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Helmholtz free energy of an anharmonic crystal to O(A, ).
III. Equation of state for the Lennard-Jones solid
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A complete calculation of the thermodynamic properties of a model of a rare-gas solid with a
nearest-neighbor Lennard-Jones interaction has been carried out with use of the (A, ) anharmonic
perturbation theory proposed by Shukla and Cowley carried to fourth order in the Van Hove order-
ing parameter (A.). The results are compared with the Monte Carlo method for the same model po-
tential with three objectives in mind: first, to identify more precisely the breakdown of the lowest
order (k ) theory by showing where the k terms have an appreciable effect; and, second, to extend
the valid temperature range for perturbation theory by including I, terms; and, finally, to indicate
the relative importance of the various terms of O(A, ). In addition, finite-temperature calculations
were made for argon, krypton, and xenon for comparison with experiment. It is concluded that at
high temperatures and at all volumes the Van Hove ordering scheme is accurate and none of the
eight contributions of O(k ) can be omitted on the grounds that it is much smaller than the rest.
Among the other schemes [R. C. Shukla and E. R. Cowley, Phys. Rev. B 3, 4055 (1971)]of classify-
ing the terms, such as the first-order self-consistent phonon theory and improved self-consistent
phonon theory (ISC), only the ISC scheme produces results which are in better agreement with the
Monte Carlo method and with experiment but similar agreement can also be achieved by omitting
all but one of the terms of 0 (A, ), viz. , 2h, a four-vertex ladder-type term or by including all the A,

terms but excluding the ladder term. As compared with the lowest-order theory (A, ), which is seri-
ously in error above one-quarter of the melting temperature (T ), the theory to O(A, ) converges
well up to 40% of T .

I. INTRODUCTION

The purpose of this work is to carry out a complete cal-
culation of the thermodynamic properties of a model of a
rare-gas solid with a nearest-neighbor Lennard-Jones in-
teraction, using anharmonic perturbation theory carried to
fourth order in the Van Hove ordering parameter. In two
earlier works the required formal expressions were ob-
tained and evaluated in a simple approximate scheme, the
leading-term approximation, ' and the terms were evaluat-
ed without this approximation but at a single value of the
lattice spacing. In order to obtain the complete equation
of state the calculation must be performed as a function
of volume.

Over the past 15 years extensive numerical results have
been reported for the nearest-neighbor (NN) Lennard-
Jones solid. The calculations have been carried out em-
ploying different theories of anharmonicity including
quasiharmonic theory (QH), lowest-order perturbation
theory (PT) which includes contributions from the cubic
and quartic terms in the Taylor expansion of the crystal
potential energy 4, first-order self-consistent phonon
theory (SC1) which includes all first-order perturbation-
theory contributions to the phonon shifts, and the im-
proved self-consistent phonon theory (ISC) which adds a
correction to SC1 from the cubic term in 4. A summary
of the various theories is given in an earlier paper of ours.

When the calculated properties are compared with the
corresponding experimental values it is found that
lowest-order PT is valid up to one-third of the melting
temperature (T ), ISC gives good results up to ,T—
and QH and SC1 give at best a qualitative description ex-
cept at very low temperatures.

In addition to these techniques there are cell and cell-
cluster methods and the Monte Carlo method. These are
primarily valid only in the classical limit, though correc-
tions can be made through the Wigner-Kirkwood expan-
sion, and a quantum cell model has been used. None of
the lattice dynamical techniques agrees well with the
Monte Carlo method, which is in principle exact, at high
temperatures, but it has recently been shown that the
cell-cluster results are in fairly good agreement with
Monte Carlo. These difficulties are not restricted to the
rare-gas solids. Recently lowest-order PT and Monte Car-
lo results were compared for a model of rubidium. ' The
C„calculated by the lowest-order PT: was much lower
than the Monte Carlo value at all volumes used in the cal-
culation.

