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Properly, spin is an antisymmetric tensor, and therefore in n-dimensional spaces where polar vec-
tors have n components, spin has n (n —1)/2 components. Moreover, although a rotation can make
an arbitrary polar vector have only one noniero component, the same is not true for spin (and mag-
netic field). In particular, for n=4 an experimentalist can generate two independent field com-
ponents (e.g., H» and H34) and, further, systems can develop two types of spontaneous symmetry-
breaking internal fields. To illustrate some dynamical implications of the additional field com-
ponent we have derived the equation of motion for spin in n dimensions, and for n =4 we apply it to
free Larmor precession, where we find two modes [at y(H~2+H34)]. Simple ferromagnets and spin
glasses are also discussed for n=4. Since no true two-component spin can exist in any dimension,

we consider XY spin dynamics for n=3 spins S subject to strong uniaxial anisotropy. The behavior
of electric and magnetic dipoles is contrasted, for the usual (v=3) case. It is also shown that nor-

mal modes for XY electric dipoles p have only an in-plane polarization, contrasting to XY spins,
which have a normal mode with an out-of-plane magnetization. The hypothesis, for n=3, of di-

poles due to magnetic. charge and a "gyroelectric effect" ( p cc S) is briefly discussed. It is noted that
the usual concept of a scalar magnetic source (magnetic charge) is appropriate only to n =3.

I. INTRODUCTION

and the Zeeman interaction

A g —— yHa g S; (a=—1,2, 3),

by simply letting the maximum value of the index a take
on any integral value. (Here i and j are site indices, JJ is
the exchange constant, y is the gyromagnetic ratio, and
Ha is the external field. ) This is a well-defined procedure,
but it involves treating spin as a polar vector, despite the
fact that it is actually an antisymmetric tensor.

To illustrate the point that the conventional procedure
may take some liberties with the physics of true spins in
higher dimension, consider the following. By a suitable
rotation one can always find a coordinate system in which
a polar vector (e.g., the electric field E) has only one
nonzero component. This is true for any dimensionality.
It is not so obvious that the same is true for an antisym-
metric tensor (e.g., the magnetic field H&, ) in any dimen-
sionality. Indeed, it is generally true only for n=2 and 3
[note that when polar vectors have n components, an-
tisymmetric tensors have n (n —1)/2 components].

(1.2)

The study of both static and dynamic behavior of in-

teracting spins S has yielded a rich harvest of results.
Normally the case of three-component spins is studied,
but for some purposes one generalizes to both higher and
lower dimensions. In that case, it is conventional to ex-
tend the exchange interaction

g JJS; SJ (a=1,2, 3),

Specifically, in Sec. II we show that there can be two in-
dependent components of H„(e.g., H~2 and H34) in
n=4, and in Sec. III we show that this yields two free-
spin Larmor precession frequencies, at y(H&z+H 34). To'
do this, we must generalize the equation of motion for
spin angular momentum, which for n =3 takes the form

(1.3)

where E is the energy and 0 represents a rotation about
the ath axis.

It is also nontrivial to extend the physics for n=3 to
n=2, where spin has only one component. In that case,
true spins are Ising spins. Thus, to model XY spins it is
necessary to consider n=3 spins confined to a plane by
strong anisotropy. Moreover, the dynamics of n=3 spins
is very different from the dynamics of n=3 electric di-
poles, even with the same types of interactions, due to the
differing relationships of the dipole moments to angular
orientation and angular momentum.

