect, well above
the experimental error; it should, therefore, be clearly
detectable.

Since’’

jn(Z)=[7T/(2Z)]l/2Jn+]/2(Z) ’

where J is the Bessel function, for m =2, Eq. (6) can be
written as

Uik)) = (—k /2)Y7?a~"[T(v)/T(n)]
XM(v,n, —k?/4a) ,

where I' denotes the usual I" function, v=(p +i +3)/2,
N=i++, and M is the confluent hypergeometric func-
tion for which tables*® and computer routines® are avail-
able. The values of {j;), i =3,4,6, and the other quanti-
ties discussed in this section are listed in Table II for the
planes investigated here.

IV. RESULTS

The sum of twelve 1-h scans of a set of 4 40 planes
done in the energy-dispersive mode with 880 reflecting the
Ag Ka wavelength is given in Fig. 3. For the data
presented in this figure, the known* structure factor of
880 was employed in fitting the 880 data to the theoretical
curve. This fit yields the effective thickness»¢{%and 7,
traversed by the beam. Since all rays, regardless of wave-
length, follow the same physical path, these values of ¢;
and t, apply to all the other A4 A O reflections as well, and
were employed in the fit of the 440, 660, 10100, and
12 120 data, this time optimizing F,. This procedure was
repeated for five 1-h scans, and the value adopted for Fj
was the mean of the individual values, each adjusted to a
temperature of 293.2 K using the actual mean tempera-
ture recorded for each scan. The standard deviation o in
this value was calculated from the scatter of the five
values, taking into account the o of each individual F}, as
obtained from the fitting program. The same procedure
was used in the analysis of all other data sets measured.
The (440), (660), or (880) plane, the F}, for all of which is
known to high accuracy, was set to reflect the characteris-
tic wavelength, and the corresponding curve was used to
obtain ¢, and ¢,. These, in turn, were used to calculate F,
for the other simultaneously measured planes. For fur-
ther details, see Ref. 9. In the data plotted in Fig. 3 the
transducer’s dynamic-range limitations rendered the
measurable portion of the 440 curve insufficient to sup-
port a meaningful fit. The same holds for the 12 120 and
14 140 curves, which lack structure. For the 10 100 curve
in this set, however, and for other planes in the numerous
data sets measured, the agreement between the optimized
theoretical curves and the measured ones is very good.
An example of one data set out of the 12 included in Fig.
3 is given in Fig. 4(a) for the 10100 curve. As shown in
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01 0 01
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FIG. 3. Family of h h 0 rocking curves measured with high
resolution in the energy-dispersive mode. The plot is a sum of
twelve 1-h data sets. Note the large decrease in the widths and
the gradual fading out of structure with increasing order of re-
flection. The 440 and 660 curves were shifted upwards in the
plot by 15000 and 5500 counts, respectively. Peak intensities
for the 440 and 660 curves are smaller than for 880 because of
the shape of the continuous spectrum of the source, as well as
the increased absorption at longer wavelengths.

