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Many-body effects on the cyclotron resonance in a two-dimensional electron gas
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We consider optical absorption by an interacting two-dimensional electron system, with impuri-
ties, in a strong perpendicular magnetic field, at electron densities such that an integral number of
Landau levels is filled. The Coulomb energy e /elo is assumed to be smaller than the cyclotron en-

ergy Ace„and correlation effects are treated exactly to lowest order in (e /halo)/%co, . The impurity
scattering is treated in a self-consistent approximation for several different impurity potentials. The
cyclotron resonance line is found to be significantly altered by electron-electron interactions. The
line is shifted to lower frequencies and a line narrowing due to correlation effects is found.

I. INTRODUCTION

Two-dimensional electron systems, such as occur in the
inversion layers of metal-oxide-semiconductor field-effect
transistors (MOSFET's) and GaAs-Al Ga~ „As hetero-
junctions at low temperatures, are particularly interesting
systems in which to study many-body effects. ' This is be-
cause the electron density, and hence the relative strength
of the Coulomb interaction, can be experimentally varied
over a wide range and, at least in the heterojunctions, the
effect of impurities is often very small. In addition, corre-
lation effects are typically stronger in two dimensions
than in three dimensions, and the theoretical analysis is
often simpler. In this paper we will investigate many-
body effects in optical absorption by a disordered two-
dimensional electron gas (2D EG), in a strong perpendicu-
lar magnetic field.

Considerable work has been done on cyclotron reso-
nance in two-dimensional electron systems. Early theoret-
ical investigations neglected electron-electron interactions
and focused on the effects of disorder and impurity
scattering. The energy spectrum of an ideal 2D EG is
discrete and, because of this singular nature, broadening
effects must be treated self-consistently. The frequency-
dependent conductivity of a disordered, but noninteract-
ing, 2D EG in a perpendicular magnetic field has been
studied in detail for various kinds of scatterers. The
scatterers have been treated in the self-consistent Born ap-
proximation (SCBA), which is the simplest treatment
that is free from divergences, as well as in higher-order
self-consistent approximations.

While these theories do give reasonable agreement with
some cyclotron resonance experiments, many observed
features of the resonance cannot be explained by such
theories. For example, the occurrence of relatively strong
harmonics which are shifted from exact integral multiples
of the fundamental cyclotron resonance, linewidth nar-
rowing in very strong magnetic fields when only the
lowest Landau level is occupied, ' *" and linewidth
broadening" ' or splitting' at certain filling factors or
electron densities, have all been attributed to many-body
effects, although only the first of these phenomena is well
understood. '

It is well known that in a system with translational
symmetry, the cyclotron resonance line shape is unaffect-
ed by electron-electron interactions. ' However, the pres-
ence of impurities allows coupling to magnetoplasma
modes at nonzero wave vector, where correlation effects
are important. The optical-absorption spectra will then be
affected by the dispersion of the magnetoplasma modes.
Therefore, to study many-body effects one must treat
electron-electron and electron-impurity interactions to-
gether. This has typically been done by treating electron-
electron —interaction effects in the random-phase approxi-
mation (RPA) and electron-impurity scattering in lowest-
order perturbation theory, using a memory-function ap-
proach. ' ' However, for strong magnetic fields the RPA
is not accurate at large wave vectors. ' In addition, such
an approach results in unphysical divergences in the ab-
sorption spectra because the broadening of the excitation
spectrum in the intermediate states, arising from
electron-impurity scattering, is not included in this ap-
proximation. In the work of Ting, Ying, and Quinn,
broadening due to impurities was included in the analysis
by introducing the experimentally measured transport life-
time as a single-particle lifetime. While such an approach
may be reasonable for silicon inversion layers, where the
scatterers are predominantly short ranged, it is not valid
for high-mobility heterojunctions, where the dominant
scattering mechanism is long-range Coulomb scatter-
ing. ' ' For this scattering mechanism, Das Sarma and
Stern ' have pointed out that the single-particle lifetime
may be several orders of magnitude smaller than the
transport lifetime. In any case, one would 1ike to treat the
broadening in a self-consistent way, which includes vertex
corrections as well as self-energy corrections.

Fukuyama, Kuramoto, and Platzman went beyond
the RPA, but also treated electron-impurity scattering to
lowest order. In their analysis they considered the
strong-magnetic-field and long-wavelength limits, at rela-
tively high temperatures, and at filling factors less than 1.
In that case the excitation spectrum is broadened due to
electron-electron interactions.

Schlesinger et aI. considered a model, involving cou-
pling between the cyclotron mode and finite-wavelength
magnetoplasmons, to explain the experimental observation
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of linewidth broadening and splitting at certain electron
densities. ' They made an ad hoc assumption for the
corrections to the RPA energy spectrum and for the
broadening due to impurities. By varying parameters they
were able to obtain a reasonable fit to the experimental
data. In their model one obtains two peaks in the absorp-
tion spectra (or a splitting of the cyclotron peak) when
finite-wave-vector magnetoplasmons are shifted into reso-
nance with the cyclotron mode.

In the present paper we take a different approach than
previous investigations of many-body effects on the
cyclotron resonance. We restrict our analysis to the case
where the electron density and magnetic field are such
that an integral number of Landau levels are filled. We
also assume that the magnetic field is sufficiently strong,
so that the cyclotron energy m, =eB/m c is larger than
the Coulomb energy Ec,=e /elo, where e is the back-
ground dielectric constant and lo (c/eB——)' is the mag-
netic length. (We set 8=1.) In addition, we assume that
the thermal energy k&T is much smaller than co„so that
we can work at zero temperature.