The terms in the perturbation expansion for the
Helinholtz free energy can be ordered by means of a pa-
rameter A, , -used by Van Hove, defined as the ratio of a
typical atomic displacement to the nearest-neighbor dis-
tance. The two lowest terms are then of order A, (there
are actually three terms, shown in Fig. 1, but the third one
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FIG. 1. Diagrams of order JW .

is identically zero when every atom site is a center of sym-
metry). We have previously' enumerated the eight non-
vanishing terms of order A, , shown in Fig. 2, and evaluat-
ed them with the simplifications noted above.

Our aims in calculating these terms, and the modifica-
tions to the equation of state arising from them, were
firstly to identify more precisely the breakdown of the
lowest-order theory by showing where the A, terms have
an appreciable effect, secondly to extend the valid tem-
perature range for perturbation theory by including these
terms (we did not expect a major gain, since when the ex-
pansion breaks down the inclusion of one extra term does
not help much), and thirdly to indicate the relative impor-
tance of the various terms. The idea here is that schemes
such as SCl and ISC can be identified to lowest order as
including only some of the diagrams arising in perturba-
tion theory. One of our observations is that at high tem-
peratures the Van Hove ordering scheme is rather accu-
rate. None of the eight contributions of order A, can be
omitted on the grounds that it is much smaller than the
rest.

The plan of this paper is as follows. A brief summary
of the calculation of F to O(A, ) and of the equation of
state is given in Sec. II, the results for the various thermo-
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FIG. 2. Diagrams of order A, .

dynamic properties are discussed in Sec. III, and finally
the conclusions are given in Sec. IV.

II. CALCULATION OF THE HELMHOLTZ
FREE ENERGY AND EQUATION OF STATE

There are two diagrams in the lowest-order PT of
O(A, ) and eight of O(A. ) to be calculated for a crystal
lattice with center of inversion symmetry. We present
these diagrams in Figs. 1 and 2, respectively. The various
finite-temperature contributions to F from these diagrams
have been evaluated before. ' The high-temperature-limit
expressions of F to O(T ) and O(T ) arising from the A,

and A, contributions are presented in Table I. In general,
the anharmonic coefficient V appearing in all expressions
given in Table I is defined by

V(k~, j~, k2jz, . ~ kn~Jn ) =
nt

N' —""h(k,+k,+ . +k„)

2"co(k&,J~)CO(k2 J2) ~ ~ CO(k J )

1/2

4&( k ~,j&,
' k 2,jz, . . . , k„,j„),

with
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TABLE I. High-temperature limits for the various contributions to the free energy.

High-temperature limit

1(a) 3 2
p'

2
V(A, „—X„A,„—X2)

co(A, g }co(A,2)

~

V(A, (,A2, A3)
~

'
1(b) p' A'

g ~ ~ co(A, i)co(A,,)co(A.3)

3
15 2 V(A $ A] x2 AI2 A3 AI3)

2(a)
p3 A' z j z co(A, ~)co(A2)co(A3)

2(b)

' 4
36 2
a3

I jA2jA3jk4

4
60 2
a3

f jk2jA 3jA4

V{A,(, —A, ),A,2 X3)V( —A,2 Ar3 A4 A4)

co( Ar ) )co( A 2)co( A 3 )co(A4)

V(~),~2 g3) V( —A.), —X2 A3 A4 A4)

co(A, ) )co(X2)co(A,3)co(A.4)

2(d)

'5
108 2
a3

]jA2jA37A4jAI5

V(kj X3 k4) V( ~2 ~3 ~4) V( ~1 ~2 ~5 ~5)

co(A, ~ )co( A,2)co(A,3)co( A,4)co(A, 5 )

4
V(A] A j X3 A4)

2(e)
p3 jrj & & & & co(A, ~)co(A, 2)co(A, 3)co(A,4)

6

2(f)
p X$ A j A3 j4 A'5 A6

V(~1&~3~~4)V( ~1&~5&~6)V(~2& ~3& ~4) V( ~2~ ~5r ~6)

co(A $ )co(A 2)co(A 3)co(A4)co( A 5 )co( A 6)