Fig. 4(b), all residuals are well within the statistical 2-
standard-deviation (20) levels of the measured data and
are randomly distributed. The Fj; values of Table I are
the mean of several fits like the one presented in Fig. 4.
Two other examples are given in Figs. 5 and 6. The
12 120 rocking curve in Fig. 5 was measured with charac-
teristic Ag K@ radiation. Note that most of the structure
in this very-high-order reflection has already faded out be-
cause of the large extinction length. What is left, howev-
er, is sufficient to ensure good convergence, as evidenced
by the low level of residuals in Fig. 5(b). The same high-
quality fit is obtained in much more oscillatory curves, an
example of which is given in Fig. 4 of Ref. 9. The 888
curve in Fig. 6 was measured in the energy-dispersive
mode with the (555) planes reflecting the Mo K& wave-
length. Note the structure at 0.14 seconds of arc to the
left of the central peak (marked by an arrow in the fig-
ures). Its absence from the same position to the right of
the peak proves it to be spurious. The residuals at this po-
sition are therefore quite large. Nevertheless, the quality
of the fit in other peaks of the curve, and, consequently,
the value of F, deduced, are not affected, as is borne out
by the randomly distributed and 2o-limited residuals in
Fig. 6(b) at all points except in the immediate vicinity of
the spurious structure. This immunity to localized spuri-
ous structure is an important advantage of methods which
fit the complete measured rocking curve over partial fit-
ting of only the relative heights of the maxima and mini-
ma on the outer flanks of the curve, as done in the
separated-crystal measurements of Bonse and Teworte.%??
To some extent, this ‘“‘distribution of systematic error”
renders a separate physical elimination of coherent simul-
taneous Bragg reflections unnecessary. As the captions to
Figs. 4—6 indicate, the computer fit allows crystal thick-
ness determinations to well below 0.1 um, which has not
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FIG. 4. 10100 rocking curve; one of the twelve data sets in-
cluded in Fig. 3. (a) Experimental (dots) and fitted theoretical
(dashed  line) rocking curves for  Fj100=0.9216,
t;=(282.53+£0.11) pm, and ¢,=(274.79+0.09) pm. (b) Fit
residuals. The difference between theory and experimental
(dots) are randomly distributed and within the statistical +2¢
levels of the data (dashed line). Note that the F}, values of Table
I are the mean of those obtained from several fits like the one
presented in this figure.

been achieved in contact methods.

The complete set of structure factors measured in this
study is given in Table I. The fact that our new scattering
amplitude values for the 880 curve agrees with those of
Aldred and Hart* is not an inevitable result of our algo-
rithm, but rather a clear confirmation of the repeatability
of experiments and of proper convergence of the least-
squares program. Theoretical spherical atom scattering
amplitudes, denoted fryr, were interpolated from the
relativistic-Hartree-Fock (RHF) values listed in the Inter-
national Tables for X-ray Crystallography.*® Since at least
four different studies®!**!4? indicate that the dispersion
corrections of Cromer and Libermann® (f¢p) do not
agree with experiment at short wavelengths, we have list-
ed in Table I those of Cusatis and Hart*' (f¢y) as well.
Unfortunately, these absolute, measured dispersion correc-
tions were published**? only for Mo Ka; and Ag Ka,
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FIG. 5. Single 12 120 rocking curve measured with charac-
teristic Ag K@ radiation. For notation, see Fig. 4. The fit pa-
rameters - are Fj;150=0.4570, 7,=(232.58+0.082) pum, and
t,=(293.22+0.10) um. Note the relative lack of structure
when compared to Figs. 4 and 6 due to the large extinction
length. Note also the <0.1-um accuracy in thickness, obtained
from the fit, which has not yet been achieved by direct measure-
ment.

wavelengths. Although relative fj —fa, ka, Pendello-
sung measurements** are also available for several charac-
teristic wavelengths A, none of these coincide with those
listed in Table I. The values of fy for wavelengths other
than Mo Ka and Ag Ka were, therefore, linearly extrapo-
lated from those two values. The structure factors were
calculated using both CL and CH values for the disper-
sion correction for each wavelength. These, denoted
(Fy, /Q)cu and (F} /Q)c1, include a nuclear scattering am-
plitude’ of 3,810 e/atom and the Debye parameter'*
B =0.4680 A% As for the correction terms to the free-
atom-scattering amplitude, the experimental* values of
a3;=1.012 and b,=0.206, and the transforms listed in
Table II, yield, for all planes except 444, f,; and 8f, 4
below the experimental accuracy of our experiment.
These correction terms are of no consequence for the 444
curve, since although here 8f, 4=2.8X 1073 e/atom, the
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FIG. 6. 888 rocking curve measured in the energy-dispersive
mode with 63 =34.52°. For notation, see Fig. 4. The fit param-
eters are Fgg=0.9002, ,=(268.49+0.071) um, and
t,=(278.6710.055) um. The spurious structure discussed in
the text at A=0. 14 seconds of arc to the left of the peak is indi-
cated by an arrow in both (a) and (b). Note that the quality of
the fit in other parts of the curve is not impaired.

term bf, T, is equal to 0.

