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Scanning tunneling microscope as a structure-modifying tool
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We explore the possibility that surface charge induced by the scanning tunneling microscope wi11

influence the structure of the surface under investigation. In general, we find that the emission
currents limit the induced charge densities and preclude major structural modifications on the more
stable surfaces. However, the possibility of modifying less stable structures or of reducing the tran-
sition temperatures for transformation between different surface phases does exist and is discussed
in detail.

Recently, the scanning tunneling microscope (STM) has
been used to investigate a variety of surfaces, ' including
the Si(111)(7X7),' to obtain a real-space map of the sur-
face on an atomic scale. In doing so, a large field gradient
(10 —10 V/cm) is applied between a probe of atomic di-
rnensions and the surface itself, and the resulting tunnel-
ing current is then monitored as the tip is rastered above
the surface. Such field gradients are sufficiently large to
perturb the charge density on the surface. A large in-
crease in charge density, particularly for semiconductors,
for example, may result in the filling of the unoccupied
surface states and could lead to a change in the recon-
struction of the surface. This possibility is based on the
fact that, in general, the higher lying, unoccupied surface
states on a semiconductor surface correspond to the anti-
bonding states in diatomic or polyatomic molecules (Fig.
1). Filling such states can lead to sufficient repulsive en-
ergy to cause dissociation in molecules or, in the case of
semiconductor surfaces, to actual reconstruction.

It is the purpose of this paper to inquire as to what con-
ditions are necessary to produce significant changes in the
charge density at the surface and to inquire as to whether
or not such conditions can be achieved experimenta11y.
This analysis requires the calculation of the steady-state
induced surface charge. Therefore, we will first calculate
this induced charge as a function of applied potential and
then consider the charge transport processes (e.g. , tunnel-
ing, field emission) which determine the maximum excess
charge density which can be realized at the surface.

The potential between a grounded, conducting plane at
x =0 and a point charge q at some distance a from that
plane is given by

V(x,y, z)=(q/4m@')[[(a —x) +y +z ]
—[(a +x)'+y'+z']-' 'I,

where e is the dielectric constant of the medium between
the point charge and the plane. If the point charge is re-
placed by a very small conducting sphere at some poten-
tial Vp and radius b, then,

V(x,y,z)= Vobt[(a x)—+y +z ]
—[(u +x)'+y'+zz]

The charge density on that plane is given by

cr(p)= —2eVoba/(a +p )

where p =y +z . In the case of the scanning tunneling2=2 2

microscope, for all practical purposes, E=so Theref.ore,
directly under the tip, the charge density is

(a) BONDING

{b} ANT(8ONDING

FIG. 1. Schematic representation of the surface-state eigen-
functions at the I point of a silicon dimer for (a) the occupied
and (b) the unoccupied surface states. Backbonding contribu-
tions have been neglected for simplicity.

31 3593 Qc1985 The American Physical Society



3594 H. H. FARRELL AND M. LEVINSON 31

o (0)= —2@0Vob /a (3)
0 0

Ef we take b =9 A and a = 15 A as representative values,
then for @0=8.85X10 ' C/Vcm, cr(0)=( —7.08X10
C/Vcm ) Vo.

For the STM studies of the Si(111)(7X 7) surface, the
applied voltage V&p was 2.9 V. This applied voltage is
measured between the Fermi level of the sample and that
of the STM probe. Therefore, Vo ——VAP+P —P~, where P
is the work function of the sample and Pz is that of the
probe (Fig. 2). Note that in semiconductors, band bending
will affect the relative positions of the Fermi level at the
surface and the vacuum level, and therefore affect P, but
will not affect the positions of such features as the
valence-band maximum and the conduction-band
minimum relative to the vacuum level. As the detailed
nature of the STM tip is not known, we will assume a
value of Vo of 2.5+0.5 V. Substituting this value into Eq.
(3) we find a surface charge density of 1.77 X 10 C/cm
or about 1.11X10' e /cm . As a complete filling of the
unoccupied surface states on the unreconstructed Si(111)
surface would require an excess charge density of about
7.9X10' e /cm above that required for charge neutral-
ity, we see that these experimental conditions produce a
nominal filling of about 1.4% of the unoccupied surface
states.

For most surface structures, it is very unlikely that an
excess charge density corresponding to filling even several
percent of the unoccupied states would lead to any detect-
able reconstruction. Therefore, we can immediately con-
clude that, under its present operating conditions, the
STM does not significantly perturb most surfaces. How-
ever, we are also led to the possibility that surface
structural transitions could be induced by the deliberate
application of larger field gradients. As can be seen in
Eq. (2), the surface charge density is linear in Vo. There-

fore, it might seem to be straightforward to simply in-
crease the applied voltage by approximately an order of
magnitude to achieve substantial or even complete filling
of the unoccupied surface states. However, there are
several phenomena that severely limit the arbitrary in-
crease of the field strength in real situations.