2(g)
5

108 2
a3

A ]jA 2jA 3jAI4 jAt5

V(k), A,2, A,4, A, 5) V( —A, ), —A,2 k3}V(—A, 3 k4 A5)

co( A $ )co( AI2 )co( X3 )co( A 4 )co( X5 )

6

2(h)
p A'f A2 A3 A4 A5 A6

V{A $ A2 A3)V{ A] A4 A5)V( A2 A5 A6) V( ~3 ~4 ~6)

co( A, q )co( A 2)co( A 3)co(A4)co( A, 5)co{A6)

4(k),j),k2jjq, . . . .
, k„,j„)= ~2 g ~ . . gg'p~ ~ ~ (

~

r '~ )

a& a„

Xe, (k~,jt) . e (k„,~ ) Q (1
i=1

(2)

The prime over the 1 sum in Eq. (2) indicates the omission
of the origin.

In Eqs. (1) and (2) the various symbols are defined as
follows: N represents the number of unit cells in the crys-
tal; A is the Planck's constant divided by 2m", M is the
atomic mass; r is the direct-lattice vector; k;
(i =1, . . . , n) are wave vectors; co(k;j;) and e~ (k;,j; ) are
the frequencies and a~ components of the eigenvectors for
the wave vector k; and branch index (j; );

a„(
~

r
~

) is the nth-order-tensor derivative of the

potential function P(r) with a&, . . . , a„each assuming the
Cartesian indices x,y, z; p = 1/k~ T, where kz is the
Boltzmann constant and T is the temperature. We note
that all the expressions given in Table I, when simplified,
are independent of R.

I

The various contributions to I' listed in Table I were
computed exactly by the method presented in Ref. 2 for
the NN Lennard-Jones (LJ) potential for a range of
nearest-neighbor distances. From the point of view of ob-
taining accurate numerical results, it was once again con-
venient to evaluate some diagrams by the plane-wave-
method-like diagrams [Figs. 1(b) and 2(e)] and the others
[Figs. 2(c), 2(d), 2(f), 2(g), and 2(h)] by the scanning
method. The correlation tensor S p, etc. of Ref. 2, re-
quired in the calculation of the plane-wave method and
the loops arising in diagrams 1(a) and 2(a)—2(d), were cal-
culated for 107999 wave vectors in the whole Brillouin
zone. 499 wave vectors in the whole zone were used in the
scanning method in the calculation of diagrams 2(c), 2(d),
and 2(f), whereas 215 wave vectors (a combination of odd
and even sets of wave vectors) were used in the calculation
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of diagrams 2(g) and 2(h).
The equation of state was calculated for a classical

solid, for comparison with Monte Carlo results, and in ad-
dition, calculations were carried out for each of the rare-
gas solids (except neon) in which the quasiharmonic and

contributions were evaluated for finite temperatures
and only the X contributions were evaluated in the high-
temperature limit.

The coefficients of T for all of the diagr'ams of O(A, )

were tabulated at eight lattice spacings, and intermediate
values were calculated by means of cubic spline interpola-
tion. For the classical calculations the quasiharmonic and

terms were treated in the same way except that ten lat-
tice spacings were used. For the finite-temperature calcu-
lations the quasiharmonic contributions to the Helmholtz
function, entropy, and C& were evaluated by direct sums
over the Brillouin zone for each temperature and lattice
spacing as required. The temperature dependence of the

contributions was represented by Pade approximants,
much as was done by Klein et al. and by Bobetic and
Barker. " The particular expression we used for the A,

terms was designed to be most accurate at high tempera-
tures and masses, i.e., to represent accurately the first
departures from classical behavior. The effect of the
quantum contributions to these diagrams on the equation
of state is in fact quite small.