We make the restriction to completely filled Landau
levels for the sake of its theoretical simplicity. This re-
striction allows us to treat the effect of electron-electron
interactions exactly to order e /FIO. Moreover, in this
case there is no broadening of the excitation spectrum in
the absence of impurities, and no screening by the elec-
trons to lowest order in Ec,/~, . ' Of course, experi-
ments are done at both integer and noninteger filling fac-
tors. It is an open question, theoretically and experimen-
tally, whether there should be a strong variation in the cy-
clotron resonance as one passes from integer to noninteger
filling factor. "

In an earlier paper we calculated the density response
function of our model in the absence of disorder. ' The
elementary neutral excitations near co, may be described
as magnetoplasma modes, or "magnetic excitons" in
which one electron is excited to an unoccupied Landau
level n, leaving behind a hole in a filled Landau level
n —1. The energy of the magnetic exciton is the kinetic-
energy difference co, plus an energy shift, due to electron-
electron interactions, which is of order e /e'Io. (This en-

ergy spectrum was first calculated by Bychkov, Iordan-
skii, and Eliashberg, for the case of one spin state occu-
pied in the lowest Landau level; the dispersion was de-
rived in Ref. 18 for other integral filling factors. ) These
exciton states are a complete set of states for excitations
near co, . In the presence of disorder we use these exciton
states as a basis, and consider the scattering of excitons by
impurities. The impurity scattering is treated self-
consistently, in an approximation which neglects multiple
scattering from a single impurity and neglects most corre-
lation effects between impurities. We assume that the im-
purity scattering is sufficiently weak. and the impurity
concentration is sufficiently small that such an approxi-
mation is valid. This approximation is at least sensible
for arbitrary ratios of the strength of electron-impurity
scattering to electron-electron scattering. Moreover, it is,
in fact, exact in the weak electron-impurity —scattering
limit. We will refer to this approximation as the self-
consistent exciton approximation (SCEA).

The model and impurity potentials we consider are
described in Sec. II below. An expression for the conduc-
tivity is also given in this section. In Sec. III we review
some properties of the pure system which are used in this
paper. The relevant magnetic exciton energies and wave
functions are given here. The optical-absorption spectra
of the disordered system are investigated in Secs. IV and
V. Impurity scattering is treated to lowest order in Sec.
IV, and is treated self-consistently in Sec. V. The results
of the self-consistent calculation are discussed in Sec. VI
and the conclusions are presented in Sec. VII.

We find that electron-electron interactions are impor-
tant in the high-magnetic-field limit. At integer filling
factors, correlation effects narrow the cyclotron resonance
peak and shift it to lower frequency. We find line shapes
which are in qualitative agreement with experiments on
high-mobility GaAs heterojunctions, if we assume that
the impurity potential is long ranged. If one assumes
short-range scatterers, however, the peak is narrowed even
more, giving linewidths (for high-mobility samples) that
are much smaller than the experimental widths. For a
given mobility, the cyclotron linewidth is much larger for
long-range scatterers than for short-range scatterers be-
cause long-range scatterers are relatively ineffective in
reducing the mobility. '

We expect our analysis to be more applicable to GaAs
heterojunctions than to Si inversion layers for several
reasons: (1) The assumption of moderate disorder is more
likely to be satisfied in the high-mobility heterojunctions,
(2) the high-field limit is more accessible in GaAs because
of the smaller effective mass, and (3) there is a valley de-
generacy in the Si inversion layers which we have not tak-
en into account. (The valley degeneracy will increase the
density of exciton states at m„which we believe will prob-
ably reduce the effects of electron-electron interactions. )

For these reasons we have concentrated on impurity po-
tentials which are reasonable models for scattering in
GaAs heterojunctions;

II. MGDEL AND THE DYNAMICAL CQNDUCTIVITY

A. Model and impurity potential

where

, g (p; —e A;/c) +gp~ g B.S;,
2m

(2.1b)

(2.1c)

A, ;= gu(r; —Rk, Zk),
i, k

(2.1d)

n, =N/A, N is the number of electrons, and A is the area
of the system. A o includes the kinetic energy and Zee-
man energy, A, , describes the interaction between elec-

We consider a two-dimensional electron gas, at zero
temperature, in a perpendicular magnetic field B=Boz,
which is described by the Hamiltonian

(2.1a)
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trons, with U (r) =e /er, and the interaction with the posi-
tive background. The interaction with the impurities is
described by A, ;, where u(r —Rk, Zk) is the effective
potential of an impurity located at (Rk, Zk). We work in
the Landau gauge, so that the vector potential, at the ith
electron, is A;=A(r;)=Boy;x .- In addition, we assume
that the magnetic field and electron density are such, that
for U =u =0, an integral number of Landau levels are
filled. The magnetic field is assumed to be sufficiently
strong that the cyclotron energy co, is large compared to
the Coulomb energy e /el' and the random impurity po-
tential.

The impurity potential for GaAs-A1GaAs heterojunc-
tions is not well known. The dominant scattering mecha-
nism is believed to be scattering due to the ionized impuri-
ties which are set back from the inversion layer by a
minimum distance e, typically several hundred ang-
stroms. ' ' The impurity potential is assumed to be the
Coulomb potential,

2

u(r —R;, Z;)=
et(

~

r —R;
~

'+Z )'~~ ' (2.2)

where et is the dielectric constant of the surrounding
medium (Al„Ga~ „As). This potential is not screened by
the electrons in the two-dimensional layer, for the special
case of integer filling factors. '

For illustrative purposes and comparison, we will also
consider the simple case of short-range scatterers, in the
inversion layer itself,

afi
u (r—R;, Z;) = 5(r —R()5z., o

ffl it
(2.3)

where a is a dimensionless constant. Also for purposes of
illustration, we consider an impurity potential used in
Ref. 22 as a model for surface roughness.