Finally, the last column of Table I lists the measured
values of F,/Q. The unusually large experimental errors
in Fyyy and Fgg reflect the restricted dynamical range of
the force transducer, as discussed earlier. The fading out
of structure at short wavelengths and in high-order reflec-
tions is responsible for the slightly larger o of Froio (at
A=0.4486 and at 0.4268 A). The A=0.4900 A data set
for the 10100 reflection was measured without the
thermal enclosure, which accounts for the increased stan-
dard deviation in that case.

V. DISCUSSION

The most intriguing feature of the measured Fj data is
the large deviation from the theoretical values for high
(sin@)/A. In view of the excellent agreement with both
theory and previous high-precision Fj, measurements,*
which we obtain for the low-(sin@)/A (444), (660), and
(880) planes for all wavelengths measured, we believe that
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it is highly improbable that the deviations are caused by a
systematic error in the experiments or in the data analysis.

Strains in the crystal cannot account for these devia-
tions either. Although, to our knowledge, no detailed
theoretical or experimental studies of the influence of
strain on thin-crystal Laue-case rocking curves have been
published, Bonse and Teworte®?? briefly consider the sub-
ject and conclude that even very low inhomogeneous
strain levels or homogeneous strains which are unequal in
the two crystals are bound to smear out the structure in
the curves and render them asymmetric. Since the ob-
served contrast was very close to the theoretical one in all
our rocking curves, and since no asymmetry was detected,
such strain gradients can clearly be ruled out. This was
also verified by a number of double-crystal Laue topo-
graphs taken with Ag K@ and 660 and 880 Bragg reflec-
tions in the A A 0 diffractometers and using the 555 Bragg
reflection in the A h h diffractometers. Moreover, in the
closely related Pendellosung measurements, strains were
found* to cause a smaller fringe spacing, which, in turn,
results in a higher value being deduced for F; than in the
unstrained crystal. This last effect was indeed detected in
our experiments in a number of 10100 data sets measured
using a series of decreasing wavelengths. These are the
10100 (labeled a—e) values listed in Table I and plotted
in Fig. 7. Near the point where the x-ray beam is incident
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FIG. 7. Atomic-scattering amplitude f,, calculated from
(Fp, /Q)meas and f ¢y of Table I assuming B =0.4680 A2 (a) foms
dots; frur, dashed line. (b) The relative difference between
theory and experiment. Note the smoothly increasing deviation
from zero for (sin6)/A>1.1 A ~! (dashed-dotted eye-guiding
line) and the effect of strain in the 10 100 values as discussed in
the text.
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on the diffractometer used in those measurements, a small
defect caused by chipping in one of the wafers was found
in the 660 topograph. Note the increase in the apparent
structure factor with increasing energy, in accordance
with a corresponding increase in the universal strain pa-
rameter**® p as X, decreases. The strained crystal is
behaving, therefore, as expected; it is effectively a perfect
crystal for long wavelengths and an imperfect one for
short x-ray wavelengths. We may safely assume, however,
that the influence of the strain at the lowest energy mea-
sured, Mo K@, is negligible. This is indicated by the good
agreement of Fig190(, With another independently mea-
sured value,’ as well as the fact that the 10100(a) value
lies on a smooth monotonic curve passing through neigh-
boring F}’s [see Fig. 7(b)]. In the absence of a well-tested
theoretical treatment, we are unable to analyze the strain
effect quantitatively. We should, however, point out that
if we separate the structure amplitude into two
contributions—a large one, taken as Figig0(g), from the
unstrained crystal, and a small contribution AF of the
strain—then AFx=F10 100(x) _'FIOIOO(a) (x =b,C,d,e) is
found to follow, rather closely, a power law in A with an
exponent of —3.

