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Energy levels of two- and three-dimensional polarons in a magnetic field
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The influence of the electron-phonon interaction on the Landau levels of two- (2D) and three-
dimensional (3D) electrons are studied within second-order perturbation theory. It is found that po-
laron effects in ideal 2D systems are larger than in 3D systems which agrees with recent results of
Das Sarma and Larsen. Analytical and numerical results are presented for the electron-phonon
correction to the different Landau levels (n) below the LO-phonon continuum. Special attention is

paid to the small and large magnetic-field limit and to the splitting of the Landau levels which
occurs at neo, =coo (m, is the cyclotron frequency and coo is the LO-phonon frequency). Existing re-
sults are rederived and generalized.

I. INTRODUCTION

The energy levels of an electron in a magnetic field are
quantized into Landau levels. If the electron moves in a
polar semiconductor it also interacts with longitudinal-
optical (LO) phonons; the Landau levels are then modified
in the following way': (i) They are shifted to lower ener-
gy. (ii) The slope of the Landau levels versus magnetic
field is changed because of a mass renormalization of the
electron. (iii) The Landau levels do not cross the energy
level at fuu, /2+Ac@v because of Von Neumann's "non-
crossing" theorem which leads to a splitting of degenerate
energy levels. (iv) The Landau levels are pinned to the en-

ergy %coo+ —,~, in the limit of a large magnetic field.
In the present paper we calculate the energy levels of a

two-dimensional (2D) and a three-dimensional (3D) pola-
ron in a magnetic field at zero temperature and below the
LO-phonon continuum. We will use the continuum
model for the electron-phonon interaction, a parabolic
conduction band for the electron will be adopted and only
one electron is present in our system. The effect of the
electron-phonon interaction on the energy levels will be
studied within different types of second-order perturba-
tion theory.

For the 3D polaron, considerable work has been devot-
ed (see, e.g., Ref. 2 and references therein) to the study of
the magnetic field dependence of the electron-phonon
correction to the energy of the Landau levels. These stud-
ies were mainly concentrated on the weak magnetic field
limit ' or were restricted to the lowest Landau levels. '

The infiuence of intermediate and strong electron-phonon
coupling on the first two Landau levels was discussed by
Larsen and the present authors. In the present paper the
electron-phonon correction to all the Landau levels will be
calculated within second-order perturbation theory for ar-

bitrary magnetic-field strength but for energies below the
LO-phonon continuum.

Recently there has been increasing interest in 2D quan-
tum systems. In, e.g., GaAs-A1~Ga& „As heterostruc-
tures and p-Insb metal-oxide semiconductors (MOS)
structures the electrons are confined to a 2D layer with a
thickness of the order of 10—100 A. In those weakly po-
lar semiconductors polaron effects can be important. In
the present study we disregard the finite extent of the elec-
tron wave function in the direction perpendicular to the
interface and consider the system as ideally two dimen-
sional. We expect that this approximation will overesti-
mate the polaron effects as was shown by Das Sarma in
the case of zero magnetic field. An advantage of consid-
ering the ideal 2D case is that analytical formulas for the
energy levels can be obtained in closed form. Further-
more, we do not expect that finite subband effects will
change the present results in a qualitative manner. Re-
cently Das Sarma and Larsen' studied the 2D weak cou-
pling polaron in the presence of a magnetic field. They
elaborated on the magnetic field dependence of the
electron-phonon correction to the energy of the first two
Landau levels and on the small magnetic field limit of the
energy shift for arbitrary Landau level. We will general-
ize these results to arbitrary magnetic field strength and
to arbitrary Landau level.

The present paper is organized as follows: In Sec. II ex-
, plicit formulas for the electron-phonon correction to the

different Landau levels are given within different types of
second-order perturbation theory for all Landau levels
both for the 2D and the 3D polaron. These formulas are
valid for the whole magnetic field range and for energies
below the continuum for emission of LO phonons. In
Sec. III results are reported valid in the limit of small and
large magnetic fields and for the resonant condition
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neo, =cop. All these results are calculated here for arbi-
trary Landau level. We show that for the lowest Landau
levels and for weak magnetic fields earlier results by Lar-
sen for the 3D polaron and by Das Sarma and Larsen'
for the 2D polaron are reobtained.