Each of the above points is more fully discussed below.
In Sec. II we show that the number of independent spin
and magnetic field components is either n /2 or
(n —1)/2, according to whether n is even or odd. In Sec.
III we derive the equation of motion for spins in arbitrary
dimension, and apply it in n=4 to Larmor precession by
noninteracting spins in a magnetic field. Some care is re-
quired here, for spin in n =4 has more complicated repre-
sentations than in n=3. In Sec. IV we consider the equa-
tions of motion for what we will define to be "simple" fer-
romagnets in n=4, showing that the spin waves satisfy
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co=Dk, as for n=3 .Section IV also considers a spin
glass for n=4; the equations of motion are derived and
applied to spin waves, where co=ck, as for n=3. In Sec-
tion V we consider XY spins as n=3 spins with strong
planar anisotropy. The spin waves for XI' spins with
nonparamagnetic order are determined, for nonuniform
rotations about z, of wave vector k, and it is shown that
co=ck, where c is proportional to the geometric mean of
the exchange J and the anisotropy D. We find that an
out-of-plane magnetization must accompany the spin
wave. The normal modes for rotations about x and y are
also considered. Finally, in Sec. VI we consider. the prob-
lem of determining the normal modes of n= 3 electric di-
poles. In the case of strong planar anisotropy and weak
exchange (with no ordinary dipolar anisotropy), it is
shown that the normal modes satisfy co=ck, where c is
proportional to the exchange J divided by the molecular
moment of inertia I. The polarization is purely in-plane
for this case, in contrast to what occurs for the magnetic
ease. Some implications of the possibility of magnetic
charge and, associated with it, a "gyroelectric" effect, are
also discussed in this section.

II. ON THE EIGENVALUKS
OF ANTISYMMETRIC TENSORS

IN n DIMENSIONS

(Jjr ) = (i&jp )*= &'+j
&

=Jij (2.2)

(2.3)

J can be diagonalized by a unitary transformation. In
other words, there is an orthonormal basis set of (possibly
complex) eigenvectors of J:

(2.4)

The results of this section are probably well known to
at least some mathematicians, but we provide demonstra-
tions here, both for completeness and because of the im-
portance of the results for Larmor precession when n=4
(Sec. III).

Consider a real, antisymmetric tensor L,z ———Ez, .
With it we can define a Hermitian, pure imaginary tensor
Jg) ..

(2.1)

(ln)+ ln)*»
2 2

is real, and from (2.6) it has the properties

(2.7)

(2.8)

Since the transformation given in (2.7) is unitary, we have
a sequence of two unitary transformations from one real
basis (i.e., the one in which Kj is defined) to another real
basis [i.e., (2.7)]. As a consequence the combined unitary
transformation is real, making the transformation an
orthogonal one ( U = U ' and U* = U implies that
U = U '). Since rotations are expressed via orthogonal
transformations (and vice versa), it has been possible to
find a rotation to a new orthogonal basis, whereby K sat-
isfies (2.8) for each pair

l
nR) and nI). In the general

case A,„&0,so that (2.8) is nontrivial.
The above discussion has the following consequence for

an even-dimensional space: the magnetic field 0;j has
n/2 independent components, since (2.8) implies that
H,j ——0 if i and j are not pairs as in (2.7), for H~ =+A,„,if
i and j are pairs as in (2.7).

For an odd-dimensional space there must be one com-
ponent which is unpaired, corresponding to A,„=O. Thus,
for odd-dimensional spaces Mj has ( n —1)/2 independent
components.

III. FREE-SPIN DYNAMICS
AND LARMGR PRECESSION

In this section we will obtain the equation of motion for
an isolated spin, by considering the response of the
system's energy to an infinitesimal rotation. This result
wi11 then be applied to the example of Larmor precession
for a paramagnetic system in n =4.

The dynamical variables of our n-dimensional system
are taken to be subject to an operation of the n
dimensional rotation group, SO(n). (A system may admit
more than one such operation, leading to the distinction
among orbital, spin, and total angular momentum —see
below. ) These rotations are not necessarily dynamical
symmetries (i.e., they may change the energy of the sys-
tem). We will be concerned with infinitesimal rotations,
which can be represented by antisymmetric tensors dO& .
The first-order rotation of a vector is then described by

Taking the complex conjugate of (2.4), and using the fact
that J is pure imaginary, we see that dA„=de+„. (3.1)

(2.5)

(Here we have used the fact that A,„ is real, since J is Her-
mitian. ) The number of linearly independent eigenvectors
with eigenvalue —A,„ is therefore the same as for eigen-
value I,„. Thus we conclude that the eigenvalues of J
come in pairs with equal and opposite values, unless
A,„=O. In that case, the process of complex conjugation
yields that

l
n ) can be chosen to be real.

Applying (2.4) and (2.5) to IC =iJ, we find that

Note that for n=3 the infinitesimal angle d8p satisfying

dA =e~pyd8pAy (n =3)
is in accord with (3.1) if we define

d8p= , up~+8~ (n =3)—.

