PHYSICAL REVIEW B

VOLUME 31, NUMBER 1

Critical exponents for ¢3-field models with long-range interactions

W. K. Theumann and M. A. Gusmao

Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 90000 Porto Alegre, Rio Grande do Sul, Brasil

(Received 23 July 1984)

The critical exponents for two ¢>-field theories with long-range (LR) interactions decaying as
1/R%*°, 0 >0, are calculated to two-loop order in renormalized perturbation theory in d =30 —¢'
dimensions. One is the continuum version of the p-state Potts model and the other is the s¢alar field
theory with imaginary coupling that describes the Yang-Lee edge-singularity problem. The two
crossover exponents for quadratic symmetry breaking discussed by Wallace and Young and in recent
work by the present authors are also calculated in the first case. By means of renormalization-group
recursion relations to one-loop order, it is shown that the LR fixed point is stable for all 0 <2 when-
ever 7sg, the critical correlation-function exponent for short-range (SR) interactions, is negative, im-
plying a discontinuity of critical exponents at o=2. This is the case for the (p < 2)-state Potts model
and for the Yang-Lee edge-singularity problem, and is in agreement with recent results by Chang
and Sak for the Ising spin-glass problem. For the (p > 2)-state Potts model there is an indication of
a continuous crossover to SR behavior at o0 =2—1msg, with nsg >0. It is pointed out that a number
of exact results [B=(1—¢€'/20)ov, 6=(d —0)/(d +0), in which & is the Yang-Lee edge-singularity
exponent, and v~!=(d —0o)/2 for a scalar theory] may apply within the LR expansion depending
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on 7)=2—o (shown here to hold at least to two-loop order) being exact, to all orders.

I. INTRODUCTION

Renormalization of the continuum ¢>-field theory for
the p-state Potts model®>? with short-range (SR) exchange
interaction and the nature of the phase transition have
been considered for some time.>~® Results for the model
with long-range (LR) interaction decaying as 1/R9*°,
o >0, were already obtained by Priest and Lubensky to
one-loop order.> Of particular interest is the crossover to
SR behavior, and they argued that this takes place when
o=2—1gg if Psg > O (the case for p > 2), following earlier
work by Sak on the n-vector model with LR interaction.’
They also pointed out that the SR fixed point is unstable
to a LR perturbation for all o <2 if ngg <O (the case for
p <2). Although this could suggest a discontinuity of
critical exponents at o0=2, a detailed discussion of how
this would take place was not given in their work.

In a recent paper on the n-vector model with LR in-
teraction, we pointed out that the crossover problem to
SR behavior may not be completely settled and that criti-
cal exponents may be discontinuous® at c=2. In further
work by Chang and Sak,’ it was also shown that the ex-
ponents for the Ising spin-glass model with LR interac-
tion in the ¢* theory of Kotliar et al.'® are discontinuous
at o=2 because the LR fixed point is stable for all o <2.
This is a theory where 75z is negative.

One of the purposes of the present paper is to show that
the LR fixed point is stable for two other ¢3-field theories
with LR interaction whenever o <2 if ngg <0. One is the
p-state Potts model with p <2 and the other is the Yang-
Lee edge-singularity problem.!! A detailed discussion is
needed because at the LR fixed point the coefficients of
the g2 and ¢ dependence (4 being the wave vector) in the
renormalization-group (RG) recursion relation for the in-
verse two-point correlation function!? cannot both be pos-
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itive, a point apparently not noted before, and which also
arises in the model of Kotliar et al.

A second purpose of this work is the renormalization of
the p-state Potts model with LR interaction and the cal-
culation of critical exponents, to two-loop order in
d =30 —¢€' dimensions, including the two crossover ex-
ponents for quadratic symmetry breaking (QSB) discussed
by Wallace and Young,' following our recent work for
SR interactions.”* From our calculation for the Potts
model there is a short way to obtain the exponents for the
Yang-Lee edge-singularity problem, based on the result
that n=2—o0, at least to two-loop order, and this is the
third purpose of our work.

The present paper is restricted to calculations with a
pure ¢°> Landau-Ginzburg-Wilson Hamiltonian without
the quartic coupling needed to stabilize the theory. How-
ever, as recently shown by Pytte,5 when the latter is taken
into account a second-order transition follows from a RG
calculation to two-loop order in d =6—¢ dimensions for
P <2. Owing to the presence of instanton solutions that
appear by resummation of the perturbation series to all
orders in pure ¢* theory;'* and which are usually associat-
ed with a first-order transition,'® we warn that the ex-
ponents calculated here for the Potts model with p <2
may not correspond to a second-order transition, except in
the limit where p—>1.17 Nevertheless, since the classical
argument involving instantons breaks down in this limit,
there may be a changeover to different instanton solutions
at some low value of p —1 which can still allow for a
second-order transition, and our results would apply to
that case. These difficulties do not arise in the ¢° theory
for the Yang-Lee edge singularity, since the coupling is
purely imaginary.