The conclusion emerging from the foregoing discussion
is that the deviation in Fj is a real physical effect and
does not have a hidden external cause. Let us assume
then that the well-established Debye parameter
B =0.4680 A ? is valid for the entire range of (sin9) /A ex-
plored in this study, and using fcy, let us calculate the
“measured” atomic scattering amplitude f,,. A plot of
the values thus obtained is given in Fig. 7(a) along with
the theoretical relativistic Hartree-Fock fryp curve.*
Figure 7(b) is a plot of the relativistic difference
Af =(fm —frur)/frur versus (sin@)/A. The excellent
agreement between theory and experiment for low
(sin)/A and the smoothly increasing deviation as
(sin@)/A increases are clearly seen, as is the effect of
strain in the 10 100 reflections.

Aldred and Hart* and Fehlmann'® accounted for a
slight decrease in the structure amplitude of the low-order
planes by assuming an expansion of the valence shell. The
data, analyzed on the basis of this assumption, yield a
valence shell expansion of 6.8%. An attempt to account
for the decrease in F, in our case in a similar manner
would require the inner shells to expand, since they con-
tribute almost exclusively to the structure amplitude at
high (sinf)/A. The expansion required can be calculated
from

Sm[(sin@) /A ]=frur{(14€)[(sin6)/A]} ,

and yields € =16%, 8%, and 6.2% for the 12120, 999,
and 10 100(a) data, respectively. While the possibility of
an expansion of the inner shells cannot be completely
ruled out, the systematic variation in the calculated values
of €', and especially their large magnitudes, which involve
unreasonably high energy shifts for the levels involved,
render such an explanation highly unlikely. A more fun-
damental approach along these lines, but starting with a
monopole deformation term directly in the charge distri-
bution of the Dawson theory (but not neglecting higher-
order terms, as the core deformation can not be assumed a
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priori to be spherical), or even a modified set of the Doyle
and Turner*® wave functions used in calculating fryr,
may, however, result in a better agreement with the exper-
imental scattering amplitude for high (sin6)/A.

An alternative, and in our opinion a much better, way
of accounting for the decrease in Fj, at high (sinf)/A is to
assume that it originates in the Debye-Waller factor
exp(—M) rather than the scattering amplitude. As men-
tioned earlier, exp(—M) is included both in
e=¢€pexp(—M) and in Fy, which is proportional to
| f(k)|exp(—M). Thus, the Debye-Waller factor deter-
mines both the period of the oscillatory structure in the
rocking curve, Eq. (1b), through the cosine term, and the
contrast. Since €, is known,?” these two items of informa-
tion should, in principle, enable independent determina-
tions of both the Debye-Waller factor and f(k). In this
experiment, however, the parameters chosen, namely ¢,
t5, A, and the order of the measured planes, as well as the
statistical accuracy of the data, rendered such a procedure
unfavorable in terms of accuracy and computer time.
Neglecting the very small corrections to f(k), as well as
the anharmonic temperature factor, the effective experi-
mental Debye parameter B is the slope of the plot of

M= —In[(F} /Q)meas/ frur +1

versus (sin8)/A, given in Fig. 8. It was found to be in-
dependent of the choice of the particular dispersion
correction used. This figure demonstrates that both low-
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FIG. 8. Effective Debye-Waller parameter M = —In[(F),/
Qmeas/(frur+f")] for f'=fcy (dots) and f'=fcy (triangles).
Note the good fit to the straight-line sections at both ends of the
plot. The Debye parameter B =M [(sin8)/A]~? corresponding
to the slopes are B, =(0.4632+0.0041) A 2 and
Bhigh =(0.5085+0.0035) A2 Note also that the dispersion
correction does not influence the value of B; slopes are identical
with both fey and fep.
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and high-(sin@)/A points lie on straight line sections
through the origin, to a very good approximation. The
slopes, and, consequently, the corresponding B, are, how-
ever, different at the ends of the (sinf)/A interval.