(3.2)

(3.3)

C~p =[A,B]~p A~Bp
—
ApB~ . —— — (3.4)

To find the transformation properties of an antisym-
metric tensor, we first consider the special type

The basis set

(2.6) Note that for n =3 we can set
1Cy: 2 EyapC+p (n =3) (3.5)
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and recover the cross product, Cj =32B3—A3B2, etc.
For general n, (3.4) implies

dCap (d——Aa)Bp+A (dBp) (d—A p)Ba A—p(dBa )

tion of the particle (or center of mass of the body) is also
changed by the rotation. Note that for orbital angular
momentum, application to (3.9) of Newton's law for a
conservative force,

=d8 rCrp+d8prC r . (3.6) I = —8 F =mi'a, (3.1 1)

BCp= —,d8 p
ap

Similarly, we write

(3.7)

dA = —,'d8ap (3.8)
ap

for any quantity A. (The factor —,
' compensates for the

redundancy d 8p ———d 8 p.) In general, however, the
"partial derivatives" in (3.8) cannot be interpreted literal-
ly, since there will not exist even infinitesimally—
corresponding configuration-space coordinates 8 p. This
is quite clear for any system whose configuration is com-
pletely described by a single vector (for instance, a point
particle, or any axially symmetric rigid body with fixed
center of mass): There are ,'n(n —1) —independent com-
ponents d8 p, but the part of configuration space to
which the vector can be rotated has only n —1 dimen-
sions. On the other hand, if the system is an asymmetric
rigid body (in n dimensions), then its configurations are in
one-to-one correspondence with the elements of the rota-
tion group, and (3.8) makes literal sense [the 8 p being
coordinates for the Lie algebra of SO(n)]. In that case
the derivatives are then evaluated at 0 p——0.

%'e now consider explicitly the case where the quantity
A is an angular momentum Sap. Note that the orbital an-
gular momentum is the antisymmetric tensor

I. p=m [r,r'] p (3.9)

and any angular momentum S p is also an antisymmetric
tensor. With %=1, the Heisenberg equation of motion
reads

S p i [A,S p]——
—i[S p, A ]

(i/2)8apS —
p ( )

(i/2)8 pSapq-
ap

BA

BOap

am
ae.p

(3.10)

In deriving (3.10) we have used the fact that, for fi= 1, the

Sap are the generators of (the relevant operations of) the
rotation group. For n =3 we recover (1.3).

For a particle with spin (or a rigid body), S p will be
the intrinsic spin if the transformation rotates only the
orientation of the object, keeping its position in space
fixed; it will be the total angular momentum if the posi-

This equation is valid for antisymmetric tensors in gen-
eral, since every antisymmetric tensor is a sum of objects
of the form (3.4). We may rewrite (3.6) as

dC» 2 d8ag5apCpv 5ppCav 5avCpp+5pvCap)

can be shown to lead directly to
F'

Lap=
gg ap

(3.12)

We now apply (3.10) to a spin interacting with a mag-
netic field H», so that the rotationally noninvariant part
of the potential is

1&=—TyS~„Hp„ (3.13)

(which becomes —YS H for n=3). Setting (3.13) into
(3.10) yields

S
—y H

ESP
. ap= pv ~gap

From (3.7) we obtain

as„.
BOap

=5 „Sp„5p„S„—5@p„+—5'' „,
so that (3.15) becomes

(3.14)

(3.15)

Sap= (HpvSav HavSp)v HppSap+—HpaSp]J, )
2

=Y(Hp„S „H„Sp„). — (3.16)

0

Sjz=S34=0 ~ (3.17a)

S]3=Y(H34S]4 K]2S32)= Y( H34 S4]+H] S232), (3.17b)

S]4 Y(H43S]3 12S42) Y( 34S]3 H]2S24) ~

(3.17c)

S23 =Y(H34S24 H2]S3] ) =Y(H34S24 H]2S]3 ), (3.17d)

S24 Y(H43 23 H21 41) Y(H34S23+H]2S]4)

(3.17e)

Letting Ap+ =Sp3+iSp4 for p=1,2, Eqs. (3.17) yield

(3.18)