The renormalization and calculation of critical ex-
ponents are done to two-loop order in renormalized per-
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turbation theory'®=%° in d =30 —¢’, while the crossover to

SR behavior is studied to one-loop order by means of the
simpler RG recursion relations. The paper is organized as
follows. The model is introduced in Sec. II, where the
bare vertex functions can also be found. The renormaliza-
tion and calculation of critical exponents for the Potts
model and the Yang-Lee edge-singularity problem for LR
interactions is done in Sec. III and the stability of the LR
fixed point is discussed in Sec. IV. In Sec. V we summa-
rize our results and discuss their relevance for percolation
with LR interactions, while technical details are left for
the Appendix.

II. MODELS AND VERTEX FUNCTIONS

We start with the effective Landau-Ginzburg-Wilson
Hamiltonian for the symmetric theory in momentum
space,

H=—7 fa<m3+sq2+lq">z_¢.~<a>¢,-<—a>

gsozd,,k L L,¢,<q>¢,<q )i(—G—q "),

’]’
(2.1)

where ¢;, i=1,2, .. .,n, are the components of a real field,
with the tensorial coefficients

dijie = 2 eleflei 2.2)
for the p(=n + 1)-state Potts model in terms of the Potts
vectors € ¢, while

i(=v-1), i=j=k=1

di=
v 0, otherwise

(2.3)

for the Yang-Lee edge-singularity problem.!! Further-
more, mg is the bare “mass,” and the momentum depen-
dence in g2 and ¢ follows from the LR interaction in the
original Hamiltonian decaying as 1/R?+?, 0 <o <2. The
coefficients s and / are fixed by the RG recursion rela-
tions in Sec. IV. Anticipating the result that will be ob-
tained there, that the LR fixed point is stable for all o <2
when 7gg <0, we set s=0 and /=1 for the calculation in
renormalized perturbation theory. Then, the dimensional
coupling g3;o=k"?w,, in terms of the arbitrary
momentum-scale parameter «, yields the LR expansion in
€' =30 —d with the trilinear dimensionless coupling wj.
The momentum-space integrals f _=( 2m7)~% [ d% are
done over all space in renormalized’ perturbation theory
with dimensional regularization,'®?° and over the shell
bl | 4| <1, b>1, in the RG recursion relations.

Two representations for the Potts model can be found
in the literature. One is the representation of Wallace and
Young'® (WY) in which ef==*1 for any component i,
while in the other representation, due to Priest and Luben-
sky® (PL),

12 |0 ifa<i,
X 11 if a=i,
—1/(p—i) ifa>i.

ef=

p(p—i)

e (2.4)

The main difference between the two is that in the repre-
sentation of PL there is one Potts vector that lies along a
coordinate axis in order-parameter space, namely the vec-
tor € ! along the i =1 axis, whereas in the WY representa-
tion none of the vectors are aligned with a coordinate axis.
As far as calculations in the symmetric theory with an
O(n)-invariant quadratic part in the Hamiltonian of Eq.
(2.1) are concerned, the two representations yield identical
results, of course, since they only differ in a rotation of
coordinates. In the presence of QSB, however, the two
representations are no longer equivalent and, as shown ex-
plicitly in our recent work,'* each of them serves to calcu-
late a different crossover exponent.

We implement QSB in the Potts model by adding to
Eq. (2.1) the anisotropy term?!

Hy=%8 fa,B(?i)

that favors ordering into m “longitudinal” components if
g >0, with

(2.5)

B(q (n— m>2¢,<q)¢,(—q)

i=1

—m Y $i(@)i(—7q) (2.6)

i=m+1

For simplicity, it will be assumed that m =1 and the ef-
fect of 57, is then to add a “‘mass” term to the remaining
n —1 “transverse” components. In general, QSB gen-
erates a break in trilinear symmetry with new fixed-point
behavior, as shown by one of us in recent work to one-
loop order.?? Actually, part of that break in trilinear sym-
metry remains even in the absence of QSB.? Indeed, in
addition to the usual fixed point of the symmetric theory
one finds asymmetric (in the field components) fixed
points. Renormalization to two-loop order, with?* or
without QSB,? confirm these results. However, to keep
the present work simple, we restrict ourselves to trilinear
symmetry, with a single trilinear coupling g3,. The QSB
term (2.5) will then serve to calculate crossover exponents
to a quadratic perturbation, with g <<1, about the sym-
metric theory.

Here we present vertex functions. The bare one-particle
irreducible (IPI) two- and three-point vertex functions
F(Z and I‘,_,k, as well as the 10ng1tud1nal two-point vertex
functlon with a ¢? insertion, I'%", for the symmetric
theory in the Potts model, are calculated in standard
way!®19 to two-loop order, with the result