B. Dynamical conductivity

The absorption of infrared radiation, normally incident
on this system, due to cyclotron resonance, is proportional
to the real part of the dynamical conductivity,

ci)& Q~p(co)
o~p(to) =i 5~p+i (a, /3=x, y) . (2.4)

4'1TCO CO

Here, co& ——4~e n, /m' is the plasma frequency squared,
and Q~p is the current-current correlation function,

Q~p(co)= i j dt e' '([j~—(t),j (p0)]), (2.5)

where the current operator is

8j=, g (p; —eA;/e) .
m

It follows from symmetry that o =cr~~, and cr„~ = —o~, .
Near m„ the absorption is proportional to the real part of
o.+ =o —i o.„~, which is determined, in turn, by

Q+ —=Q~ —iQ y.

III. EXCITATIONS OF THE PURE
TWO-DIMENSIONAL ELECTRON GAS

In this section we review the properties, derived in our
earlier work, of the elementary neutral excitations with
energies close to to„ for the interacting 2D EG in the ab-
sence of impurities. ' In the strong-magnetic-field limit
these excitations may be described as magnetic excitons,
as discussed in the Introduction.

Vk„(R,br)= e' '
e 'P„(br —lokXz),

2m
(3.1a)

1
0n(r) =

2 ]/2 e
(2nlo)

r

x+y &i r'
(31b)2l'

in the Landau gauge, where L„ is a Laguerre polynomial.
Here, R—:(r~+r2)/2 and b,r—:rl —r2, where rl and r2 are
the positions of the electron and hole, respectively. The
vector k plays the role of the total momentum of the par-
ticles. ' ' ' These wave functions were first derived by
Lerner and Lozovik. One can define a dipole moment
of the exciton,

e(fk„~ hr
~

1iq„)=elok&&z, (3.2)

which is perpendicular to k and proportional to k, in-
dependent of n.

In our earlier paper we calculated the exciton dispersion
relations E(k), which are exact to order e /elo (i.e., in
large magnetic fields). For filling factors v=1 (spin-
polarized sample) and v=2n, n =1,2, 3, . . . (both spins
present in the highest occupied Landau level n), there is a
single magnetoplasma mode near m„and the dependence
of the corresponding wave function on the positions of the
electron and hole are just given by Eq. (3.1). The explicit
expressions for the exciton energy, for v=1 and v=2,
are 1 8p 24

A. Magnetic exciton wave functions and energies

If we neglect the spin degree of freedom, the wave func-
tion describing an exciton which consists of an electron in
the nth Landau level and a hole in the ( n —1)th Landau
level is calculated to be

2

E(k)=co, +
2elp

1/2
7T —k ~l2/4

2 2

1 —e ' (1+k lo/2)lo(k lo/4) II(k lo/4)—
2

—kl /2+vklpe (3 3)

where I„ is a modified Bessel function. For filling factor v=2n +1, n =1,2, 3, . . . , there are two modes near co, since
an electron with spin down can be excited from Landau level n to n + 1, or an electron with spin up from level n —1 to
n. Exchange terms in the Coulomb interaction mix these two excitations, and the magnetoplasma modes are found by
diagonalizing a 2 &(2 matrix. For v= 3 the result is
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2 1/2
Eoy(&)+E/2(&)

'

Eo[(k)+E$$(k)E+(k—.) =co, +
2

+
2

+ &3(&) (3.4)

[(7+—,k lo —2k lo+k lo/2)

where Eo&(k)—:E, &(k)—co„as given by Eq. (3.3),
' 1/2

E)2(k) = — I7—e
16eIO 2

XIO(k lo l4) —( 2 k lo —k io +k lo l2)I& (k lo/4)] I

P —k lo~~ —k2l /2) (3.5)

2(2/2
(2 —k l /2).

and the off-diagonal matrix element is

e 1
V3 (k) = kloe

halo
(3.6)

These three dispersion curves are shown in Fig. 1. Similar expressions can be calculated for larger filling factors, but,
since we are interested in the strong-magnetic-field limit, we will concentrate on the lowest filling factors, v & 3.

B. Density response function

The exciton dispersion curves correspond to poles in the density response function, which is defined as

gp„„(k,co) = i f dt e'"'(—[pg(t), p k(0)] ),
where the electron-density operator is

i' g i iA i

J

(3.7)

[Here we are considering A =~o+A, , from Eqs. (2.1b) and (2.1c).] In general, the form of P~„„(k,co) is very compli-
cated, even in the strong-field limit. However, we only need the terms X„„„(k,co) which are singular near co, . For v= 1

and v=2, these are'
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FIG. 1. Exciton dispersion curves near co, are shown for (a) v=1 (spin-polarized Landau level), (b) v=2 (both spins present in the
lowest Landau level), and (c) v=3 (filled first Landau level and one spin state in second level). (These curves are from Ref. 18.) The
energy scale is in units of Ec,——e2/elo. The RPA energies are denoted by the dotted curves.
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—k2!20/2

(3.&)

and, for v= 3,

g ) 2 2 —k 10/2 2(~ E]2)+(M—E)o)(2—k lo/2) —2v 2 V3(2 —k lc/2)
Xpure(k, co)= 4 k loe

(oo E+—i e)—(co E ——i E)
(3.9)

IV. ABSORPTION TO LOWEST ORDER
IN THE IMPURITY POTENTIAL

If the electron-impurity interaction A, ; is treated as a
small perturbation, one can expand the current-current
correlation function of Eq. (2.5) to lowest order in the im-

purity potential U. One finds

purity potentials the extra structure at co&co, will have
very small weight. [Recall that the amplitude of P(co)
scales with ni

~

U(k)
~

for weak impurity scattering. ]
Therefore it is difficult to draw any conclusions about the
experimental line shape from this overly simplified
theory.