Assuming that A]+ and A2+ vary as e '"', (3.18) then
yields

We now specialize to n =4, where n (n —1)/2=6. In this
case, H&„has two nontrivial components, which we will
take to be H&2 and H34 Rather than consider an indi-
vidual spin, we will take Sap to represent the sum over a
large collection of spins, and we will assume that the
equilibrium value satisfies SaP Y'XVHaP. Her——e X is
the susceptibility and Vis the volume of the system. (We
will consider individual spins shortly. ) Linearizing (3.16)
about equilibrium yields
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—i (co y—H34)A ]+ y——H ]2A 2+,

—i (co y—H34)A 2+ —— y—H]2A ]+,

so that

(3.19)
Jk and J~ have the same signs, but are unequal, one can
have the interesting possibility of ordering of the same
type, but with two different transition temperatures. Only
if exchange terms of the form

(~—}'H34)'=()'H]2 )'

co =y(H 34+H ]2 ) .

(3.20)

(3.21)

What happens, then, is that H34 and H&2 produce two
Larmor precessions, at their sum and difference frequen-
cies. Each mode involves the four transverse spin com-
ponents. We have thus shown that both the static and the
dynamic properties of paramagnetic spin systems are
more complex for n=4 than one would expect from a
simple generalization of polar vectors from n =3 to n =4.

The above analysis, however, is oversimplified. The an-
gular momentum eigenstates of SO(4) can be specified in
terms of the eigenvalues k and l, associated with the
operators

J (K ( ) L( )++(2).L (])) (3.25)

occur can the k and l degrees of freedom interact. A
more detailed study would be needed to determine if (3.25)
can occur.

EV. SPIN DYNAMICS FOR n=4 FERROMAGNETS
AND SPIN GLASSES

In the preceding section we treated a spatially uniform
paramagnetic system. To consider nonuniform ferromag-
nets and spin glasses, it will be necessary to generalize
(3.10). We will consider a collection of spins S~p(j) sub-
ject to the Hamiltonian A, so that we begin with (3.10) in
the form

1' 1

+f) 2 ( 2 ~»PP»+S4P)
1 1

LP = —,( 2e„@PS»—S4P) . —
(3.22)

(3.23)
(4.1)

V,„=—JkK ' K —J(L .L' '. (3.24)

Such an interaction permits individual ordering in the K
and L degrees of freedom. It is conceivable that Jk and
J] have opposite signs for k&/, which could lead to coex-
istent ferromagnetic and antiferromagnetic order. Even if

These are each like SO(3) angular momentum operators,
and they commute with one another. Thus k and l can
take on both integral and half-integral values, where the
effect on eigenstates is to yield X ~k (k + 1) and
L ~l(l+ 1).

For states with both k and l nonzero, if one treats the
spins classically one finds no restrictions on the spin com-
ponents. As a consequence, most of the previous discus-
sion [and, in particular, (3.21)j remains valid. However, if
l=O and k&0 then Lp must give zero when acting on
such a state, and thus the values of Sz are restricted. In
that case, only the co=y(H34 H]p) mode occurs, and
S]2 ———S34 ~ (H]2 H34). On the ot—her hand, for k=O(0) (0)

and l&0 one finds co =y (H34+ H]2 ), and
S]2 =S34 ~ (H]2+H34).(0) (0)

One complication for both k and l nonzero concerns
the statics. Only if k = l does the relationship
S~p ——y 'X VH~p hold. The reason is that the susceptibil-
ity X, for n =3 spins in the paramagnetic regime, varies as
s(s+ 1), where s is the n=3 spin. For n=4, the
response can be broken into two SO(3) responses: Unless
each SO(3) component has the same spin (i.e., k =l), the
k and l susceptibilities will differ, and thus the response
will be a tensor rather than a scalar.

One can also inquire into how n=4 spins interact. For
n =3, exchanging two spins affects the energy in a fashion
describable in terms of the angular momentum of the
spins. We assume, without proof, that the same holds
for n=4, but that the interaction involves the K and L
SO(3) subspaces individually. Thus we take two spins to
interact via

To go to the continuum limit we define the magnetiza-
tion in a small region R via

m p(x)= g S p(j),
V~ J~g

(4.2)

where x is at the center of R, which is of volume Vz and
contains X]( spins. Likewise we define a rotation field

de„„(x)= g de„(j) . (4.3)

The continuum version of A takes the form

~= J' Hd"x', (4.4)

where H changes under both de» and d (();8»). Then

d~= —,
' J d "x'de„„(x')

»
(4.5)

where we have performed the usual variation of de» and
d (8;8») in A (and integrated by parts, dropping the sur-
face terms) and

SH aH aH
se„.