T =q°8,[1— By Liwd —(BuIs + Byl Pwd],  2.7)
Tk =k d;[wo+ Ay Lywd +(Ay L5
+AypL? + Ay L wil, (2.8)

r(2”_1+C“L1w0+[(C21+C22)L(1 +(Cy3+Coy) LY
+CysL5 Jwi (2.9)
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in which a factor
K;?=[2""*4r421 = d /2)]' 2,

in terms of the I" function I'(z), is absorbed, as usual, in
wo. I; and LY, i=12, are one- and two-loop integrals
corresponding to the diagrams in Figs. 1-3 and 4;;, By;,
and Cj; are the multiplicity coefficients of the diagrams.
These coefficients, drawn from Amit’s paper,* are collect-
ed in Table I, while for the LR integrals calculated with
dimensional regularization at zero mass we obtain the re-
sults given in the Appendix. Note that, for fixed o <2,
some of the integrals. are less singular than for the SR
Potts model, either with a lower-order pole in € or

without a pole at all. This is responsible for the absence

of wave-function renormalization and for the results de-
rived in Sec. IIL. ‘

The calculation of the crossover exponents for QSB, ¢
and &, requires the 1PI two-point longitudinal vertex
function with a B insertion, which can be written as'*

T 5(wo)=T{}1(w0) = -1 V) , 2.10)
in which Fu 1 is the 1PI two-point vertex function with
the insertion of a longltudmal ﬁeld component squared,
#1(q)p;(—q). With this, T\}; becomes precisely the
two—pomt vertex function with insertion of the operator
{¢1) =¢7—¢*/n, in coordinate space, that belongs to the
irreducible representation (n —1,2) in the work of WY.13
In contrast with the vertex functions for the symmetric
theory, F ,J3k), and '}V, whlch are mdependent of the
representatlon for the vectors €9, I‘“ 1 is representation
dependent,!* as will become clear below.

To second order in the loop expansion, we obtain

I 1=14D) L 1w} +[(Dy;+Dy)LY

+(D23+Dy)LY” +DysL ¥ Twh
(2.11)
with the same integrals as in Eqgs. (2.8) and (2.9), and new
coefficients

" Dy=m4+Dldyn—(n+11,
Dy =2Dys=(n+11[(n —3)d1;; +2(n +1)],
(2.12)
Dy =2(n +1(n —=2)[dy 11 —(n +1)],
Dy3=2Dy=(n+1*n—Ddy;;;—(n +1)],

D>

FIG. 1. Diagrams for the two-point 1PI vertex function I‘,, s
to two-loop order, given by Egs. (A1)—(A3) and the coefficients
in Table 1.

FIG. 2. Diagrams for the three-point 1PI vertex function

I‘Uk, to two-loop order, given by Egs. (A5)—(A11) and the coef-
ficients in Table I.

where

/4
dijja= 2, ei’ej'eel’ (2.13)

a=1

depends explicitly on the representation. Indeed, we find

A=+ 1)/n (2.14)

£\

FIG. 3. One- and two-loop dlagrams for the vertex functions
%" or I}, with a ¢? insertion or ¢} insertion, respectively.
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TABLE 1. Numerical coefficients of the diagrams for the
symmetric theory in terms of the notation used in Ref. 6, where
a=n+1)4n—-1), PB=nm+1*n-2), and y=(n+1)*
X (n2—4n +75), for the p(=n +1)-state Potts model. For the
Yang-Lee edge-singularity problem, a=8=—1and y=1.

An=B

An=3F" An=%aP, An=77
B”=%a

le-_—‘;‘az, Bzz=';‘aﬁ

Ch=a

Cu=Cp3=2Cy=a’, Cp=4Cy=2af

in the PL representation, while

d1111—n +1 (215)

in the WY representation.
Equations (2.9)—(2.11) then yield

r@, ==L Lwd
+[(Fa1+Fp)Ly +(Fp3+Fyy)LY
+ P wd] (2.16)
with

given explicitly for the two representations in Table II.
The vertex functions given so far correspond to the
Potts model. For the Yang-Lee edge-singularity problem,
represented by a scalar field theory with imaginary cou-
pling, Eq. (2.3), only the symmetric theory needs to be
considered and the results follow directly from those for
the Potts model with the replacements a=f=—1 and

y=1

TABLE II. Numerical coefficients of the diagrams for s,
Eq. (2.16), for the theory with QSB in the representations of
WY and PL, in terms of a, 3, and y defined in Table I.

WY representation
Fyy=—p?
Fy=Fys=p*, Fp=—-2pB, Fp=2Fu=—p’a
PL representation

Fu= B

le—zez—B Fy3=2F=ap, F25=—;—7/

III. RENORMALIZATION AND CRITICAL
EXPONENTS FOR LR INTERACTIONS

Finite renormalized vertex functions are obtained, as
usual,!®!® by means of renormalization of the field ¢, of
the ¢? insertion, and now also of the B insertion,?!
through the functions Zy, Z & and Zpz, with coupling-

constant renormalization, such that

[ ren(w)=Z 4 ()T (wy) (3.1a)
D en(w) =Z 32 ()T (wy) (3.1b)
{7 (W) =Zy(w)Z 5 (w)T i V(w,)
=Z ,(w)I' (wo) (3.1c)
T 5 ren(w) =Z 4 (w)Zp (w)TF 5 (wy)
=Zpw)I'%p(wo) , (3.19)
in which the expansion coefficients in
wo=w 3, a,w", (3.2)
n=0
where w is the renormalized coupling constant, and
Zy(w)= Z by w?" (3.3a)
Z,w)= 3 cw™, (3.3b)
n=0
Zy(w)= 3, frw™ (3.3¢)

n=0

are determined by minimal subtractlon of dimensional
poles in the bare vertex functions.'® The expansions start
with ag=by=co=fp=1, and next we find b,=0=by,,
which means that