Q+(~)=
n, e co, /In*

CO —CO C

P (co)+ 2
(CO —CO~ )

(4.1a)
V. ABSORPTION IN THE SELF-CONSISTENT

EXCITON APPROXIMATION

2P(co)=, ni g ~

U(k)
~

k
2(m*)2

X [Xp„„(k,~)—Xp„„(k,o)],

(4.1b)

where ni is the impurity concentration and U(k) is the
Fourier transform of the impurity potential. Here,
Xp«, (k, co) is the density response function of the interact-
ing electron gas without impurities. The thermal average
in Eq. (3.7) is done in the absence of disorder.

Equations (2.4) and (4.1) give an expression for the con-
ductivity which is valid to lowest order in the impurity
concentration. The effect of impurities enters only
through the factor ni

~
U(k)

~

in Eq. (4.1b). In principle,
the effect of electron-electron interactions is treated exact-
ly in this formalism, although, in practice, one may make
some approximation for the density response function.
However, this formalism does not include the effects of
impurity-induced broadening of the excitations, and this
may lead to spurious divergences in the absorption spec-
tra.

Combining Eqs. (3.8) and (3.9) with Eqs. (2.4) and (4.1)
gives an expression for the conductivity (near co, ) which is
valid for small disorder in the strong-field limit. The ab-
sorption is shown in Fig. 2 for v=1 and v=3, and short-
range scattering, Eq. (2.3). Since the exciton dispersion
curves have maxima and minima at finite wave vectors,
and since there is no broadening due to electron-electron
scattering for integer filling factors, there are inverse-
square-root divergences in the density of exciton states at
the energies of the maxima and minima. These diver-
gences can be seen in the absorption spectra of Fig. 2. In
addition, there is a (co —co, ) divergence in the v=3
spectra because of the lower branch of the magnetoplasma
mode, which has energy co, at nonzero wave vector [see
Fig. 2(c)].

In a proper self-consistent theory, the main peak at co,
will be both broadened and shifted, and for realistic im-

A. Self-consistent exciton approximation

It is necessary to include higher-order effects of
electron-impurity scattering to broaden the unphysical
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ton mode.
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divergences which are present in. the lowest-order analysis
of the preceding section. In this section we calculate the
impurity-induced absorption, for the interacting system,
by treating the impurity scattering in a self-consistent ap-
proximation. In the absence of disorder, all the neutral
excitations of this system near ~o, are bound states of an
electron and a hole, i.e., excitons. We use the exciton
wave functions and energies of Sec. III and consider the
scattering of excitons by impurities. The approximation,
referred to as the SCEA, that we use for the exciton-
impurity scattering is shown diagrammatically in Fig. 3.
The propagators are two-particle (electron-hole) propaga-
tors. The impurity can scatter either the electron or the
hole—so that this approximation includes both self-energy
and vertex corrections, much like the SCBA. It differs
from the SCBA, however, in that when the Coulomb po-
tential is set equal to zero, some "crossed" diagrams [such
as Fig. 4(a)j are included in the SCEA (because they are
not crossed in the exciton basis). On the other hand, the
diagram shown in Fig. 4(b) is included in the SCBA but
not in the SCEA. (In the exciton basis, the impurity lines
interfere. )

In the long-wavelength limit the excitons are tightly
bound. Therefore, if the long-wavelength excitations are
important in cyclotron absorption (as one may expect for
GaAs, where the impurity potential is very long ranged),
it is likely to be a good approximation to treat the exci-
tons as a composite particle, and include impurity scatter-
ing to a given order iri the exciton basis.

B. v=1 and v=2

For v= 1 and v=2 there is only a single exciton mode
near co„and the exciton Green's function is a scalar. In

. the absence of disorder, the Careen's function is

(b)

FIG. 4. Examples of diagrams which are included (a) in the
self-consistent exciton approximation (SCEA) but not in the
SCBA, and (b) in the SCBA but not in the SCEA, are shown for
noninteracting electrons. The dashed lines denote the electron-

impurity interaction and the crosses represent an impurity. Ver-

tices are time ordered along horizontal axes. The SCBA is the
self-consistent Born approximation commonly employed for
noninteracting electrons.

The excitons "see" an effective impurity potential given
by

Ur(r&, r2)= $ [u (rl —Rr, Zr) —u (r2 —R~., Zr)]
J

(5.2a)

(5.2b)

D '(k, ro) =D '(r, /o) II(k, co) . — (5.4)

where rj and r2 are the positions of the electron and hole,
respectively. Ur(q) is the two-dimensional Fourier
transform of the electron-impurity potential:

Ur(q)= ge ' f d r u(r, Z/)e'q'. (5.3)
J

In the presence of impurities, the Green's function D is
written as

Do(k, co) = 1

co E(k) iE— — (5.1)
In the SCEA the exciton self-energy II satisfies the in-
tegral equation

where the exciton energies E (k) are given in Eq. (3.3). 11(k,ro)=nr f (2n )

(5.5)

~ + ~ r
where U(q) is related to the configuration average of the
impurity potential:

& Ur (q ) Ur ( —q') &. =nr
~

U(q)
~

'(2m —)'5(q —q') (5.6)

and nr is the areal density of impurities. The matrix ele-
ment M is defined by

pure

FIG. 3. Self-consistent exciton approximation for the two-
particle Green's function D(k, m) is shown. Do(k, u) is the
two-particle Green s function in the absence of impurity scatter-
ing. The dashed lines denote the electron-impurity interaction
(with the cross denoting the position of the impurity) and the
wiggly lines denote the unscreened electron-electron interaction.
The lines with arrows denote the single-particle Green's func-
tions G~„„and G„„„ofthe noninteracting (thin lines) and in-
teracting (thick lines) systems without impurities. The density
response function of the pure system g~„„ is simply related to
Do.