II. POLARON CORRECTIONS TO THE LANDAU
LEVELS OF 2D AND 3D ELECTRONS

The energy levels of an electron in a magnetic field (at
zero temperature) are shifted over bE„by the interaction
of the electron with the LO phonons,

E„=(n+—,
'

)fico, +b,E„,
where co, =e8/mbC With ms the electron band mass.
Within second-order perturbation theory the energy shift
of the nth Landau level is given by '

M„(q)bE„=—g g (2)
m=0 q nm

to the Rayleigh-Schrodinger perturbation theory (RSPT)
which gives accurate results for b.E„ if to, «pip' (2)
A„=DE„results in Wigner-Brillouin perturbation theory
(WBPT) which can account for the splitting of the degen-
erate energy levels; and (3) b,„=bE„bE—p gives an
"improved Wigner-8rillouin theory" (IWBPT) as
developed in Ref. 4 and which gives the correct pinning
behavior for a small. In Ref. 11 it was found that
IWBPT gives good results for a(0.1. b,EO is the
weak-coupling electron-phoo. on correction to the electron
ground-state energy as calculated within RSPT. By in-
spection of Eqs. (2), (6a) and (6b) one has

b EIwBPT bERSPT f
Instead of inserting the explicit expression for the ma-

trix element M„(q) into Eq. (2) and then performing the
q integral, as is traditionally done, ' we will follow a dif-
ferent approach which enables us to get rid of the summa-
tion in Eq. (2) over the different Landau levels. In Eq. (2)
insert

where

M„(q)= (m, k„q
~
H,

~
n, o;0) (3)

j d +nm"g)„0 (7)

is the matrix element of the electron-phonon interaction
operator HJ between electron and phonon states. The ket

~
m, k„q) =

~
m, k, )

~ q) describes a state composed of
an electron in the Landau level m with momentum haik,

along the z direction (the z direction is chosen as the
direction of the magnetic field) and an LO-phonon with
momentum Rq and energy %coo. In the 2D case and with
the magnetic field perpendicular to the 2D layer the elec-
tron cannot move along the z direction and as a result the
electron state

~
m) is completely quantized (there is no

electron momentum 15k, in the z direction). The
electron-phonon interaction term in the Hamiltonian is

Ht ——g ( Vqaqe'q'+ Vqa qe 'q'), (4)
q

with aq (aq) the annihilation (creation) operator of an LO
phonon with momentum Iriq. The interaction coefficients
are

which is meaningful when D„&0. Physically this
means that we are limiting ourselves to the study of the
Landau levels below the LO-phonon continuum. Insert-
ing Eq. (7) into Eq. (2) and using the explicit form for Ht
[see Eq. (4)] we obtain, after some rearrangements, the fol-
lowing result:

E„=—g ~ Vq~ f due " (n, O~e'q""'
q

Xe '"" '
~
n, O),

where the average over the phonon state was taken [in Eq.
(8) III'=ms ——cop ——1]. In Eq. (8) r(u) is the electron posi-
tion operator at imaginary time u = —it as described by
the Hamiltonian without electron-phonon interaction.
Froin Refs. 12 and 13 one has, for real time,

and

iVi ='3D
2 V

2x(t)=—
COc

—Ico 1 Ct Ico
)

2coq
(9a)

(Sb)

D„~ =ficoLo b.„+fuu, (m n) in 2D . —— (6b)