Using the 440(b), 660, and 880(b) data, we obtain, for
low (sin@)/A,

Biow=(0.4632+0.0041) A2,

in very good agreement with the experimental values of
(0.4613+0.027) A2 of Aldred and Hart* and
(0.4676+0.0014) A2 of Price e al.'* as well as the
theoretical values of the valence-force-potential
models!”*” and the simple Born—von Karméan model.*®
Blow also agrees with the value of B =(0.4671+0.0021)
A? that we calculated from F}, /Q values measured with
Ag Ka radiation for the same reflections taken from the
very recent data of Teworte and Bonse. 22 This seems to
indicate that the Debye temperature of @, =543 K em-
ployed in that study, which corresponds to B =0.444 A2
is not even supported by their own data.

The three highest-order reflections, 12120, 999, and
10100(a), yield

Biign =(0.5085+0.0035) A2,

which, while in very good agreement with the value of
0.5192 A 2 predicted by the shell model,'!” is 10% higher
than B,,,. Since the contribution to the structure factor
of the various electronic shells varies with the order of the
Bragg reflection, a possible way of reconciling these two
B values is by assuming different thermal-vibrational am-
plitudes in different parts of the bound atom. While all
electrons contribute to the low-order Bragg reflections, the
K electrons dominate the structure factor when
(sinf)/A>1.3 AL

It has long been argued*>>!7 that the bonding charges
in the silicon crystal form a rather rigid structure whose
thermal-vibrational amplitude is smaller than that of the
silicon “cores.” Since the Debye parameter B is propor-
tional to the amplitude of the thermal vibrations, the cor-
responding Debye parameter By, will be smaller than
B .- Neutrons interact with the nucleus, which is as-
sumed to move rigidly with the core electrons, while x
rays interact with both the core and the bonding electrons.
Combined neutron and x-ray measurements should there-
fore be able, in principle, to yield both By,,q and B ..
Moreover, B values obtained from neutron measurements,
should be equal, or very nearly, to those obtained from
high-(sinf) /A x-ray measurements which probe the inner-
most electrons almost exclusively. Detailed analyses of
temperature dependent x-ray and neutron measurements
of the structure factor of the “forbidden” 222 reflection
yield a bonding-electron Debye parameter ranging from'’
Byona =0.5B core 0% Bpona =0.9B 0. In all these studies it
has invariably been assumed that the “cores,” i.e., the nu-
cleus and inner electrons move as a single rigid unit, and
thus the two Debye parameters By, and B, describe
the thermal behavior of the atom in the crystal completely
in that simple shell model. While this description is ade-
quate for (sin@)/A <1 A —1 as the very good agreement
between theory and experiment* shows, a modification of
this approximation is introduced by our data for
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(sin)/A>1 A~ If the somewhat artificially sharp
division of the atoms into bonding charges and “cores” is
relaxed, and, rather than assuming only two different ef-
fective force constants, a smoothly and monotonously de-
creasing force constant is assumed to govern the motion
of the various parts of the atom as one moves from the
bonding charges towards the nucleus, then the thermal-
vibrational amplitudes, and, consequently, the Debye pa-
rameter B, will increase correspondingly. The increase in
the relative contribution of the inner shells of the atom to
F}, upon increasing (sinf)/A is accompanied by a corre-
sponding increase in the effective Debye parameter. Over
a limited range of (sinf)/A values, the smoothly, but ap-
parently slowly, varying B can be approximated by a con-
stant effective Debye parameter. This is the reason for
the different values obtalned for B for (sinf)/A<1 A~!
and (sin6)/A>1.3 A~ A more quantitative analysis
will have to await a theoretical formulation, as well as a
larger body of accurate experimental Fj values, and, espe-
cially, a set of reliable dispersion corrections. We should
only like to point out that the ratio

Biow/Biigh=0.911%0.011

obtained here is suggestively close to the ratios

0.95+0.05, Ag Ka,

Bona/Beoe=0.85+0.05, Cu Ka;

obtained by Fujimoto® from “forbidden” F,,, measure-
ments. There is scope, therefore, for a rather detailed
analysis of bound-atom vibration modes. Neutron scatter-
ing gives the nuclear motion. X-ray studies of low-order
Bragg reflections give intermediate and mean electron vi-
brations, while the present high-order Bragg reflections
can be used to determine the K-electron motions. X-ray
and neutron studies of the 222 reflection yield the bonding
electron Debye-Waller factor directly.