—:(2m. ) 5(k —q —q')M(k, k —q), (5.7)

Equations (5.1), (5.4), and (5.5) define the exciton Green's
function D in the SCEA. The conductivity is simply re-
lated to the exciton G-reen's function by

where the exciton wave function %'k&(r&, r2) is defined in
Eq. (3.1). The explicit form of the matrix element is

—q lo/4[ ikXq zlo/2
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«[~+(~)1= '
1&n+ 1 lj+ In & I'lm[D(0 ~)f (5.9a) D p (k, co) =D p 'p(k, co) —II p(k, co ), (5.10)

2

(n +1)Im[D(O, co)j, (5.9b) II 8k ~)=n gj, I
U(k —q) I

2M, (k,q)
(2m )

where n is the highest occupied Landau level (n=O for
v= 1 and v=2), and ( n + 1

I j+ I
n & is the matrix element

of the current operator j+ ——(j +ij»)/v 2 between the
nth and ( n + 1)th Landau level.

C. v=3

For filling factors v=2n +1, n =1,2, 3, . . . , there are
two exciton modes near cu, and the exciton Green's func-
tion is a 2)&2 matrix. For v=3 the equations which de-
fine the Green's function are

XD»s(q, co)Msp(k, q), (5.11)

Dp '(k, co)=
co —co, —Epi (k)

—V3(k)

—V3(k)

co —co, —E(2(k) (5.12)

where the energies Ep~, E~2, and V3 are defined in Sec.
III B. The matrix elements are

where a,@=1,2. In the basis in which the matrix ele-
ments are diagonal, one has'

(2m) 5(k —q —q')M(k, k —q)=
0

0

(+k21e ' ' —e ' '
I
+'2&

(5.13)

where M» is given by Eq. (S.8), and

2I2 /4
M22(k, k —q)=e ' [(1—q lp/2)e ' —(1—q lp+q lp/8)e ' '

] . (5.14)

VI. RESULTS

The integral equations of Eqs. (5.5) and (5.11) were
solved by numerical iteration. In order to handle the
poles correctly, the integrand was approximated piecewise
as a ratio of quadratic polynomials and integrated analyti-
cally. There were no serious problems with convergence.
When necessary, the value of the self-energy II, obtained
by an iteration, was mixed with its value on the previous
iteration, to damp out oscillations. In general, conver-
gence to & l%%uo was obtained within 10 iterations. Three
different impurity potentials were considered —short-
range scatterers, long-range Coulomb scatterers as in
GaAs heterojunctions, and an intermediate Inodel. The
results for these three potentials are discussed below.

5 for the case of a single filled Landau level (v= 1). The
somewhat surprising result is that the 5-function response
at co, is shifted to co, &co, (i.e., the effective mass is in-
creased) but is not broadened. In addition, there is a
broad peak at co ~ co„which is the self-consistent analog
of the structure at co&co, in Fig. 2(a). For U2 ——0.0025,
about 1S% of the total weight is in this second peak.
However, since this peak is very broad (-0.2e /elp,
where e /el' ——170 K=118 cm ' at 100 kG), one would
not expect to see it with the sensitivity which is presently
available in cyclotron resonance experiments. In any case,
such a peak will not occur in the more realistic case of
long-range scattering that is treated in the next section.

A. Short-range scatterers

Ae
nz

I
U(q)

I

Pl P
In units of the Coulomb energy e /halo, the impurity po-
tential is characterized by the dimensionless parameter

nI
I
U(q)

I
/2~lp

U2=-
(e /elp)

Q3 2

27TI e p
The absorption near co, for U2 ——0.0025, which corre-

sponds to a mobility of 7.3 & 10 cm /V s, is shown in Fig.

We first consider the simple case of short-range scatter-
ers described by the potential of Eq. (2.3). The impurity
potential enters the calculation of the conductivity, in our
approximation, only in the form nI I

U(q) I, which is de-
fined in Eq. (5.6), and is independent of q for short-range
scatterers. This quantity can be related to the mobility p
in zero magnetic field by

t

-O.l 0.0 0.) 0.2 0.3 0.4 0.5
(~- c) r Eco

Flax. 5. The absorption, Ec,im[D(O, co)], near co„ is shown
for v= 1 and short-range scatterers. The dimensionless coupling
constant is U2 ——0.0025, which corresponds to a mobility of
7.3 X 10 cm /V s. About 85% of the weight is in the 6 function
at co,

*=co, —0.025E~.
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The intensity of this peak depends on the amplitude of
large-momentum-transfer scattering, which is suppressed
for long-range scatterers.

The absorption spectra for filling factors v=1 and
v=2, and for other values of U2, are qualitatively the
same as those of Fig. 5. As U2 increases, the shift of the
5 function increases linearly and the weight of the secon-
dary peak increases. (The weight of the 5 function de-
creases by the same amount, of course, since the total
weight obeys a sum rule. ) It is possible that the 5 function
disappears or is broadened at some large but finite value
of U2. We have not studied values of U2 larger than 0.01
in any detail because they correspond to very small mobil-
ities and cyclotron effective masses much larger than
those observed.

The fact that the resonance line is not broadened, in the
SCEA, is a result of electron-electron interactions. In Fig.
6 we show the results for the noninteracting system
( e =0), using the same approximation for impurity
scattering. The results for the SCBA, which is a more
appropriate approximation for this limit, are also shown,
as the dashed curve in Fig. 6. We display the results for
e =0 to show the difference between the interacting and
noninteracting cases. For e =0 there is a broad line
which is symmetric about co, with a width I ~

~

U
(This symmetry will occur in any approximation that
neglects both the electron-electron interaction and
Landau-level mixing. )

We may now ask why the resonance line is unbroadened
in the interacting system, for small values of U2. If we
examine the exciton Green's function D(k, co), it appears
that there is no broadening of the pole in the limit k~O
because the density of exciton states is small near the bot-
tom of the band, and because the scattering matrix ele-
ment U(k —q)M(k, q) vanishes rapidly, for k~O and

q —+0, for short-range scatterers. In the SCEA the
lowest-energy mode, which remains at k=0, is shifted to

a frequency co*„which is lower than co„and, for all k, the
imaginary part of the self-energy II(k, co) is nonzero only
for m &co, .