The procedure for finding the equation of state for any
given approximation to the Helmholtz function was first
to select a temperature and an estimate of the lattice spac-
ing. The pressure and bulk modulus were then calculated
from the equations

r

BE
BV , '

III. RESULTS AND DISCUSSIONS

In the classical limit we can compare our results with
the Monte Carlo values. Figures 3, 4, and 5 show the heat
capacity at constant volume C~, the heat capacity at con-
stant pressure Cz, and the Gruneisen parameter y. In
each case the results corresponding to perturbation theory
to orders A, and A, diverge in opposite directions from the
Monte Carlo results. A careful examination of the num-
bers shows that the inclusion of the A, terms improves the
convergence of the perturbation expansion. As noted by
Klein et al. the lowest-order theory is seriously in error
above one-quarter of T; the theory to order A,

" might be
acceptable up to about 40%%uo of T . The dashed line in
the figures shows the effect of including only the first
four diagrams of order I, , viz. , 2(a)—2(d) which we identi-
fy as an approximation to ISC.

We have also calculated the various thermodynamic
properties for each of the heavier-rare-gas crystals. As
Klein et al. point out, the perturbation approach is not
successful for neon. For example, at low temperatures in
neon the net A, contribution to C~ is negative and greater
in magnitude than the quasiharmonic contribution. To
this extent neon must be regarded as a quantum crystal.
Some examples of our argon results for Cz, C~, and P~
are shown in Figs. 6, 7, and 8, respectively. The results of
BT for krypton are shown in Fig. 9. The experimental
values (represented by circles) are taken from Korpiun
and Luscher. ' Once again, the dashed line in Figs. 6—9
represent the effect of including the first four diagrams of
order A, . The main disadvantage in comparing with ex-
periment is, of course, that the real crystals are not well
described by the Lennard-Jones potential. At sufficiently
low temperatures where the k and A, results agree, any

BT———V
BV

BE
BV

From these values a new estimate of the zero-pressure lat-
tice spacing was obtained, and this procedure was iterated
until the lattice spacing was converged to six figures. The
remaining thermodynamic functions were then calculated
from

3.2

CQ

5.0

2.8

BF
Cy ———T

T

LLI

2.6

2.2—

y =Pp VBT/Cp,

C~ =Cy+ TVBTPp,

Cp&s= &T .
Cp.

P~ is the thermal expansivity, y is the Gruneisen parame-
ter, and Bs is the adiabatic bulk modulus.

2.0 I I I I

O. l 0.2 0.5 0.4
TEMPERATURE (E/k@)

0.5

FICz. 3. Specific heat at constant volume ( C~) for the classi-
cal NN LJ solid. Points are the Monte Carlo results; solid lines
are perturbation theory to O(A, ) and O(A, ); dashed line is the
approximation to ISC.
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FIG. 4. Specific heat at constant pressure ( C~) for the classi-
cal NN LJ solid. Points and lines have same meaning as in Fig.
3.

deviation from the experiments must be the fault of the
potential. At high temperatures the deviations are quali-
tatively similar to those which occur in the classical case.

It is interesting to see such a good agreement between
the results obtained by our ISC scheme and the Monte
Carlo results for the same crystal model used in both the
calculations, and the remarkable agreement for C~ for ar-
gon. Our ISC scheme is an approximation to O(A, ) of
the ISC scheme suggested by Goldman et al. because in
their procedure diagrams of the type 2(c) and 2(d) are

FIG. 6. Specific heat at constant volume ( C~) for an NN LJ
model of argon. Points are the experimental data, solid lines are
perturbation theory to O(A, ) and O(k~); dashed line is the ap-
proximation to ISC.

summed to all orders of I, [i.e., O{A, ), O(A, ), etc.]. The
corresponding contributions to F in their ISC scheme in-
volve aB powers of temperature as compared to only T
terms in our ISC scheme.

We have made a detailed comparison between our ISC
calculation and the results of the full technique and the
numerical agreement is excellent, with the possible excep-

4.0-
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bJ
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0
2.5—

2.0—Ld

UJ

I.5

2

LLj
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I.O I l I

0.I 0.2 0.3 0.4
TEMPERATURE (E'/k~)

O. I 0.2 0.3 0.4 0.5
TEMPERATURE ( E'/k~)

FIG. 5. Gruneisen parameter for the classical NN LJ solid.
Points and lines have same meaning as in Fig. 3.