Zyw)=1, 3.4)

as one would expect on the basis of the known renormali-
zation of ¢*-field theory with LR interaction.>?® Equa-
tion (3.4) states that there is no field renormalization. It
should be pointed out that b, =0 follows from the finite
result in Eq. (A1), whereas the vanishing of b, comes
from the exact cancellation of dimensional poles involving
coupling-constant renormalization to one-loop order, to be
considered next. Although the results reported here are to
two-loop order, one may expect Eq. (3.4) to hold to all or-
ders.
For the remaining expansion coefficients, we obtain

a,= _B/el (3.53)
332 1 > 3 1

ay=="5——5[3p’S(0)+5aBF(0)+5yG(a)], (3.5b)
2€ 4¢

cr=—ale, (3.5¢)
a’+2af 1

Cy= —-—267—— — ‘4—67'[ a2+2a/3)5(0)

+3a*F(o)++aBG(a)],  (3.5d)



in the symmetric theory, where a, 3, and y are the stan-
dard coefficients for the Potts model given in Table I,
while F(o) and G(o) are defined in the Appendix, and

S(o)=¢(50)—p(o)—Plo/2)+¢(1), (3.6)

in which 9¥(z) is the logarithmic derivative of the " func-
tion. The momentum independence of the expansion
coefficients follows, as it should,'® from an exact cancella-

tion of the terms involving the integral L o(kq,k,) defined

in Eq. (A7).
With QSB, the coefficients, directly in terms of n, are

WY —(n+1)2/€, (3.72)

£ (”;” ((5—2n)—L[(5—2n)S(0)

—3(n —1DF(0)+G(0)]€}

(3.7b)
in the WY representation, and
S =—(n+1)n—2)/¢, (3.82)
4 .
3L o op L —278(0)
2€
+3(n—1)(n —2)F(0)
++(n2—4n+5)G(0)]€'}
(3.8b)
in the PL representation.
The Wilson functions, defined as!®!°

()= — Lo [ 220 (3.9)

B w)=— 2 aw ’ .
(10)=Blw) L8 (3.10)

vew)=Bw)——=, .
OInZ, (.11
y¢z(w)——ﬁ(w) 3’ 11)
dInZy
Yp(w)= —B(w) , (3.12)
dw
then become, with Egs. (3.3),

Bw)=—5€w[l—2a,w?—(4a,—6a}w*], (3.13)
yo(w)=0 (3.14)
77¢2(w)=~e’w2[c2+(2c4——c%—Zazcz)wz] , (3.15)
V(W) =€w[f+(2fs—f3—2a,f,)w?], (3.16)

which yield the critical exponents for the symmetric

theory in terms of the fixed-point value w®*, where

Bw*)=0, as
nN=2—0+y4w*)=2—0, (3.17)

v—'=2—n+7¢2(w*) R (3.18)
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while the crossover exponents for QSB follow in the stan-
dard way from'42!

d=v[2—n—7 ¥ (w*)] (3.19)
in the WY representation, and
S=v[2—n—7 BHw*)] (3.20)

in the PL representation, both calculated at the symmetric
fixed point.

For the case of the four-state Potts model, where there
is a clear distinction between the two representations, the
two crossover exponents correspond to different ways of
implementing QSB, as we pointed out before.!* Indeed, ¢
corresponds to a break in quadratic symmetry that main-
tains the permutation symmetry within a pair of Potts
vectors, but breaks the equivalence between pairs, whereas
¢ is related to QSB that favors a single Potts vector
against the others. Both are exponents that characterize
the response of the symmetric theory to QSB perturba-
tions, in the form of a crossover to a lower-symmetry
state. In the percolation limit n—0, ¢ yields the cross-
over to a random Ising magnet, whereas ¢ is the exponent
B of the symmetric theory, according to the group-
theoretical arguments of WY.!3 This will be checked here
for a LR interaction.

To calculate the critical exponents, we need the non-
trivial fixed point w* in Eq. (3.13),

- 4a,—6a2
wrrm TR0 (321)
202 (2(12)
which becomes, with Egs. (3.5a)—(3.5b),
2 € 3aBF(0)+yG(a)+6B*S(a) ,
=——|1 ’
w 28 + 83 €

(3.22)

to two-loop order. Since B=p2(p —3), there will be a real
LR fixed point only when p < 3, with a runaway at p=3,
in contrast with the SR case that has a real fixed point for
p<-2. Note also that the coefficient of the term of
O(€?) involves F(o), defined in Eq. (A4). This contains
the I" function I'(—o/2) which diverges in the SR limit
0—2 as a pole in e=6—d. The last term in w*? then be-
comes of O(e) and one may expect further terms of the
same order coming from higher-order terms in € when
o—2. This signals the breakdown of the LR expansion
in € when o—2. We return to this point in the next sec-
tion, where the stability of the LR fixed point is analyzed
and the crossover to SR behavior is discussed.