As was discussed by Lindemann et al. the different
types of perturbation theories are obtained by making the
following choices for the energy shift b,„: (1) b,„=0leads

where we used units such that A'=mb ——coo ——1 and where
V(A) is the volume (surface area) of the system. The en-

ergy dominator in Eq. (2) is given by

Aq,
+%co, (m n) in 3D (6a)—

2m

~1y(t)=
c

4

+2coq
(9b)

z(t) =z(0)+
m

(9c)

where in the 2D case no z direction has to be considered.
m~ and m.2 are the center of orbit coordinate operators
which have the commutation relation [mI, ir2]=it@, . The
creation (C ) annihilation (C) operators for a Landau state
have the well-known commutation relation [C,C ]=1.
Using the techniques outlined in Sec. III D of Ref. 11, we
obtain
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a+et a c
(n ~e'+ e ~n)= g

m=0

which together with Eq. (10) gives, for imaginary time t= iu,

e'q""e 'q ' '=e * ' e ' exp (1—e ' )Ct exp (1 —e ' )C exp
')/2coq +2coq

where q+ =q„+iq~ and qj ——q„+q~. In Eq. (10) we need the expectation value

(a+a )"

mt

2

(1—e ')
2coc

(10)

2u /2
( n, O~e' q""'e 'q' '~!n,O)=e * exp

2

(1—e ')
coc

2qq z co, u
sinh

m'. ec 2

m

Inserting Eq. (11) into Eq. (8) and performing the q in-
tegral we obtain, for the energy shift in 3D, F(u)= —(1 —e "),1

0
(14c)

a
y

~ du —"(1 4n)/"cG
co 0

where we defined the function

(12) 1
1

1+&C(u)
&C(u) v'S (u)

(14d)

G„(u)= g
m=0

( 2 1 )..
mf

k —i
( 1)s k —1

Bk(u)= g
o 2s+1 C(u)', k ) 1 (14e)

2 sinh (u/2)
u C(u)

C(u)=1 —F(u),

1.8

0(. = 01
/

/

0= 2
/

m m ( 1)m —k

x g k „Bk(u),
k=O .

(13)

(14a)

(14b)

and (2m —1)!!=(2m —1)(2m —3)& && 3.1, where
(2m —1)!!= 1, for m =0. Note that F(0)= 1, C (0)=0,
8 (0)= 1, /I (0)= 1, and thus G„(0) is finite and the in-
tegrand in Eq. (12) is defined at u =0. For u ~ oo we ob-
tain G„(u ) —e "" and Eq. (12) is meaningful when
neo, &coo—6„. Equation (12) is a generalization to arbi-
trary Landau level n of the result given in the Appendix'
of Ref. 4 for n=0, 1,2,3.

In the 2D case we have to disregard the z direction in
the above formulas. A calculation analogous to the above
3D case leads to the rather simple result

r

1 ~
" (2m —1)!! 1

(~ )1/2 m 2m

1.4

1.2

0.8

0.6

0.2

02'. I I I 1 I I 1 I I I

0 0.2 0.4 0.6 0.8 1

(dc~(do

1.2 1.4

FIG. 1. The first three Landau levels as function of the rnag-
netic field for the unperturbed energy levels (thin dashed
curves), the 2D polaron (thick solid curves) and the 3D. polaron
(thick dashed curves). The electron-phonon couphng constant is
a =0.1.

I ((1—b,„)/co, —m )X, , (15)
I"((I—&„)/,+ —,

'
)

with I'(x) the gamma function. For b,„=0,Eq. (15) was
recently obtained by Larsen' for n =0,1,2.