The most important limitation is the actual current
density to be carried by both the sample and the probe tip.
While the charge density is linear in Vpb/a, the current
density will increase much more rapidly as a function of
this same parameter once the pure tunneling region is ex-
ceeded and the field-emission range is approached. We
will consider several formalisms for estimating this
current.

In 1928, Fowler and Nordheim developed a theory for
field emission from a conducting surface in the presence
of a strong electrical field induced by a planar probe.
They found that the field emission current can be ex-
pressed as

I=A„NEF P' (EF+P) '(V /oa) exp( 4~/a/3—VO),

(4)

where Ez is the Fermi energy, p the work function, and
K=(2m//R )' . When P and EF are expressed in volts
and Vo/a in V/cm, A„N=6.2X10 amps/V. This ex-
pression is not strictly applicable to the situation under
consideration as it is derived for a case where the probe is
planar as opposed to a tip of atomic dimensions. Further-
more, it is developed for a metallic surface where the con-
sideration of band bending is quite immaterial. However,
this formalism should provide an upper limit to the case
where b is very large and Vo »P.

In strong contrast, both temporally and in terms of the
detailed considerations, Tersoff and Hamann have
developed a theory for vacuum tunneling between a real
solid surface and a model probe with a locally spherical
tip. Within their model, the tunneling current is given by

SAMPLE

SURFACE
STATE

I =sVp,

where

s =32m/A 'e D, (E. +)b ~ "exp(2~b)

X g ~ P,(vo) ~'8(E Ep) . —

(5)

(6)

Ece Jl

EF
Eve

x=O

STM
PROBE

Here D, (E~) is the density of states per unit volume of
the probe tip, P„(vo) is the surface eigenfunction at the
tip, and again tc=(2m//A' ) ~ where P is the work func-
tion which is assumed to be the same for both the probe
and the surface. As before, b is the radius of the tip and
a is the distance from its center of curvature to the sur-
face. As Tersoff and Hamann note,

~ g, ~

~exp( —2va),
therefore

————E (PROBE)- ——
F I =A TH Vp exp [—2a (a b)]—(7)

FIR. 2. Schematic energy-level diagram for a semiconductor
surface adjacent to a STM probe. The zero of energy is taken at
the bottom of the valence band within the sample. Here, it is as-
sumed that the sample is p type and that its Fermi level is
pinned at the surface in the bottom of the "unoccupied" surface
state.

This formalism clearly shows the exponential behavior of
the tunneling current as a function of the distance be-
tween the probe and the surface. However, as it was

developed for the case where the sample is metallic and,
most importantly, where the applied voltage Vp may be
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FIG. 3. Emission current is shown as a function of the nor-
malized field gradient 2Vob/a for field emission where for (a)

'

and (b) P'=4. 5 and 5.0 eV, respectively, and for (c) tunneling
where P'=4. 5 eV.

significantly smaller than the barrier height P, this ap-
proach is also not strictly applicable to the situation that
we wish to consider. Despite this, even for semiconduct-
ors a similar functional form should be obtained in the
limit of small applied voltages. Taking P =4.5 eV,
a =15 A, and b=9 A, then for eVo -2.5 eV, we can.
roughly estimate A TH —10 A/V cm for the
Si(111)(7X7) case where 1 nA is drawn from an area of
roughly 100 A . It should be noted, of course, that this
estimate of ATH is strongly dependent upon the specific
values of a, b, and P.

We now seek an expression for the emission current
from a planar surface to a point probe (as opposed to the
planar probe modeled by Fowler and Nordheim) and at
higher field strengths (in contrast to the Tersoff-Hamann
derivation). It is not our purpose to define the dependence
of the emission current upon the details of the surface
electronic states, but rather to determine the gross depen-
dence upon the applied voltage and tip radius and distance
to the surface.

As previously discussed, the potential induced by a very
small spherical probe may be expressed classically as

V(r) = Vob I [(a —x) +p2]

[(g +x)2+F2]—1/2I

In the vicinity of the surface, for (x /a) « 1,
V(r)= V(x) =—2Vobx/a Therefo. re, Schrodinger's equa-
tion has the form V' g(x,p) =a —Px, where
a=2m (C —W)/fi and 13=4meVob/a I . Here,
C=EF+P, where Ez is the Fermi energy and P is the
work function. Here, the effect of band bending is con-
tained in the term P which will differ from the "bulk"

X(2Vob/a )exp[ —4(u")3~ /3P], (12)

where a"=(EF E„+P)(2m—/fi ). Note that here band
bending will have an effect due to its influence on the rel-
ative position of the Fermi level and the valence-band
maximum. The contribution from the conduction band
will similarly be sensitive to band bending and to its con-
trol of carrier concentrations in the band at the surface.
However, as long as the charge density in the conduction
band is negligible, its contribution to the field-emission
current can be neglected.