Making use of the result that =2—o, Eq. (3.17), Eq.
(3.18) yields, with Egs. (3.3), (3.11), and (3.13),

€
v =0— €
202

2a,(2c4—c% —2a,¢,)—cy(4a,—6a?)
_ 2ax(lc4—ch 223 2l4ay 26,, (3.23)
(2(12)

in which the last term is actually of O(e’?). Indeed, when
written in terms of the tensorial coefficients, we find
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‘ « aBla—P)S(a)+ (B —y)G(o)
vii=o———€+ €

2B 8p°

2

b

(3.24)

which, as the fixed point, is valid for p <3. With the ex-
plicit dependence of the coefficients on n, given in Table
I, we thus have v for all n <2. In the percolation limit
n—0,

L 4S8(0)+G(o)
1__ __1_ ' 2
Vim0 g€ - €

and n=2—o0, the result of Eq. (3.17).
The fixed-point values of the Wilson function ¥z(w)
for the B insertion, defined by Eq. (3.12), are given by

(3.25)

WY o ky 1 ’
Vi W)=—or o€
_ (n=D[2(n —2)S(0)+(n —1)G(0)] 2
2%n—2)°
(3.26)
in the WY representation, and
7 B w*)=€'/2 (3.27)

in the PL representation, with no correction, at least to
O(e'?). Indeed, we checked that the contributions of
terms of this order cancel identically, and presumably
there is a cancellation to all orders. The reason for the
simplicity of this result can be seen as follows, based on
the expectation that ¢, defined in Eq. (3.20), should coin-
cide with the critical exponent 3. Using the scaling rela-
tions?’

B=+(dv—y), y=2—nv, (3.28)

with the result n=2—o0, Eq. (3.17), and d =30 —¢€¢', we
have

B=(1—€'/20)ov . (3.29)

Equation (3.20) then requires that 7 §-(w*) take the value
given by Eq. (3.27). Note that this, as Eq. (3.29), would
hold to all orders if that is the case with n=2—o0, a result
not yet confirmed. ,

Explicit values for the crossover exponents now follow
from Egs. (3.19), (3.20), and (3.24) as

n , nn—1[oG(og)+4(n—-2)] ,,
=1
=1t et 2o —2) ¢
(3.30)
in the WY representation, and
_ 1 ,
=1+t —2¢

(n —1)[2(n —2)0S(0)—0G(o)—4(n —2)] ,
— €
240 (n —2)3

(3.31)

in the PL representation. Notice that ¢—1 in the per-
colation limit n—0, and that ¢ =/, which follows from

Eqgs. (3.24) and (3.29), in accordance with the results of
WY.B Also, ¢=¢=1—(1/20)€, the result of the Gauss-
ian model®® for 8 when n =1, due to the vanishing of the
trilinear tensorial coefficients. These properties are the
same as for the Potts model with SR interaction, dis-
cussed in our previous work,'# showing that they are only
symmetry dependent, regardless of the interaction range.

It is interesting to compare the results obtained so far
for LR interaction with those for the SR case to O(e?),
€=6—d. It turns out that the SR exponents are obtained
replacing o by 2—msg and, consequently, € =¢€—37ngg.
When taken together with the stability analysis of the next
section, this indicates a continuous crossover to SR
behavior at 0 =2—mnsg only when 7gg >0, i.e., for p > 2.
The apparent crossover to SR behavior when ngg <O (the
case for p <2), leading to o >2, seems to be unphysical
because there is a breakdown of the LR expansion before
reaching that point.

Here we discuss the Yang-Lee edge singularity. We can
now obtain, as a particular case, the fixed point and the
critical exponents for a scalar ¢> theory with imaginary
coupling, and LR interaction, making use of the replace-
ments a=f=—1 and y=1. According to Fisher, the
critical exponent 7) for this theory yields the exponent for
the Yang-Lee edge singularity, defined here as &, by
means of the hyperscaling relation'!

1_d=2+9
8§ d+2—7

The fixed point for the theory with imaginary coupling
follows from Eq (3.22) as

o= (3.32)

w*zz%' 1+ 3F(0)+G;0)+6S(U) ¢

(3.33)

As it should, with the imaginary d;j in Egs. (2.1) and
(2.3), there is a real fixed-point value for w* in a LR ex-
pansion for all o <2. Note that, as in the case of Eq.
(3.22), this expansion breaks down as o—2 for the reason
given there.

From the independence of Eq. (3.4) on «, f3, and v, it
follows that the result of Eq. (3.17), to two-loop order,
still applies here. Consequently,

d—o
d+o

o= , (3.34)
to that order. Moreover, if Eq. (3.32) is an exact relation-
ship, as Fisher’s arguments and discussion based on avail-
able results seem to suggest, it is quite possible that Eq.
(3.34) holds’ to all orders in perturbation theory. Making
use of € =30 —d, we can also write

l_.._l._e’_*_
2 8o

€2+ 0(e?) (3.35)

7 3207
in the neighborhood of d*=30, the crossover dimen-
sionality to mean-field behavior. On the other hand, pre-
cisely at d =d*, Eq. (3.34) yields & = 5, in agreement with
the mean-field result of Fisher. Indeed, his argument for
a SR interaction (leading to 6 =) can be taken over with
no change for the present case.