= ae„„'a(a, e„„)
(4.6)

Note that H is an explicit function of m&„and 8;m», so
that the effect of de& and 8;(de») is to cause changes in
m& and 8;m», via (3.6). This will be seen explicitly
when we consider the ferromagnet for n =4.

With these preliminaries taken care of, the time deriva-
tive of (4.2) becomes
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m p(x)= g S p(j)

BA

5H ae„„(x)
d x

2@~ .~a 58„„B8p(j)

5e Be Be'=y 5e.,=y ae.p 'a(a, e.,)

Use of (4.8) in (4.9), and the relationship

(o)=m r B e~r —m r~ B e~

{4.9)

(4.10)

y ~ d„, 5H 1

zv .~ ~ 5e)~g pa

(4.7)

[which follows from (3.6)], yields

m~p= yp, —(m„'pV m„~ m~—~V m„p) . (4.11)

Employing the assumption that only m 34' ———m43' ——m is
nonzero, (4.11) becomes

2e=eo+ 4 p, (Vm») (4.8)

Correspondingly, the spontaneous magnetizations associ-
ated with k and I are expected to be the same. This
means that we may take only m34 — m43 ——m to be(0) (O)

nonzero. (One can also take only m &2
———m2~ ———m to(o) (o]

be nonzero. Both choices give equal magnitudes to the K
and L components of the magnetization. Indeed, the K
and L spontaneous magnetizations can be rotated individ-
ually without changing the energy. This would lead to
more complex forms, which we will not consider here. )

From the thermal average of (4.6) and (4.7) we have

where we have employed, in succession, (4.2), (4.1), (4.5),
(4.3), and g,.~a (1)=cYR, f d"x'= V~. In practice, we
will consider systems for which thermal averages have
been performed, so that the microscopic Hamiltonian den-
sity H will be replaced by the macroscopic energy density
E.

An alternative demonstration of (4.7) depends upon the
fact that 5H/58» is zero in equilibrium. If we assume
that mz„ is driven by some analytic function of 5H/58»,
which is zero when 5H/58&, ——0, then the functional form
can be obtained from the uniform case, where

m» ——yaH/ae&„. We are then led to (4.7).
Consider now a ferromagnet. From our discussion of

the k and l subspaces in the preceding section, we antici-
pate that the energy density takes the form

I
EO+ 4 psap, pv~ m aI3 ~m pv ~

where eo is the energy density for uniform magnetization.
However, for k =l, we expect that p, can be replaced by a
scalar, so that

m~3 ———yp, ,[{—m)V' m4~]= yp, mV —m&4, (4.12a)

m )4 ———yp, [(m)V' m3) ]=yp, m V m, 3, (4.12b)

m23 ———yp, [(—m)V'm42]= —yp, mV'm, 4, (4.13a)

m24 yp,—[{m)V'm 32] yp,—m V m23 (4.13b)

There are two pairs of independent, but degenerate, solu-
tions of (4.12) and (4.13), where we assume a space-time
dependence of exp[i (k r cot)]. T—hen

co = + (yp, m)k (4.14)

for each mode, and each mode is circularly polarized.
For a spin glass (a nearly rigid structure of spins point-

ing in all "directions"), the magnetization m» and the
orientation 0& are independent variables. Thus we must
determine the equation of motion for 8&„. This is ob-
tained using the methods of generahzed hydrodynamics.
We assume that

de= TdS+ 2 h&„dm„„+ ,' r; z„d(a;8»—) (4.15)

expresses the thermodynamics of the system, in terms of
temperature T, entropy density S, internal field h&, and
"bending field" I;». Next, we write the equations of
motion

e+Bj =0, S+B;j,'=R &0,
5em„„=y +D„„= yB;I;„„+D„—58„

{4.16)

pv= ~pv

where j, j,', R, D&, and co& are to be determined by the
requirement that (4.15) be consistent with (4.16) at all
times. Thus

TR =TS+ TB;j,'

