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Crossed diagrams for transport in substitutional binary alloys
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We have adapted the method of summing crossed diagrams to the case of substitutional binary al-

loys. The summation is done by explicitly uncrossing the diagrams to look like ladders. Details are
presented for the case of a single-band model of a simple-cubic lattice with nearest-neighbor hop-

ping. The critical concentration at which the conductivity goes to zero is estimated. Some aspects
of the generalization of this method to realistic models of binary alloys are discussed.

I. INTRODUCTION

In a formulation of the average conductivity of a realis-
tic multiorbital model of a substitutional binary-alloy
semiconductor (Hg& „Cd„Te) within the coherent poten-
tial approximation (CPA), it was discovered that' (1) the
vertex corrections do not vanish due to a mixing of the
various (s, p, . . .) orbitals, and (2) the conductivity is
divergent unless the infinite-volume limit is taken before
the zero-frequency limit is reached.

The physical interpretation is that when considering the
static conductivity of a finite sample, one must be careful
to attach the sample to external leads, which in turn are
attached to a dc voltage source. This is because the con-
cept of the conductivity of an isolated, finite sample is not
very meaningful. For an infinite sample, however, such
considerations are not important. Chitanvis and Ragha-
van' conjectured that the divergence was not simply a
quirk of the CPA, but rather, a more general malaise due
the quenched nature of the disorder. They also conjec-
tured that when the lattice was allowed to vibrate, brems-
strahlung would take care of the infrared divergence as it
does in quantum electrodynamics.

In order to test the first conjecture, we looked at the
hierarchy of traveling cluster approximations (TCA), '

which is a generalization of the CPA, for a single-band
model (generalization to more complicated models is not
expected to change our conclusion). Higher-order dia-
grams occurring in the TCA ensure that the conductivity
vertex corrections do not vanish. In fact they diverge if
the limiting processes mentioned above are handled in a
cavalier fashion. On the other hand, if the static limit is
taken carefully, one finds compensating diagrams' that
exactly cancel each other. In other words, the proper lim-
iting procedure gives no vertex corrections at all. This
surprising cancellation occurs in all finite orders of the
TCA hierarchy (we note that such cancellations have no
chance of occurring in calculations of (

~
Goo

~
)).

Therefore, within the TCA, one can never obtain higher-
order corrections to the conductivity. The proof may be
obtained by combining the single-band. formalism of Chi-
tanvis and Leath with the analysis of Chitanvis and
Raghavan, ' and may be presented in a future publication.
One may now wonder where the higher-order (vertex)
corrections to the static conductivity will come from.

In an effort to locate nonvanishing vertex corrections,
we now describe a modest effort in which we have adapt-
ed to the case of substitutional binary alloys the method
of summing maximally crossed diagrams, ' which has
been argued to give the dominant contribution to the con-
ductivity in the metallic regime. This way, one would
have a good measure of the resistance of alloys in the re-
gime of extended states. While work on this problem was
in progress, we discovered an effort similar to ours had
been reported by Bhatt and Ramakrishnan. The formal-
ism of Bhatt and Ramakrishnan applies to an amorphous
system without short-range, order. They have shown that
electron-electron interactions are not necessarily impor-
tant. We have therefore ignored them in our report here.
In the future we plan to extend our method to realistic
models of alloys.

II. CROSSED DIAGRAMS

Abraharps and Ramakrishnan' considered the set of
diagrams for static conductivity, which are obtained by
crossing ladders of all orders. The diagrams we consider
are those obtained by "crossing" diagrams of all orders in
the CPA formulation of the vertex correction. '" The
CPA diagrams are of course "ladders". One immediately
notices that higher-order crossed diagrams may be ob-
tained by crossing the diagrams obtained within each level
of the TCA hierarchy ' —the TCA being a natural gen-
eralization of the CPA. We thus conceive our own hierar-
chy of approximations, based on crossing those diagrams
that appear in the TCA hierarchy. %'e-must point out
that our new set of approximations, though coinpri, sed of
diagrams beyond those of Abrahams and Ramakrish-
nan, ' does not hold out the promise of being able to give
more information of "localization" per se. This is because
we do not expect the infrared divergence in one and two
dimensions to worsen in our hierarchy. '

Our general formalism applies to any Hamiltonian
describing diagonal disorder [see, e.g., Eq. (2.4)]:

H=H o+g ;,V

with

p ( Vt ) = cz 5( V~ —V~ ) + ( 1 —c~ ) 5( V; —V~ ),

31 3769 1985 The American Physical Society



3770 S. M. CHITANVIS 31

where p( V;) is the distribution function for V;.
We obtain more specific results for a single-band model

of a simple cubic lattice in three dimensions with nearest-
neighbor hopping:

liNN)(i +Hc. + g i)e (&l,

where the subscript NN stands for nearest-neighbors, and
where e; is a scalar site energy given by the binary distri-
bution

p(e;) = cg 5(e; —eg) + (1 —cg) &(e; —eg)

The hopping term in the above equation represents the
unperturbed Hamiltonian Ho.