In Fig. 1 the first three Landau levels are plotted as
function of the magnetic field for an electron-phonon cou-
pling constant ca=0.1. The thin-dashed lines represent
the unperturbed energy levels. The Landau levels for the
2D (thick, full curves) and the 3D (thick, dashed curves)
polaron are obtained from Eqs. (15) and (12), respectively,
within the I%'BPT. From Fig. 1 it is apparent that the
polaron energy levels are: (1) shifted to lower energies, (2)
at small magnetic fields they are bended downward due to
a mass renormalization, (3) at neo, =coo the nth Landau
levels do not cross the LO phonon+ n =0 Landau level,
and (4) for co,~ oo all the Landau levels become pinned to
~o+AEo . When one compares the 2D result with
the equivalent 3D result one notes that in 2D the energy
shift, the mass renormalization, and the level splitting at
neo, =coo are more pronounced than for the 3D polaron.
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This confirms a similar conclusion made recently by Das
Sarma. 9

III. ANALYTICAL RESULTS FOR LIMITING
VALUES OF THE MAGNETIC FIELD

A. Weak magnetic field limit (a), /a)p ((1)

The electron-phonon correction, AE„, to the Landau
levels will be calculated in this section in the limit of

I

small magnetic fields, i.e., ~, &&~o. For the 3D polaron,
this is realized by expanding the function G„(u) in Eq.
(12) in powers of u

2n+1 18n +18n —1 zG„u =1+
6

Q+
180

Q

90n +135n —37n —6
3780

which results in

2n +1
12

COC

1 —6„
18n 2+ 18n —1

240
~c 90n + 135n —37n —6

1 —6„ + 2016
COC

1 —6„

3

+ ~ ~ ~

(16)

When co, /cop « 1, nondegenerate perturbation theory (i.e.,
RSPT) has to be used and one has 6„=0. The magnetic
field correction to the electron-phonon self-energy for
weak magnetic fields is then given by

AE 1
2n+1 18n +18n —1

12 c 240

~c 9(n +1)hE +)—5E = —a 1+n+ n 10
CO

135n (n +2)+94+ ~c+

(18)

90n + 135n —37n —6
2016

The cyclotron resonance frequency,

%co*, =Ei —Eo, (19)

where co, and AE„/R are in units of cop. Note that the po-
laron corrections are larger for higher Landau levels. The
expression for the ground-state energy (n =0) and for the
first excited state (n = 1) was already obtained by Larsen.
Equation (17) is a generalization of Larsen's result to arbi-
trary Landau energy level.

The electron-phonon contribution to the energy split-
ting between two successive Landau levels can now easily
be obtained from Eq. (17):

defines a cyclotron mass m*/mb ~, /co, (mq is the elec-
tron band mass), which for small magnetic fields is given
by

1 — (1+ i()$ + )~N + ' )
CX 9 47 2

(20)

For the 2D polaron problem we insert the asymptotic
expansion of the I function for large argument into Eq.
(15) and obtain

AE„=—a n/2
+1—6„

1+ 2n +1 ~~ 18n (n +1)+1
8 1-d„128 COC

1 —6„

2

(2n +1)(10n +10n —1)
1024

3

+ ~ ~ ~ (21)

which to first order in a, (i.e., b.„=0)becomes

AE~ = —Cx 1+ ~c+m 2n +1 18n (n +1)+1 q 5
co, + (2n+1)(10n +10n —1)co, +2 3

2 8 ' 128 ' 1024
(22)

J

The same expression up to co, and for all n was recently found by Larsen in Ref. 10. For n =0 and n = 1 the result (22)
agrees with the corrected result of Das Sarma.

The electron-phonon contribution to the energy splitting between two successive Landau levels in 2D in the limit
co& /Q)p (( 1 is given by

~c 1+ 9(n +1) 5 z 2

8 8 128
co, + (30n +60n+29)co, + . (23)
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which leads to the cyclotron mass

1 —a—(1+—,co, + „,co, +. )
9 145

(24)

In Fig. 2 we plotted the cyclotron mass (calculated
within the IWBPT) for the 2D and the 3D polaron in
function of the magnetic field for two values of the
electron-phonon coupling constant: (i) a =0.02 [Fig. 2(a)]
which corresponds to the case of InSb and (ii) a=0.07
[Fig. 2(b)] which is the electron-phonon coupling constant
of GaAs. Figs. 2(a) and 2(b) show clearly the enhance-
ment of the mass renormalization due to polaron effects
in systems with reduced dimensionality. The strong
enhancement of the cyclotron mass around co, =cop is a
consequence of the pinning of the Landau levels to the en-
ergy fuu, /2+ficop.