A further check on our results follows from Eq. (3.24)
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and a general field-theoretic relationship between v and 7
for a scalar ¢3-field theory valid to all orders in perturba-
tion theory. According to this,

v i=3(d—2+17), (3.36)

the derivation of which is given below after discussing the
consequences. With n=2—o, at least to two-loop order,
and possibly to all orders,

v l=+(d—o), (3.37)

to the same order. When written in terms of € =30 —d,
this becomes v~!=0— ¢, to be compared with the re-
sult of Eq. (3.24). The last term there is identically zero
and what remains is

(3.38)

with no correction, at least to O(€'?), in agreement with
the above result. If all higher-order terms in Eq. (3.24)
vanish, which one may expect together with the vanishing
corrections to n=2—o, then Eq. (3.37) becomes an exact
relationship. Note, incidentally, that although this may
just be a coincidence, Eq. (3.37) for a scalar ¢3-field
theory with imaginary coupling yields a v value which is
twice that of the spherical model®® (the n— oo limit of
¢*-field theory for the n-vector model), and perhaps there
is a deeper reason why this is so.

We now give a brief derivation of Eq. (3.36) for a scalar
¢>-field theory with arbitrary interaction.?’ This is based
on the exact relationship

wor(2,1)=r(3) (3.39)

sertion, I'>1)) and the three-point vertex I'®. Since this
depends only on the geometrical structure of the diagrams
for the. vertex functions, a similar exact relationship also
holds between renormalized quantities,
whig =T, . (3.40)
Using Egs. (3.1b), (3.1¢), and (3.2), written as w0=Zw‘1w,
this means that Z,Z ¢2=z;/2. Equations (3.9)—(3.11)

then yield
e Bw)

7¢2=%7’¢_—2__T ’

(3.41)

which becomes, at the fixed point w* where B(w*)=0,

}7¢2(w*)=%[7f¢(w*)——e’/3] . (3.42)
Equation (3.36) then follows, making use of Egs. (3.17)
and (3.18). -

Finally, when Eq. (3.35) is compared with the SR result
65R=%—6/ 12 obtained by Fisher to one-loop order,!! it
can be seen that there is a discontinuity at o =2, the point
where the LR expansion breaks down. One may note,
however, that if the LR & is continued beyond this point,
it goes over into Gsg at 0=2—1gg (> 2), but this is again
unphysical.

IV. STABILITY OF THE LR FIXED POINT

To justify the calculations performed here so far, we
analyze the stability of the LR fixed point by means of
the Wilson-Fisher RG recursion relations,'? to one-loop

order, which is sufficient for our purpose, since
between the bare two-point vertex function with a ¢? in- nsr=0/(€). These may be written as
|
' f3p—2d |, 3 > 1

w'=5b"" lw+pw , 4.1

g B fa (sq2+lq”+m(2))3 ] ( )
s'=E%—92 s—%awz——a-z— f: — = 1 , (4.2)

ok 9 [s(G+KkP+1|d+k | “+milsq>+1g7+m}) |2y
I'=gh—4-°1, 4.3)

for the Potts model, with the replacement a == —1 for
the Yang-Lee edge-singularity problem. The integrations
are over b ! < | q| <1, while ¢ is the spin-rescaling fac-
tor and b gives the change in momentum scale, whereas w
stands for g;,/3! in Eq. (2.1). The recursion relation for
m(z, (the usual r) will not be needed here. In a calculation
to one-loop order one can set m3=0 in Egs. (4.1) and
(4.2). Except for the coefficients in front of the integrals,
the recursion relations are formally the same as for the
Ising—spin-glass (ISG) problem considered recently be
Change and Sak® (CS). We show next that our con-
clusions agree with theirs, wherever 7gg <0, and we also
indicate a stronger argument for the breakdown of the LR
expansion at o =2 than they do.

Assuming that the LR interaction determines the criti-
cal behavior, and taking 2—o of O(€’) or smaller as the

" range in which crossover to SR behavior can take place,

we find, following CS,
' w3
w' =b¢"?|w+pB sInb |, 4.4)
(s+1)
’ -7 1 w2
s'=b s+ga Ty Inb |, (4.5)
I'=1, (4.6)

in which [ is kept fixed by appropriate choice of §, while
n=2—o0 and a factor of K}7? is again absorbed in w.
The LR fixed point is then given by

w*2 €

_wr , @.7)
(s*4+I*3 . 2B
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1~

, (4.8a)

X
I* 2—o0—

S

p—2
=€ 1, (Potts),

X= ——ﬁ-e’%:
— € (Yang-Lee) .