The details of the augmented space formalism (ASF),
according to which diagrams are drawn, have been del-
ineated explicitly by Chitanvis and Leath and Chitanvis
and Raghavan. ' It is well known' that to compute the

conductivity o. = (uGt vG & we need an operator of the
form K = Gt ( v + I )G, where v is the velocity opera-
tor and I is the vertex function. In k space
v(k) = V'k Ho(k). Given these rules, the first-order
crossed diagram is drawn in Fig. 1 and the corresponding
analytic expression is

X Jo J Jo J

(2.1)

Let us define Q by S (j)v S . We now consider the
coefficient of Q in Eq. (2.1). The purpose is to be able to
write the resultant expression in such a manner that it ap-
pears "uncrossed". We therefore use the resolution of the
identity )I = g,.

I

i & ( t I, where i corresponds to a site.
This is inserted to the right and left of the parentheses in
Eq. (2.1) so that the truncated operator (coefficient of Q)
mentioned above may be defined as

(2.2a)

= [& jl Vj & ' V, ljo &]' &j I Vj, &() Vj (2.2b)

The asterisk in Eq. (2.2b) signifies a complex conjugate. Equation (2.2b) represents an "uncrossing" of Fig. 1, and is
depicted in Fig. 2. The next maximally crossed diagram may be drawn in its "ladder" form and expressed as

I' '
Vo) = g [& j I Vj &( )Vj" & '

Vj I jo &]' &jo I Vj, &( )Vj" &()Vj (2.3)

Similar expressions may be written for higher-order diagrams. Their sum may be conveniently expressed in the form
of an integral equation:

I'.(jo)=[ Vj &'"'Vj,
I jo&] (jo I Vj, S( ) Vj + g [ Vj-8( ')]'I.„(jo)$(j)Vj

—. (2.4)

This equation is in operator form The d. ots under the complex-conjugation operation indicate that the conjugation
operation is to be performed after the scalar product with a Dirac bra has been taken.

The corrections to the ladders are of order IIGo VJ II. Thus summing crossed diagrams gives a good measure of the
conductivity when this operator norm is small.

Equation (2.4) may be written in a matrix form for a single-band model. We emphasize that in Eqs. (2.1)—(2.4) and
beyond, j&jo..

(j I
I'„(jo)

I
j&—:I „jj(jo)

= «)' [&jl & '
I
jo&l" &jo I

&(J'I j& + «) X[&jl &(J)
I
j'&1'&j'I &(J) IJ&I'xj'j'Vo) .

J &J

Thus,

l„jj(j ) = f, (j ) + gL,, I „jj (j ),
J J

where

fj(jo) = (e )' [&j I

&'"'
I
jo&]' &jo I

&(J)
I j&

and

L Jj = (e )'X[&jl&(J'lj'&l*&j'I&(J) lj&.

(2.6a)

(2.6b)

(2.6c)

i(R p —R ' p')
(1 —Sjj) e

JJ

f,Vo) = g f,Vo) e '

I „(j ) = Ql „jj(jo)e
J

(2.7a)

(2.7b)

(2.7c)

We now define the following Fourier transforms: Equation (2.7a) reduces to
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FICs. 1. The first-order crossed diagram corresponds to Eq.
(2.1). The dotted lines have been added for easy readability.

j-
I
I
I
I
I

I

TJ
I
I
I
I
I
I

FIG. 2. This diagram corresponds to Eq. (2.2b), depicts the
"uncrossing" of Fig. 1. The double baseline on the left-hand
side indicates a complex-conjugate operation.

L pp
——QB 5(p p )

I y(z)

X f G(s)G (
i
s —p i

)&(s—p) —
i
6(0)

i

QB

Given Eqs. (2.8a) and (2.8b), we see that the integral
equation for I „p(jo), obtained from Eq. (2.6) by utilizing
Eqs. (2.7)—(2.8), becomes an algebraic one. Thus,

where

=—&& 5(p —p')/(p),
(2.8a)
(2.8b)

I „p(jo) = fp(jo)
1 —l(p)

(2.11)

y(z) =
1 + G(0)(co—e+)

(2.9)
d'p fp(jo) —.

p R,.

n, (2.12)

and where 6(p) is the Fourier transform of G(
~

x —x'
~

)

and 8(s—p)=1 if s —p lies in the first Brillouin zone,
and zero otherwise. Equation (2.7b) may be written in the
following form:

iR -p

fp(go) =
~

e y(z)
i

' g e '
~
6(R,,—R, )

i

'

Now, the vertex function I = Q.I J is obtained by un

doing the transformation that led us from Eq. (2.1) to
(2.2b):

(2.13)

(iR . .p)= (e ) e ' l(p). (2.10) whence K = 6 [u + I ] 6 may be computed:

QB .)

d k= f iy(z)i'
i

G(k)i'u(k)
QB

/(p + k) /(q)
1 —/(p + k) 1 —/(q)

(2.15)

The first term in Eq. (2.15) above is recognized as the integral found by Abrahams et a/. to contribute to backscattering.
We eliminate the second term, using u(k) = —u( —k) and 6( —k) =G(k), just as it was done by Velicky. "We point

out that had we used a realistic model of our binary alloy, such as the multiorbital model of Chen and Sher, ' then the
second term would not have vanished, as described by Chitanvis and Raghavan. In fact, it would have diverged. This
divergence can be eliminated by a proper limiting procedure, whose physical significance has been stressed in the Intro-
duction.