If one were to go beyond the SCEA and perform an ex-
act analysis of the problem, one would find, even for
short-range scatterers, that there is some broadening of
the cyclotron mode at co, . For example, fluctuations of
the impurity potential can localize short-wavelength exci-
tons, resulting in a small density of localized excitons
below ~, . Then, mixing by the impurity potential of the
localized states and the extended state at k=0 will result
in a small width of the cyclotron line. One can estimate
the density of the exciton states at threshold by using the
analysis of Halperin and Lax. One finds that the densi-

ty of states at co, is proportional to e, where y=0. 1
—y/U2

if one assumes that the largest contribution comes from
the maxima and minima in the exciton dispersion curve.
This is obviously a nonperturbative result and appears to
give a very small broadening, since U2/y is small. Other
possible broadening mechanisms are magnetic field inho-
mogeneities, thermal broadening, and higher-order
electron-electron —interaction effects. All of these are ex-
pected to be small.

The absorption for filling factor v=3 is somewhat dif-
ferent. There are two poles (since the Green's function is
a 2&&2 matrix) —one of which is very narrow and has
most of the weight. The cyclotron mode is broadened be-
cause of the lower branch of the magnetoplasma mode
that crosses the co, axis at finite q [see Fig. 1(c)]. Howev-
er, this broadening is very small (I -0.0008Ec, at
itt=7&&10 cm /Vs), so the v=3 curve looks similar to
the v= 1 and v=2 curves.

Short-range scattering gives rise to a rather distinctive
absorption spectrum —the dominant feature is a very nar-
row peak containing most of the weight. We believe that
the fact that such a spectrum is not observed in GaAs
heterojunctions is evidence of the importance of long-
range scattering in these devices, as will be discussed in
the next section.

150—

B. Long-range scatterers
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CD
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FICx. 6. Infrared absorption for the noninteracting system is
shown for v= 1 in the SCEA (solid curve) and SCBA (dashed
curve) for short-range scatterers. The unit of energy is
20

~

U(q)
~

(nll2rrlo)'~ to facilitate comparison with Fig. 5.

For filled Landau levels in GaAs-A1GaAs heterojunc-
tions, the electrons interact with the ionized impurities in
the A1CxaAs through the unscreened Coulomb potential of
Eq. (2.2). The two-dimensional Fourier transform of this
potential is

277e iq R; —qz;
2

u q)= e 'e
eq

(6.3)

(6.4)

For the case of long-range Coulomb scatterers, we define
the dimensionless parameter

(We neglect the difference in the dielectric constants of
GaAs and A1GaAs. ) If the impurities are uniformly ion-
ized in a layer of thickness I;, which is set back from the
electron layer by a distance a, as shown in Fig. 7, the con-
figuration average of Eq. (5.10) is

2
2~& 2

&
—2aq 1 &

—2tq
nl

~
U(q)

~

=nI
e q2 2tq
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FIG. 7. Schematic drawing of a GaAs-A1GaAs heterojunc-

tion. The AlGaAs is modulation-doped with silicon. (Typical

doping concentrations are about 10' cm .) We assume that
the silicon is uniformly ionized in a layer of thickness t. The
setback distance of the doped layer is a.

5 (6.6)

where n, is the density of electrons in the inversion layer.
For a given setback n, thickness t, and electron density

n„ the mobility can be calculated from the expression

The concentration of ionized impurities nr can be treated
as a parameter which is fixed by the desired mobility.
However, by assuming that all the scattering is due to ion-
ized impurities, one can calculate mobilities in good agree-
ment with experiment. ' Following the analysis of
Ando, we assume that there are both donor and acceptor
impurities with a fixed ratio,

1 2m ~ d6)f ni
~

U, (2k~sin8)
~

sm 8, (6.7)

where the Fermi wave vector is kj; (2m n—,—)'~ . Since the
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FIG. 8. Infrared absorption, Eolm[D(O, co)], near co„ is shown for long-range scatterers and filling factors (a) v= I, (b) v=2, and
(c) v=3. The electron density is 4&& 10"cm, the impurity setback a is 150 A, the thickness of the ionized-impurity layer t is 100 A,
and the energy Eo —= (mn, )' (e /e) = 155 K (108 cm ') in all three cases. The dimensionless coupling constant Uz was chosen to cor-
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half maximum (FWHM), in cm ', are (a) 0.6, (b) 1.0, and (c) 1.9. The absorptions in the SCEA for the--noninteracting system are also
shown (dashed lines).
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e —2tq

(6.8)
(q+qTF)' 2tq

mobility is a zero-magnetic-field property, it is the stati-
cally screened impurity potential, '

2
2&e 2 e

—2aq
0.4—

0.3—

v =1

fp/a = 0.42

Irn IP Ecp/

which enters the expression for the mobility. The
Thomas-Fermi wave vector, here, is q TF =2m*e /eR .

For fixed t and n„one can vary the mobility by vary-
ing the setback a. For a given filling factor, the electron
density also determines the magnetic field. Since we are
interested in the strong-field limit, we consider a
moderately high electron density, n, =4 && 10" cm
which is typically achieved at setbacks a(200 A. We
take the thickness t to be 100 A, which we believe is a
reasonable value for typical devices. For t=100 A and
n, =4&10"cm, we have studied the cases v=1, 2, and
3 for setbacks 100&a&200 A. Some typical results are
shown in Fig. 8.