(4.8b)

Note first that Eq. (4.7) coincides with the leading term in
Eq. (3.22) for any fixed o <2. Indeed, if the LR expan-
sion is justified, s should be an irrelevant variable that can
be set to zero, while / is a constant that can be chosen to
be 1. Note also that, for both the Potts model with p <2
and for the Yang-Lee edge singularity, X <O, implying
that s*/I* <0 for any fixed 0 <2. In these two cases,
nsr <0. If I (=1*) is chosen to be fixed and positive, s*
will be negative, but there is nothing wrong with this as
long as s*/I* > —1. Indeed, at any step of the RG itera-
tion process, s+ may be thought of as an effective I
However, when s*/I*=—1, s*+1*=0, and the expan-
sion in terms of the propagator 1/(s+1I)g> becomes
meaningless at the critical point where s-+/ takes its
fixed-point value. Equation (4.8a) shows that this occurs
precisely at o0=2, and this is our criterion for the break-
down of the LR expansion when X <0. The case where
X >0 will be considered separately below. In the ISG
problem, where®® ngg =—(6—d)/3 <0, s*/I*=30—d)/
(3o0+d—12)<0 for any fixed o<2 becomes s*/I*
=—1 at o=2, again implying a meaningless critical
propagator.

To justify the LR expansion one needs to show that s is
an irrelevant variable and also establish the range of valid-
ity of the expansion. We have just shown for the latter
that this is o <2, and that the breakdown of the expansion
takes place when the propagator becomes meaningless. In
contrast to this, CS argued that one should cease to con-
sider the LR expansion when o >2 since the interaction
then looks short ranged, but they did not show that the
LR expansion actually breaks down at o=2.- We believe
that this is what makes the apparent continuity of critical
exponents at o =2—1nsg unphysical, wherever ngg <0, as
pointed out in the preceding section. The crossover prob-
lem with g >0 and 7sg <0 is not symmetric about
o=2, and it will be shown below that there is a continu-
ous crossover of exponents at =2 —7gg When 7gg > 0.

To show next the irrelevance of s, and that the LR
fixed point is stable when o <2, we follow CS and write
Eq. (4.5) as

s'=s—2—0o)sInb+X(s+1)nb . 4.9)
This yields

8s'=s'—s*=p~ 2o +Xgs | (4.10)
which implies that s* is irrelevant for X <O wherever
o <2, since these equations follow by assuming that the
propagator has the form 1/(s +1)g? up to the fixed point
and becomes meaningless at c=2. If one merely looks at
Eq. (4.10), one may conclude that s* ceases to be ir-
relevant only at 2—o=X. It can easily be checked, for
the Potts model with p>2, for the Yang-Lee edge-
singularity problem, and for the ISG problem, that this is

the value of o0 =2—ggr (17sr <0) where the LR exponents
take the values for the SR expansion, and we agree with
CS that this may be just a coincidence. We wish to em-
phasize that for 5ggr <O the LR expansion becomes mean-
ingless beyond o =2 with a negative s*+I*, and that the
critical exponents are discontinuous at o =2 for the three
problems, in agreement with CS.

The stability of the LR fixed point for the Potts model
with p > 2 follows from Eq. (4.8) when o <2—X, and the
LR expansion breaks down for

oc=2—-X. 4.11)

To see what this means, let ¢ =€¢—37n with n=2—o0.
Equation (4.11) then states that

0'=2—’T]SR N (4.12)
in which nsg=(p —2)e/3(10—3p) is the exponent for SR

interaction.>~> At the same time, the fixed-point cou-
pling in Eq. (4.7) becomes

w*’ _ 2e

(s*+I*)  p*10—3p) ’
the scaled value for the SR expansion. Equation (4.10)
may now be used to show that s is irrelevant as long as
o <2—X, which is the range of validity of the LR expan-
sion. When the expansion breaks down at c=2—X, the
calculation has to be reorganized, as shown by Sak for the
n-vector model, assuming that the SR expansion applies
beyond this point.” At o=2—msg the exponents cross
over continuously from the LR to the SR expansion, as
shown in Sec. III.

(4.13)

V. DISCUSSION AND CONCLUDING REMARKS

We have calculated the critical exponents for two ¢3-
field theories with a LR interaction: (a) the continuum
p-state Potts model and (b) the Yang-Lee edge-singularity
problem, to two-loop order. With the usual reservation
about ¢>-field theories, based on the ground-state instabili-
ty, our results are meaningful at least for the percolation
limit, eventually in a finite domain (in p) around this lim-
it, and also for the Yang-Lee edge singularity. In the re-
gion where the LR expansion in € =30 —d is valid, i.e.,
o <2—mngr for g >0, and any fixed o <2 for 7ngg <0,
there are presumably a number of exact results that would
appear to hold to all orders in renormalized perturbation
theory, and these are based on the relation n=2—o.
Within the limitations of our work, we can only assert
that the correction to this relation is of O(e’?) or smaller,
and further work has to be done to confirm if it holds to
all orders.3! If it does hold, however, then B=(1—¢"/
20)ov given by Eq. (3.29) is an exact relationship, and also
y B w*)=¢€'/2, Eq. (3.27), is an exact result. The latter
follows from the identification of ¢ with 3, which accord-
ing to the group-theoretical arguments of WY should be
an exact result. It also follows that the Yang-Lee edge-
singularity exponent, & =(d —o)/(d +0), Eq. (3.24), and
the relation v~'=+(d —o), Eq. (3.37), for the Yang-Lee
edge-singularity theory, are exact if 7=2—o holds to all
orders.
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In the limit p—1 our results apply to percolation criti-
cal behavior for a random Ising ferromagnet with a LR
interaction decaying as 1/R?%*°. Whether percolation
with LR interaction has classical or nonclassical behavior
is a matter of some controversy.’>** Mean-field argu-
ments plus qualitative fluctuation corrections seem to in-
dicate that the width of the critical region vanishes as the
range of the interaction becomes infinite. Short of a more
precise treatment of the dependence of the critical region
on interaction range, one cannot rule out a small but finite
critical region for the interaction used here. The specific
exponents calculated in this work for p =1 apply to this
region.