From Chitanvis and Raghavan' the static conductivity o(co = O, T) = xo.(~ = 0, T), z = e2&2/4~ is seen to be corn
posed of two parts:

~(~ = 0, T) = go(~ = 0, T) + 5~(~ = 0, T),

oo(~ = 0») = 2Ref dA —
~ f ~

v(k)
~

G (A, ,k)6(i,,k),
Bf(A, ) d k

B

(2.16)

(2.17)

5-( =0,T) = 2R, dg f(~' d" pv(k). „(p) (y(g) )

~6(~ k) ~'~6(~»I'
ax n, n, "

1 —l(p+k)
(2.18)

Equation (2.17) corresponds to the nonvertex contribution to the conductivity, viz. , the Ziman-Drude formula. The non-
vanishing vertex correction given by Eq. (2.18) may be investigated by changing to "center-of-mass" and "relative" co-
ordmates, viz. , K=(k'+p)/2, k'=k —p, and expanding l (2K) =l(0)+4K'(A, ) [/(0) = 1 by the Ward-Velicky identity']
so that
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5~(~=O, T)=-,' Refdz — f iG(&,k) i'iv(k) i' fF(A ) Qg 0 0~K
(2.19)

i y(A, )
i

2Re g(A, )
BA, F I, Q~l rp

where l r~ is the mean free path,

d k
g(A ) f i

G(A k)
i i V/HQ(k)

QB

(2.20)

(2.21)

d kF(~) = I),(~)
I

'f G(~ k)[G (~ k) j'
I
VkHO«)

I

'
QB

(2.22)

d'k
y(A )

i f fdv 5(v Ho(k) ) 3 i
V/HQ(k)

B &—v —X) (A, —v —X)
(2.23)

i@(A,) i'f dv
(A, —v —X)(A, —v —X)

(2.24)

where X is the self-energy due to averaging, and

d k
p(v) = f 5(k —Ho(k))

i V|,HD(k)
i

AB
(2.25)

= fdz—
Therefore, at T = 0

p(A, )

i
Im X(A, )

i

(2.30)

, iy(x)i'.
[Im X(A, )j

(2.26)

Since for small disorder ReX=
i
ImX

i
~ 0 the most

divergent part of F(A, ) is

o(co=0, T= 0) = p(p)
i

ImX(p)
i

1

Apl rp(p)

(2.31)
Similarly,

(g) p(A )

[Im X(A, )]
(2.27)

Since
i

ImX(A, )
i

= c(1 —c) (he) ~po(k), where
he = e~ —ez, and po(A, ) is the density of states of the
pure crystal, we obtain

Hence we get

5o(co=0, T) = ( —1) f dk,
a
aA,

1

Qgl rp(A, )

(2.28)

o (co =0,0) = p(p)
c(1—c) (Ae) rrpo(p)

c(1—c)(he) mpo(p)

QB vga
(2.32)

The negative sign of this term is the signature of the
crossed diagram —recall that —df /M, ~ 5(A, —p ), as
T —+ 0. We follow Abrahams et al. in taking
l fp(iL) =vFr, r ' ——

i
ImX(A, )

i
/fi. It is important to note

that the approximations we used are valid in the middle of
the band.

Equation (2.17) may also be similarly simplified in the
limit of small disorder: c = c,„, = —,'(1+ Vl —4a), (2.33)

where the first term is Nordheim's rule. The second term,
which comes from the nonvanishing vertex correction,
represents a deviation from Nordheim's rule. While this
deviation is strictly correct in the limit of small disorder,
it is interesting to note the o(co=0, T=0) goes to 0 at

o p(co =0, T) where 4a ( 1. This bound provides a limit of applicability
of our approximations. We note that a is given by

= fdz—8 d kf i
v(k)

i i
ImG(A, ,k)

i

(2.29)

1/2
PQB vy 'fl

rT (Eg —6s) po'2 2 2 (2.34)
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The lower root should be taken for c,„, as this root
gives the proper dependence on the various parameters.
To see this in a rough fashion for a simple cubic lattice,
set

p t a pp AB —(217/a), pp 1/(6t+
I

&~ —&tt I
)

(a flat density of states). We then see that as t the hop-
ping integral and vF increase, c„;, increases. As

~
ez —e~

~

and the lattice spacing (a) increase, c„;, de-
creases. This is in accordance with intuition.
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