FIG. 7. Specific heat at constant pressure ( C~) for an NN LJ
model of argon. Points and lines have same meaning as in Fig.
6.
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FIO. 8. Thermal expansivity P» in reduced units of k/e for
NN LJ model of argon. Points and lines have same Ineaning as

in Fig. 6.

FIG. 9. Isothermal bulk modulus for NN LJ model of kryp-
ton. The quantity actually plotted is VBT/X in units of e.
Points and lines have same meaning as in Fig. 6.

tion of the highest temperature. While the ISC scheme
agrees well with the experimental results and the Monte
Carlo results we wish to stress that it contains only a par-
tial sum of the diagrams of order A, , and that the omitted
diagrams neither are separately small nor cancel each oth-
er out. This is shown by the difference between the ISC
and A, curves in the figures. Furthermore, the subset of
diagrams summed in ISC does not include all of the dia-
grams arising from the first two terms of the cumulant
expansion. It may be a coincidence of this particular po-
tential that it works so well.

It is in fact possible to make a different selection of dia-
grams which in this particular case works just as well.
We present in Table II the values of C&, C&, and y calcu-
lated in our approximation to ISC and in two other
schemes. In one such scheme all but one of the A, dia-
grams [viz. , 2(h)] are excluded. We will call this the
ladder scheme because the self-energy insert associated
with diagram 2(h) is the only ladder diagram of 0 (A,"). It
is clear that the results of the ISC and the ladder schemes
are very close in the temperature range O. l (T/T~ &0.4,

yet this diagram would be left out in any of the self-
consistent schemes of Choquard. '

In the other scheme, with the exception of the ladder
diagram, all the A,

" diagrams are included. We will call
this A, minus ladder scheme. The results of this scheme
and the ISC are in excellent agreement over the entire
temperature range 0. 1 & T/T (0.5.

IV. CONCLUSIONS

We have carried out the calculations for the various
thermodynamic properties of a model of rare-gas solid
with the nearest-neighbor I.ennard-Jones interaction po-
tential in the lowest order of perturbation theory (A, ) as
well as the perturbation theory to O(A, ). Calculations
were carried out in the classical limit for comparison with
Monte Carlo results, and, in addition, calculations were
performed for each of the rare-gas solids (except neon) in
which the quasiharmonic and A, contributions were
evaluated for finite temperatures and only the A, contribu-
tions were evaluated in the high-temperature limit.

TABLE II. Selected values of C~, C~, and y calculated in the ISC, ladder, and A, —ladder approximations.

Temperature
(e/kg )

0.1
0.2
0.3
0.4
0.5

2.927
2.853
2.789
2.772
2.880

2.927
2.851
2.788
2.800

Cv
(Nk, )

ISC ladder

a

A,
4 —ladder

2.926
2.845
2.766
2.714
2.746

ISC

3.115
3.253
3.440
3.73S
3.937

Cp
(Nkg )

ladder

3.115
3.253
3.469
4.281

~ ~

k4 —ladder

3.113
3.240
3.387
3.571
3.752

ISC

3.025
2.970
2.910
2.842
2.657

3.025
2.974
2.946
3.106

a

X4—ladder

3.023
2.960
2.877
2.772
2.611

'Values fall outside the tabulated range.
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The addition of all the eight A, contributions to the
Helmholtz function helps to improve the convergence of
the perturbation expansion well up to 40% of the melting
temperature. As compared to the Monte Carlo results as
well as experimental results, the perturbation-theory re-
sults to order A, and A, diverge in opposite directions. A
subset of the eight diagrams of O(A, ), known as the ISC
scheme, yields results in good agreement with the Monte
Carlo results just about up to the melting temperature.
However, a similar type of agreement can be achieved
with another scheme containing only one of the A, dia-
grams, of the ladder type and yet another scheme in
which all the other A, diagrams are included but the
ladder diagram [2(h)] is excluded. Also, while the argon

Cz is in excellent agreement with experiment, the fact
that the classical calculation does not agree so well with
the Lennard-Jones Monte Carlo result suggests that what
is happening is a cancellation of errors: ISC tends to be
above the correct value for the potential, but the LJ poten-
tial gives too low a value.
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