In all cases, for long-range scatterers, the peak of the
cyclotron line is shifted to co*, &co, and broadened. The
peak for v=3 has more weight at co &co,

* and is broader
than those for v= 1 and v=2 because of the lower branch
of the magnetoplasma mode. From Eq. (5.9), the width of
the cyclotron line is

22 —2tq
Ul f d e

&Ip p 2tq
1m[II(0,co*, )]=

2I 2 /2
Xq loe Im[D(q, co*, )] .

(6.9)

The width comes mainly from intermediate wave vectors
qlo —1, although the range of q that contributes is cut off
for larger setbacks by the factor of e ~ in Eq. (6.9).
The energy of the magnetoplasma mode, defined by
Re[D '{q,co(q))]=0, and its width, 1m[II(q, co(q))], in
the SCEA, are shown in Fig. 9, as the solid and dashed
curve, respectively. For long-range scatterers the broaden-
ing of the magnetoplasma mode is sufficiently great that,
even within the SCEA, the Green's functions for q/p-1
have low-energy tails that overlap the energy m*, of the
q=O exciton. The broadening is much larger than that
for short-range scatterers at the same mobility, because
long-range scattering is relatively ineffective in contribut-
ing to the transport scattering rate 1/~„which is related
to the mobility (@=ed,/m*). Therefore, for a given mo-
bility, the dimensionless parameter U2, which partly
characterizes the strength of the potential, is much larger
(typically several orders of magnitude larger) for long-
range scatterers than for short-range scatterers. Although
long-range scatterers do not contribute much to 1/~„ they
do significantly broaden the cyclotron line.

In earlier work, Das Sarma and Stern ' pointed out that
long-range scatterers contribute significantly to the
single-particle scattering rate I/r„such that w, «r, (for
typical setbacks), and, therefore, have a large effect on
single-particle level broadening, even in high-mobility
samples. In the present calculation, the cyclotron width
I c~ is not simply related to either ~t or ~, . For example,
if the carrier density is held fixed and only the setback
distance is varied, we find that 1/I cR varies more rapidly

O
O

LLj

0.2

3

O.l

O.O
1

FIG. 9. Frequency and width of the magnetoplasma mode
near co, are shown for long-range scatterers and v=1. The pa-
rameters used are the same as in Fig. 8(a). The solid curve is
given by Re[D(q, co(q))] '=0, and the dashed curve denotes the
width Im[H(q, co(q))]. The magnetoplasma mode for the pure
system (dotted curve) is also shown.

ImII =ekloE (6.10)

where E, , is the root-mean-square value of the electric
field in the x-y plane arising from the random impurity
potential, and ekl o is the electric dipole moment of the ex-
citon. ' ' %'hen the electron-hole separation klan becomes
large compared to the setback distance e, one can no
longer regard the electric field as constant over the area of
the exciton, and one must integrate potential fluctuations
over the wave vectors k' in the range (klo) '&k'&a
in order to calculate the mean-square potential difference
between the electron and hole positions. This leads to a
linewidth ImII ~ (ink)' for large values of k.

For the cyclotron resonance line, at k=0, we found
that motion of the exciton, arising from the electron-
electron interaction, gave a considerable narrowing of the
line compared to the noninteracting case (e =0). [See
Fig. 8(a).] For moderate values of klo, however, motional
narrowing should be a much smaller effect because the ef-
fective impurity potential is stronger, while the exciton
velocity is actually smaller. For large values of k we
might expect a Gaussian shape to be a better approxima-
tion to the form of the exciton line than the form that
would be obtained from our self-consistent exciton ap-
proximation.

than either r, or r„ for the range of parameters con-
sidered.

Several features of Fig. 9 are worth noting. One strik-
ing feature is that for values of klo )0.1, the width of the
exciton line, 1m[II(k, co)], is much greater than the fre-
quency shift, ReH. Over the wave-vector range illustrat-
ed, ImII increases roughly linearly with k, an effect which
reflects the variation of the strength of the coupling of the
exciton to the long-wavelength fluctuations of the impuri-
ty potential. We obtain a reasonable estimate of the
linewidth by writing
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FIG. 10. Infrared absorption near m, for v=1 is shown for
scattering from the potential of Eq. (6.11), with a length scale
b=150 A. For n, =4&&10" cm, the mobility is 10' cm /Vs.
The FWHM is 0.1 cm

For purposes of illustration, we have also considered a
scattering potential whose configuration average has the
form

—2bq

nt
I

U(q) I'=ntC
q

(6.11)

where b and C are constants. This potential was em-
ployed by Fukuyama, Kuramoto, and Platzman as a
model for surface roughness. ' We considered this poten-
tial because it is intermediate between long-range
Coulomb scattering and short-range scattering. The ab-
sorption spectrum for v= 1, b= 150 A, and C=3.7, which
corresponds to a mobility of 10 cm /Vs at n, =4&&10"
cm, is shown in Fig. 10. Again, the curve is shifted to
co', ~ co, and broadened, but the width is smaller than that
for Coulomb scattering at the same mobility.