Here, it has been assumed that the Fermi level is pinned
by the surface states and that the density of these states is
large enough to screen the bulk (i.e., that essentially all of
the induced charge is in the surface states). Under these
conditions, when there is a relatively small change in the
occupation of the surface states, there will be little or no
change in the bulk band bending. If, however, there are
few unoccupied surface states in the gap (e.g.,( I X10 /cm ), then a strong field gradient will induce
charge which may fill these states, and can have a signifi-
cant effect on band bending. A low density of unoccupied
states within the gap will usually reflect the absence of in-
trinsic surface states and will be associated with the pres-
ence of isolated defects and/or impurities. To the extent
that such centers are isolated, the accompanying surface
states will not have even the two-dimensional conductivity
that is often found with the high-density surface states as-
sociated with reconstruction. Therefore, the current limit-
ing process may be the transport of carriers to these iso-
lated surface states. This will be strongly influenced by
band bending which, in turn, may be very sensitive to the
applied field because of relatively weak screening. How-
ever, even the complete occupation of such a low density

w«k function (t'g by hp (see Fig. 2). As is shown in the
Appendix, f(x,p) can be expressed in the form

g(x,p) =R (x,p)X(x),
where R (x,p) is a slowly varying function of x and X(x)
and is a Bessel function within the tunneling region and a
Hankel function beyond that region. As is also shown in
the Appendix, the transmission coefficient for tunneling
through the barrier is given by

T(W)=4C '[W(C —W)]' exp[ —4(a') ~ /3P], (10)

where 0.'=a —3/4d and d )a.
The current through the barrier is given by the integral

of the transmission coefficient with the number of elec-
trons with energy W available for tunneling per unit time
as

I(Vo)=e J T(W)N(W)dW .

This may be broken down into a bulk component, with
contributions from both the valence band and the conduc-
tion band, and a component from the surface states as
I=I„+I,+Its. The valence-band contribution will have
a form very similar to the Fowler-Nordheim (FN) formal-
ism as

IU =AFN(E„)' (p+EF E„)' (EF+p—)



3596 H. H. FARRELL AND M. LEVINSON

Np(EF) = , vF(o/D), — (14)

where vF is the velocity of the electrons in the surface
state at the Fermi level, o. is the average charge density
beneath the tip, and D is the thickness of the barrier at EI;
and is determined by the condition P (2Vpb/a )D—=0.
Taking o to be approximately 2eoVob/a, we have

Np(EF)= ,'epvF(2Vpb—/a ) p . (15)

Using our previously derived expression for T(W), we
find that

Iss=8(2Vpb/a )

Xexp[ —4(2m/~')'"((r")'"/3(2V. b la')] (16)

where 8=epvF [EF' /p' (EF+p) ]—(R /2m)(3/4d ).
This expression is quite similar to the Fowler-

Nordheim expression. The major differences are that the
field gradient I'= Vp/a is replaced by a normalized field
gradient 2Vpbla and that the work function P is modi-
fied by the term (A' /2m)(3/4d ). Both of these varia-
tions will serve to enhance the field-emission current den-
sity for a spherical probe relative to that for a planar
probe. For silicon, relative to the bottom of the valence
band the Fermi energy is about 12.5 eV. Therefore, as-
suming an effective mass of unity, the velocity of the elec-
trons in the surface state at the Fermi level vF ——2. 1 X 10
cm/sec. Taking a value for the work function of 4.9 eV,
8=3.6X10 A/V and P'=4. 5 eV for d =2a, where
a =15 A. (It should be noted that, for a given case, the
values of EF and p will depend upon the doping of the
sample. )

Shown in Fig. 3 is the tunneling current predicted by
the Tersoff and Hamann formalism (normalized to
10 A/cm at Vp ——2.5 V or 2Vpbla =2X10 V/cm),
and the field-emission current predicted by Eq. (16). As
expected, in the region where the applied voltage Vo is

i

of states is unlikely to affect surface reconstruction.
If, as on the Si(100)(2X1) surface, the Fermi level is

pinned at the surface by the surface states, and if those
states are fairly narrowly localized in energy space, we can
write

Iss ——e y T(W)Np(W)o(EF W—)dW. (13)

This approach ignores the detailed nature of the surface
states and is not applicable when appreciable dispersion
occurs in the occupied portion of those states. Further-
more, we have neglected lower-lying fully occupied sur-
face states, although they may be treated in the same
fashion with the above provisions, as, at least at lower
field strengths, emission from the highest state will
predominate. Similarly, in considering only Eq. (13), we
neglect tunneling from the valence band (because of its
larger barrier height under most circumstances) and from
the conduction band (because of its lower carrier concen-
tration).