i
I
I
i
i
I
I
I
I
I
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i
I
I
I

B. Splitting and pinning of the Landau levels

To study the splitting and pinning of the Landau level
E„we are interested, respectively, in the region where
i]co cop and co, /cop~ 00. For the Landau level E„at a
magnetic field such that nco, =cop, two energy levels
cross' (see Fig. 1): namely the energy level with an elec-
tron in the Landau level n becomes degenerate with the
energy level in which the electron is in the lowest Landau
level and where one real LO phonon is present. For

neo, )coo, Rayleigh-Schrodinger perturbation theory is no
longer applicable to calculate E„. One has to use degen-
erate perturbation theory, i.e., WBPT or its improved ver-
sion IWBPT, to calculate E„self-consistently.

In the magnetic field range under study one has
1 —A„=co, and as a result the dominant contribution to
the integral in Eq. (12) is obtained from the behavior of
G„(u) for u n co. In the limit u~ &x&, G„(u)=A„el™
with

a/2n
+1—b„nco, — (25)

For n =1 and b, ] E]——,——co, =bE&, Eq. (25) reduces to
the WBPT result of Larsen (see also Ref. 15).

When nco, =cop, the electron-phonon interaction lifts
the degeneracy of the energy levels E„and Eo+Amo. The
splitting between E„and Eo+fuuo within %"BPT and
I%'BPT is twice

i
b,E„ i

=(a/2n) i (26)

in the limit cx ~&1. For n =1 the cx dependence of the
splitting was already found by Levinson and Rashba. '

Note also that the splitting is smaller for higher Landau
levels!

In the limit co,~ ao, it is still possible to find a solution
for Eq. (25). Using WBPT, i.e., b„=bE„, we found to
lowest order in a

1 a
En =1+ 2 ~c-

4n Q7

(27)

(2n —1)!!" '
( —1)'

2"n!, p 2s+1 s

which can be simplified to A„=l/2n for n) 1. After
performing the u integral in Eq. (12) we obtain for the
electron-phonon contribution to the Landau level n & 1,

a)
10 ---I--t--I t t l I I I t I

0 0.2 0.4 0.6 0.8- 1

C/u)0
1.2

It then follows that the Landau level E„ is pinned to
ficop+Aco, /2 at large magnetic fields. When one applies
IWBPT the following result is found:

2

(28)
4n4 co,

' '

1.2—

1=Tj I

0 0.2 0.4 0.6 0.8

I
I
I
I
I

I
I
I

I

1 1.2

(29)

The splitting of the Landau level n at nco, =cop is twice

and the Landau level n is pinned to ficop+fico, /2 shifted
with the electron-phonon contribution to the electron
ground-state energy calculated within RSPT. The result
given by Eq. (28) for co, ~no is the correct one. The a
dependence in Eqs. (28) and (29) was also obtained in Ref.
16.

For the 2D polaron in the magnetic field region,
1 —h„=neo„ the term I=n gives the dominant contri-
bution to the sum of Eq. (15) and we obtain

hE„= v m(2n —1)!! a@. coc

2"+ ~n! 1 —6„—n co,

FICx. 2. Cyclotron resonance mass as function of the mag-
netic field for the 2D (solid curve) and the 3D (dashed curve)
polaron and for (a) a =0.02 and (b) n =0.07.

' 1/2 1/2
] /2 n. ( 2n —1 )!!

2"+'n! (30)
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O, = 0.07 /
7

n+ —, 9(n+ —, )

0.8

0.6
C:

LU
I

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 3. Energy difference between two successive Landau
levels for the 2D polaron as function of the magnetic field for
+=0.02 (dashed curves) and for +=0.07 (solid curves).

a ~sr(2n —1)!!
En l+ p coc

cue 2

while for the IWBPT we get the following result:

Rsp T ] a ~76 2n —1 )!!E„=1 +Ep + —,ce, —
tic 2 n!