In studying the stability of the LR fixed point, we re-
stricted the calculation to one-loop order because
nsr=0(€), and for 7msg <0, which is the case for the
(p <2)-state Potts model and the Yang-Lee edge-
singularity problem, we find a discontinuity of critical ex-
ponents at o=2, the site where the LR exponents cross
over to SR behavior. This is in agreement with the result
of CS for the effective ¢ theory that describes the ISG
problem. Although our stability analysis is done with the
RG recursion relations, the same results are obtained in
renormalized perturbation theory, following our earlier
work on the n-vector model.® With the latter it can be
seen that the expansion breaks down only at o0=2, as dis-
cussed in connection with Eq. (3.22). The situation is dif-
ferent for ngg >0, the case of the Potts model for p > 2.
This is because in the way we do renormalized perturba-
tion theory there is no sign of the breakdown of the LR
expansion other than o =2, regardless of whether 7gg is
positive or not, whereas the RG recursion relations mani-
fest a breakdown of the LR expansion for o =2—1n4gg, al-
ready to one-loop order. Further work remains to be done

in order to bring the results of renormalized perturbation’

theory into agreement with those obtained by recursion re-
lations, when 7gg >0. Presumably both of them yield a
continuity of critical exponents at =2 —gg.

An interesting extension of the work presented here is a
calculation to one higher order and the resummation of
the perturbation series to draw conclusions for d =30 —¢€’,
with finite €', up to d =3. This and other extensions will
be considered in future work.
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APPENDIX: ONE- AND TWO-LOOP INTEGRALS
WITH DIMENSIONAL REGULARIZATION

We give here the results for the one- and two-loop in-
tegrals with dimensional regularization®® for LR interac-
tion, calculated at zero mass. Starting with the integrals
in 1"}}), we find, in the notation of Eq. (2.7),

n=k—Lo=k— [ —L —— —1F)+0),
T9719+k]|°
(A1)
1.
19 =k-or=k—e [ 14
T 971q9+k|°
=4F%0)+0(€), (A2)
L,(X,§
1P=kc[_ i i) :-{-F(a)+0(1), (A3)
9¢7|9+k|° €
in which
! 2
Flo)= I’(——or;Z)l"(?:cr/Z)I‘ (o) (A4)
%o /2)I'(20)
and
Lytkyky)= [ 1 (AS)

Tg°1Ki+d1° | K, =T |°

is the integral for the one-loop graph in Eq. (2.8). The
leading finite results for I; and I%", of course, do not
need renormalization, but they are kept since they enter
the calculation to next-highest order. For the remaining
graphs we find

Litkyky)=— 1—i[¢(ia)—¢(1)]e'—i—ﬁ‘1)—e'ﬁ (k1,k5) (A6)
1R 1, R2 Py 2 2 D) r3(0/2) g\R1,R) ’
in which ¢(z) is the logarithmic derivative of the I" function I'(z), while
A 1 1
Lolkykp)= [ dx [ dy ©1—x—y)xp)”>~ (1 —x —p)7/2Un[x(1—x)k} +y(1—p)k} +2xpk k2] , (A7)

where O(x)=1 if x >0, and zero otherwise. It is easy to check that when o=2, L,(k,k,) becomes the SR result given

L,(q,k>)
T 4% k=G| | K +4|°

by Eq. (A11) of Amit’s paper.* Next,
Ly ky)= [

yields the result

L(z”(kl,kz)=—2;7 1— L[ L0) + (o) + 0 /2)— 3 1)]e —

(A8)

(20) .
€Ly(ky,k,;) | +0(1),

—_— A9
I'¥o/2) (A9)
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which can be checked to yield Amit’s Eq. (A12), when 0 =2. Then,

Il(q)
|Ki+d]° | k,—q]° 4’

P kyky)= fo

—F(o)+0(1),

(A10)

which is less singular than the SR expression and therefore cannot be compared with that case when o=2. However, we
checked that the SR result, given by Amit’s Eq. (A13), is obtained setting =2 at an intermediate step in the calculation.

Finally,

1
LY (ky,ky)= [ —— [ —
197 ki—q|° i3

where
(30 c/2)

Glo)=
(o) (o)

(A11)

(A12)
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