—T~iji +~ 2 Apvmpv 2 i,pv~i pv

j; —j;)—j;a;T+ h B;I; „——h D „——B;[I; „co

=B,.[Tj,' j,' ,' co„ I', „„]—j,'B, T. .——,' .h—„„D„„+, B,I—, „„.{y.—h„„+co„„—). . . (4.17)
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Alp~hp-=
X r,p-=P a8p. (4.18)

(which are generalizations of the n=3 case), and if we
neglect the dissipative terms, we obtain

Hence, for the uniform state in the absence of dissipation
(A=O, D„„=O, a;T=O) we have top„= —yh„„. If we
now take the internal field and the bending field to be
given by 3mz

Bt 58, =xp.~ .
a 8m ae y
Bt 5m,

(5.2)

(5.3)

just as for n=3 spin glasses, except that now X, ~D
rather than X ccJ '

(p, a:J in both cases). The equations
of motion for m, and 8, are

gmp~m„„=—yp, V e„„, e„„= x (4.19)
Taking 8„m, ~ e' " ' ' "",(5.2) and (5.3) yield

co =c k, c =y(p, /X, )'i (5.4)

whose solution is 58p„e' " ' "with co =y (p, /X)k,
just as for n=3 spin glasses. However, now there are six
degenerate modes rather than three. Including dissipa-
tion, we find that

Ji —Kai T& Dpv D 1hpv &

(4.20)
~pv=yhpv+D2airi pv &

where ~, D~, and D2 are all positive, and represent dissi-
pative processes (in the present case, diffusion of heat,
magnetization, and 58p ).

Our discussion of spin in n=4 has ended. For com-
pleteness, however, Sec. V considers the dynamics of XF
spins (i.e., n=3 spins with strong uniaxial anisotropy) and
Sec. VI treats the dynamics of electric dipoles, with an
emphasis on the XF model. From these sections, the
behavior of XI'spins and XF electric dipoles can be con-
trasted.

V. XY SPIN DYNAMICS

True spins can only have n(n —1)/2 components, or
0,1,3,6, . . . according to n =1,2,3,4, . . . . Thus a two-
component spin is a contradiction. In practice, when the
XY model is treated, it is usually the statics which are
under consideration, and this is no different from the stat-

-ics of n=2 polar vectors Howev. er, to deal with the
dynamics of the XI' model one must consider n=3 spins
which are subject to a large uniaxial anisotropy. Both the
ferromagnetic and antiferromagnetic XF models have
been treated, from a hydrodynamic viewpoint, by Halpe-
rin and Hohenberg, who find spin waves with linear
dispersion. At the microscopic level Villain has studied
the ferromagnetic XY model, again finding that the spin
waves have a linear dispersion, u=ck; The velocity c is
found to be proportional to the square root of the product
of the anisotropy D and the exchange J.

It turns out that XF spins with any type of nontrivial
(i.e., nonparamagnetic) spin order have the same linear
dispersion, with c ~ (DJ)' . This is a result most directly
and effectively seen by considering the macroscopic (or
hydrodynamic) viewpoint. The appropriate variables in
this case are 0„ the macroscopic orientation about the z
axis, and the magnetization along the z axis. The energy
density e, written in terms of 8, and m„ takes the form

2

e= + —,
'
p, ( V8, )

2X.
(5.1)

It is important to observe that the third component of
spin really takes part in the motion, and thus it cannot be
eliminated. Indeed, one way to observe spin waves in an
XI' spin system would be to monitor the out-of-plane
magnetization m, . In Sec. VI we will contrast this to the
behavior of XF electric dipoles, which have only an in-
plane polarization p, .

Actually, XF spins do have a response in the plane.
However, this is not associated with 0,. Considering the
case with no remanence and no magnetic field, the energy
associated with m„and 8„ is given (in the long-
wavelength limit) by

2

+ —,
' xO„, (5.5)

2XJ

where Xi ~J ' and a ~D. The equations of motion for
m„and 8„yield [analogously to (5.2) and (5.3)]

8pl~ 88~ y=yAO, = mat at Xi
(5.6)

whose solution gives the finite frequency at zero wave
vector

i&l=y(IC/Xi ) (5.7)

This mode represents the stability of the system against
tipping out of the XF plane. Analogous results hold for
7tly and Oy.