Another important conclusion, concerning the relative
unimportance of anharmonicity in silicon, emerges from
an examination of our data. Note that the sign of the
leading anharmonic correction term in Eq. (8), i.e., f. T},
is given by c in Table II. As ¢ is negative for 999 and
positive for 777, we conclude, from Eq. (10) and the
preceding discussion, that the anharmonic term in the ef-
fective one-particle potential should increase F;;; by
about 1% and decrease Fgg9 by 2%. This should be man-
ifested in Fig. 7(b), for example, as shifts of 1% down-
wards and 2% upwards for the 777 and 999 points,
respectively, thus causing these two points to deviate sig-
nificantly from a smooth curve passing through the rest
of the data points. This effect is not observed. Using
B,y and By, for Fq77 and Fggg, respectively, and their
associated uncertainties, we obtain a limit on the magni-
tude of B which is about 3 times lower than that of
Nunes.’® This is in good agreement with the x-ray results
of Aldred and Hart,* who lowered Nunes’s limit by a fac-
tor of 2, but disagrees with the definite value of 3 mea-
sured using neutrons by Roberto et al.’ In view, however,
of the disagreement between different investigations of
F,y,, as discussed by Price et al.'* and by Reid and
Pirie,!” as well as the uncertainty in the B value to be used
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with high-order reflections, it is not clear that this indi-
cates a significant underlying difference between neutron
and x-ray results.

Finally, in view of the very low limit imposed by the
data on B, the anharmonic term in the effective one-
particle potential and the negligibly small static deforma-
tions obtained by the Dawson theory, for the reflections
discussed here, it seems very reasonable to assume, as we
have done, that the contributions of higher-order terms in
the temperature factor, as well as possible static nonspher-
ical contributions to the Debye-Waller factor B are also
negligible to within the accuracy of our experiment. The
dynamically deforming pseudoatom approach®® conceptu-
ally agrees with the type of vibrational behavior indicated
by our data. Unfortunately, an analysis of our data
within the framework of this theory will have to await the
availability of both a detailed theoretical treatment of
crystalline silicon to high-(sinf)/A values and a more
complete body of high-order high-accuracy F), values.

VI. CONCLUSION

We have presented here, for the first time, a set of mea-
sured structure factors Fj, for high-order [(sin6)/A>1
A~ reflections in silicon with a thousandths-of-an-
electron level of accuracy. The data complements and, at
the lower end of the (sinf)/A interval investigated, agrees
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excellently with the extenswe low- and medium- order Fy
data of Aldred and Hart.* At (sin0)/A>1.1 A~ sys-
tematic deviations from theoretical values based on a De-
bye parameter calculated from the low-order reflections
are detected. This most probably indicates that the ac-
cepted view of regarding the silicon cores as rigidly mov-
ing has to be modified when high-order reflections, where
the inner shells determine F; almost exclusively, are con-
sidered. It is found that these reflections are better
described by a Debye parameter about 10% higher than
that of the medium-(sinf)/A reflections.

In addition, no anharmonic contribution to the tem-
perature factor in Fj is detected within the experimental
accuracy. This lowers Nunes’s®® limit on S by a factor of
1.5 over the previous factor of 2 deduced by Aldred and
Hart.* The contradiction of this conclusion and that of
Roberto et al.’ indicates the high desirability of addition-
al high-accuracy and high-momentum-transfer F;, mea-
surements.
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