(31)

(32)

The energy difference between two successive Landau
levels,

E„—E„(——Ace, +(bE„b,E„(), —

is plotted in Fig. 3 as a function of the magnetic field for
a=0.02 and +=0.07 in the case of a 2D polaron. For
n = 1, the energy difference duo, =E~ Ep becomes eq—ual
to the LO-phonon energy mp in the limit co, ~~. For
transitions between higher Landau levels, the transition
frequency (E„E„~)lfidecreases to z—ero when co, —+ ao.
Because of the pinning of the energy levels E„(n &0) to
e p+aEpR"'+ e,Z2.

IV. CONCLUSIONS

It is interesting to compare our result for the spectrum
of a polaron in a magnetic field in the limit of a weak
magnetic field with the semiclassical result of Bajaj. ' His
calculation was based on the Bohr-Sommerfeld quantiza-
tion rule and resulted in 3D in

n+ —, 3(n + —,
'

)
hE„= —a 1+ co, + co,+, (33)

and in 2D one obtains

For n = 1, this V a dependence of the splitting was recent-
ly obtained by Das Sarma. ' Note the difference be-
tween 2D [Eq. (30)] and 3D [Eq. (26)] in the a dependence
of AE~ at 11co~ =cop.

In the asymptotic limit of large magnetic fields the
Landau n becomes, within WBPT,

(34)
Comparing Eqs. (33) and (34) with Eqs. (17) and (22) we
note that Bajaj's result is correct to order co, but that the
coefficient of the co, term is incorrect. It is the latter
coefficient which determines the magnetic field correction
to the cyclotron mass to order co, . Note that the term co,
term in Eqs. (33) and (34) is asymptotically correct for
n ~ oo, i.e., in the classical limit.

The influence of the electron-phonon interaction on the
cyclotron resonance line of electrons in inversion layers on
InSb was recently observed by Horst et al. An enhance-
ment of polaron effects was observed in this confined elec-
tron system in comparison with the 3D polaron in InSb
which is in qualitative agreement with the present calcula-
tion and the results of Das Sarma ' and Larsen. ' Be-
cause of the finite electron layer width and the importance
of nonparabolic band effects in InSb, no direct compar-
ison is possible between our results and the experimental
results of Horst et al.

In order to observe transitions between higher Landau
levels one has to populate these levels first. This can be
done by heating up the electrons by, e.g. , an electric field.
The feasibility of this method experimentally was demon-
strated in Refs. 4 and 19 in the case of 3D polarons in
GaAs. It would be of interest to do a similar experiment
for inversion layers and to investigate the influence of the
electron-phonon interaction on the different Landau lev-
els. The splitting of the energy levels can be compared
with the present results. Qne has to keep in mind that in
our investigation some simplifying assumptions (parabolic
conduction band, ideal 2D layer, one-electron picture, in-
fluence of impurities is neglected, etc.) have been made
which can make a possible direct quantitative comparison
with experiment less straightforward.

In conclusion, we have calculated the energy spectrum
of a 2D and 3D polaron in a magnetic field below the
LQ-phonon continuum to second order in the electron-
phonon coupling. Qur result, which was presented in a
closed analytical form, is valid for zero temperature, arbi-
trary magnetic field strength and arbitrary Landau level
number n. The analytical analysis for co, /cop « 1,
neo, =up, ~,—+ (x), and our numerical results for arbitrary
co, for the polaron energy levels, indicate that in ideal 2D
systems the polaron effects are considerably enhanced
with respect to 3D systems. This conclusion generalizes
the results by Das Sarma ' and Larsen' to arbitrary
Landau level n.

The polaron energy levels above the LQ-phonon contin-
uum have a finite lifetime. To calculate the polaron spec-
trum in this energy range one can apply similar tech-
niques as were used in Ref. 20 for the 3D polaron.
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