VI. THE DYNAMICS OF ELECTRIC DIPOLES

Electric and magnetic dipoles have the same number of
components in n =3, where their statics is identical, given
identical interactions. However, due to their different re-
lationships to angular orientation and angular momen-
tum, electric and magnetic dipoles have very different
equations of motion. Magnetic dipoles in n=3 satisfy
(1.3). To derive the equation of motion for electric di-
poles, it will be necessary for us to consider a specific
model.

%Pater is a polar molecular with a permanent dipole
moment and many complex crystalline phases. Let us
abstract this molecule by taking it to be a small rigid body
to whose orientation an electric dipole is rigidly attached.
In that case, the dipole moment reorients with the rigid
body. If we construct a solid out of such rigid bodies, the
changes in the dipole moment of the system can be ob-
tained by studying the normal modes of vibration. Be-
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5p;=50;Xp; .

The angular momentum of the ith molecule,

dO;L;=I;.
dt

(6.1)

(6.2)

(where I; is its moment of inertia tensor), satisfies

dL; =I;=—
dt

5E
50;

(6.3)

where I; is the torque and E is the energy. For small

50; wehave-

sides the acoustic modes, there will also be optical modes
(even if there is only one molecule per unit cell) due to the
individual molecular vibrations.

The dipole moment p; on the ith molecule changes ac-
cording to the rotation 58; of the ith molecule:

This result is even expected to hold when there is a
strong anisotropy keeping the dipoles in the XY plane, so
that 58„and 58» are suppressed. Superficially, then, the
normal modes of XY electric and magnetic dipoles, in-
teracting through exchange and planar anisotropy, are
very similar, for they both yield co=ck. However, the
source of c is very different for the electric dipole case,
with c cc (J/I)'~, where J is exchange and I a moment of
inertia. Moreover, in.the electric dipole case there is no
tendency for a 5p, to develop, since 58„=50~=0. Thus
"electric dipole waves" in such a system cannot be ob-
served by monitoring the out-of-the-plane polarization p, .

If magnetic charge exists (monopoles), a magnetically
charged particle with spin S might be expected to possess
an electric dipole moment with p =y*S, y being a
"gyroelectric" ratio which transforms as y*~—y' under
time reversal. In that case one would expect, by analogy
to (5.2) and (5.3), that

I;= —K;.58;, (6.4)
~p g B6'

Bt 5g,
(6.9)

where K; is a spring constant tensor representing the in-
teraction of the dipole with the internal electric field (we
here neglect the possibility of molecular torques due to
displacements, and molecular forces due to rotations).
Thus (6.2)—(6.4) give

d (58;)
dt 50;

(6.5)

as the equation describing the reorientation 58; of the
electric dipole. Contrast this to (3.10), rewritten for n=3
as

ae,
Bt 5p,

(6.10)

Thus a nonzero p, would be generated by waves in an XY
system of electric dipoles, if the dipoles are due to mag-
netic charge and a gyroelectric effect. It must be noted,
however, that the above discussion very much depends
upon the system being n=3; otherwise the expression
p=y*S would not be meaningful. Thus, for n&3 one
cannot have a "gyroelectric effect, " whereby an antisym-
metric angular momentum tensor generates a polar elec-
tric dipole vector. This is related to the fact that magnet-
ic charge only has meaning for n=3. Specifically, for
n =3 the magnetic induction B satisfies

ds;
dt

d8;
(6.6)

V'B=B; 'e; kBJk =4'*—(n. =3) (6.1 1)

where S; is the spin of the ith molecule. Equation (6.5) is
a second-order differential equation, whereas Eq. (6.6) is a
first-order differential equation. Since S;—+ —S; under
t~ t, the time-rev—ersal properties of (6.5) and (6.6)
match.

i( k r; —a)t)
In the continuum limit, where 58; ~ e ', we ex-

pect that K; is replaced by a power series in k, beginning
with k (since the interaction of real electric dipoles is an-
isotropic). Thus the normal modes corresponding to (6.5)
are expected to satisfy

if a free magnetic charge density p* exists. The key ele-
ment in (6.11) is that i, j, and k differ. Thus there is no
n =2 analog, and for n =4 one would have

(6.12)

where the source term has become a vector (rather than
scalar). Clearly, only for n= 3 can the source term be a
magnetic charge.

to =too+c k (dipolar), (6.7)
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