VII. CONCLUSIONS

If one neglects electron-electron interactions, the
linewidths calculated for realistic impurity potentials
(long-range scatterers) in high-mobility GaAs heterojunc-
tions are almost an order of magnitude larger than those
measured in cyclotron resonance experiments. (For a mo-
bility of 2&(10 cm /Vs, the measured linewidth is
about 1 cm ' in strong magnetic fields. '

) If one assumes
that the scatterers are short ranged, then, neglecting
electron-electron interactions, one does obtain linewidths
in reasonable agreement with experiments. However, we
believe such agreement is fortuitous since there will cer-
tainly be some long-range scattering from the ionized im-
purities. In fact, the mobility in GaAs heterojunctions
has been observed to increase with electron density as
p-n,', implying that this long-range scattering is the
dominant scattering mechanism. ' We have shown that if
one considers long-range scatterers and electron-electron
interactions together, then one obtains linewidths in agree-
ment with experiment. We believe that electron-electron

interactions are important and must be considered not
only for understanding "anomalies" in the cyclotron reso-
nance, but also for understanding the shape of the main
cyclotron peak in high-mobility GaAs heterostructures.
Impurity scattering must be treated self-consistently, and
one cannot replace the single-particle lifetime by the
transport lifetime. '

In this paper we have treated electron-electron interac-
tions and impurity scattering self-consistently by restrict-
ing ourselves to the case of filled Landau levels and strong
magnetic fields. It should be noted that our results may
not be directly applicable to current experiments because
the parameter e /aloe@, is of order unity in most of the
experiments. However, we do obtain linewidths and reso-
nance frequency shifts which are in qualitative agreement
with .experiments that have been done on high-mobility
GaAs heterojunctions in strong magnetic fields with
v& 1. ' ' The shift to lower frequencies arises naturally
from considering the effect of impurity scattering on the
q=0 exciton. It is the lowest-energy mode and is shifted
down in energy as it is mixed with other modes by the im-
purity potential.

Our analysis offers no explanation for the anomalous
linewidth broadening or splitting' ' at intermediate field
strengths ( Eo, /co, = 1) which has been attributed to
electron-electron —interaction effects. In the model of
Schlesinger et al. , ' the cyclotron line is broadened or
split when finite-wave-vector magnetoplasma modes are
shifted into resonance with the cyclotron mode at q=O.
Since this phenomenon is believed to be related to the
electron density and not the filling factor, one can analyze
their model in light of our results for integer fillings. For
v= 1 or 2, for example, one may be tempted to identify
their "shift parameter" 5 with the minimum of the exci-
ton curve at q/o 2. This minimum will be shifted to
lower energies, as the magnetic field strength decreases, by
higher-order corrections in Ec,/co, . At magnetic fields
where this minimum lies close to co„one might expect to
see two peaks in the infrared-absorption spectra, from the
model of Schlesinger et a/. However, there are several
problems with this possibility: (1) Some of the higher-
order corrections to the exciton curve have been calculated
by MacDonald in the Hartree-Fock approximation, and
the corrections for Ec,/co, &2 are too small to bring the
minimum into resonance with the cyclotron mode. (2)
Even if the minimum did cross the co, axis, the sign of 5
would appear to be inconsistent with the experimental
data. The data suggest that at high fields there is a
finite-wave-vector mode below co, which moves upward in
energy as the magnetic field is decreased. (3) From our
analysis, if the minimum is shifted to co, one would ex-
pect the second peak to be much broader than the main
cyclotron peak. Experimentally, they see two peaks of
comparable widths. In light of all this, it is difficult to
imagine how coupling to finite-wave-vector magnetoplas-
ma modes alone will explain the anomalous line splitting,
at arbitrary filling factors. One may need to include other
effects such as spin-dependent interactions, electron-
phonon interactions, " other corrections to the high-field
limit, or different impurity potentials.

We believe that it would be useful to have systematic
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experimental measurements of cyclotron resonance of
high-mobility heterojunctions at integer filling factors and
in strong magnetic fields, where the theoretical simplifica-
tions made in the present analysis are applicable. Inter-
preting cyclotron resonance experiments is complicated by
the fact that it is difficult to vary parameters indepen-
dently. (In particular, it is difficult to vary the electron
density in GaAs heterojunctions, while holding the impur-
ity potential fixed, and vice versa. ) Therefore it is useful
to consider a limit where the effects that we know are im-
portant (in this case, electron-impurity scattering and
electron-electron scattering) can be accurately calculated.
In the simple case of filled Landau levels and very strong
magnetic fields, one can calculate electron-electron—
interaction effects exactly and can treat electron-impurity
scattering self-consistently. (Even though the. impurity
potential may be very weak, it is insufficient to treat
electron-impurity scattering to lowest order only, as this
comp1etely neglects the linewidth broadening due to
electron-impurity scattering. ) Since the absorption line
shape depends strongly on the form of the impurity po-
tential, comparison between theory and experiment, in
this simple case, could tell one something about the im-
purity potential. Such comparison could also tell one
what other effects (such as those mentioned above) are im-
portant in cyclotron resonance.

An experimental probe which is closely related to
cyclotron resonance is resonant Raman scattering in the
presence of strong magnetic fields. This probe has been
used to investigate the behavior of electrons in the inver-
sion layers of multi-quantum-well heterostructures and,
in principle, could also be used to study the two-
dimensional system of a single heterojunction. Unlike

cyclotron resonance experiments, magneto-Raman scatter-
ing directly probes finite wave vectors. The wave vector
parallel to the surface is determined by the scattering an-
gle and wavelength of the incident light, which is required
to have an energy matched to the band gap of the semi-
conductor. In GaAs, in a magnetic field of 100 kG, one
can study wave vectors in the range 0 & qlp (0.2. In addi-
tion, by looking at different polarizations of the incident
and scattered light, one can change the selection rules and
thus study different exciton branches. Although the
present paper has concentrated on the theory of cyclotron
resonance, i.e., the response at q=0, the response func-
tions at finite wave vectors are also generated, in the self-
consistent exciton approximation, by our iterative pro-
cedures. The most striking qualitative features of these
results are that the linewidths of the various exciton
branches increase rapidly with increasing wave vector,
even for samples of high mobility, while the centers of the
lines stay rather close to the exciton energies E(q) for the
system without impurity scattering. (See, for example,
Fig. 9, and discussion thereof. )
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