The number of electrons in the surface state that are
available for tunneling per unit time is proportional to the
charge density in that state and is given by

less than or comparable with the barrier height P, the to-
tal current is dominated by the tunneling component.
However, when Vp exceeds P, the situation is reversed and
the field-emission component rapidly increases with the
applied potential. As can be seen, current densities in ex-
cess of 10 A/cm are to be expected for values of
2 Vpb /a less than 10 V/cm. Such current densities
would strain the very fabric of both the sample and the
tip itself irrespective of the latter's composition and
geometry. In addition, particularly for semiconductors,
the rate at which current can be supplied to the surface
may become a limiting factor.

On the basis of these considerations, it is obvious that
the essentially exponential increase in current with the
normalized field gradient 2 Vpb/a is strongly limiting in
terms of how much excess charge density can be induced
on a surface. Referring back to Eq. (3), it may be shown
that filling more than about 5% of the unoccupied states
on the unreconstructed Si(111) surface, for example, is
quite unlikely. Therefore, for relatively simple, stable sur-
faces it is highly doubtful that the STM can either adver-
tently or inadvertently perturb the system under investiga-
tion. However, there are situations where even such a
small excess of surface charge density could be influential.

Consider, for example, the Si(100)(2X1) surface. It is
known that this surface can be annealed at 600'C. This
annealing involves the breaking and remaking of dimer
bonds at the surface, and it is probable that the spontane-
ous dissociation of these dimers is the rate-limiting step in
this process. Therefore, the annealing temperature is
directly dependent upon the dimer-bond energy which, in
turn, should be strongly influenced by the degree of occu-
pation of the "antibonding" surface states in the gap.
Similar considerations will be important both for order-
order transitions [e.g., Si(111)(2X1)~Si(111)(7X7)]and
for order-disorder transitions [e.g., Si(111)(7X 7)
~Si(111)(1X1)].Furthermore, the partial occupation of
these nominally unoccupied surface states would not only
weaken, for example, dimer bonds on the Si(100) surface,
but would also lengthen them, though it is rather doubtful
that this effect could be observed using the STM.

In highly complex surface structures, such as the
Si(111)(7X 7), it is probable that some elements of the sur-
face structure are less stable than others. Small changes
in the surface charge density would most likely leave un-
changed the larger features, such as the holes at the apices
of the unit cell, ' and the periodicity of the superlattice
itself. Qn the other hand, other features will be more
vulnerable to reconstruction or relaxation. For example,
in the model proposed by McRae, there are two kinds of
surface dimers within the unit cell whose bonds should be
significantly weaker than those in bulk Si because of back-
bonding strain. In this model, there are nine dimers in the
surface layer itself, six in contact with, and three not in
contact with, the corner holes. VA'thin this model, the 49
surface atoms for the unreconstructed surface are reduced
to 30 which should have 4.8& 10' surface states per cm
of which about 2.4X10' will be filled (assuming charge
neutrality) in the absence of externally applied electrical
fields.

Let us now consider the three dimer pairs not associat-
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ed with the corner holes. While the local density of states
corresponding to these dimer bonds may overlap that
from other portions of the surface structure, it is expected
to be relatively narrow and to have a relatively small bind-
ing energy. Similarly, the unoccupied antibonding local
density of states corresponding to the dimers is also ex-
pected to be relatively narrow and to fall either at or near
the bottom of the unoccupied band. Therefore, if there
was an actual gap between the occupied and the unoccu-
pied surface states, any additional surface charge density
induced by an externally applied electrical field might be
expected to predominantly populate those unoccupied lev-
els that correspond to dimer antibonding orbitals. This
would weaken or possibly even disrupt these bonds which
is equivalent to a partial reconstruction of the surface.
Experimentally, "metallic" surface states are observed on
the Si(111)(7&&7) (Ref. 9) surface that may indicate that
these antibonding states are partially occupied even in the
absence of an externally applied field. In this case, the
possibility for partial reconstruction is even better as the
maximum induced charge density of 3 to 4X 10' e /cm
would be augmented by the existing charge and could
exceed the 4.8)&10' e /cm required to completely fill
the noncorner dimer antibonding states. (It should be not-
ed that the "metallic" surface state might also indicate a
charge deficit in the bonding states and that completing
the occupation of these states might either further stabi-
lize the surface or, at a remote chance, cause additional
reconstruction. )

Finally, it is of interest to consider the case where the
surface states are nonconducting in the surface plane, or
where such conductivity is severely diminished with de-
creasing temperature. Here the transport of carriers to or
from the surface will occur via interactions with the bulk
valence and/or conduction bands and may represent the
current limiting process. The surface Fermi-level position
will determine the free-electron and hole concentration, as
well as the energy of the highest occupied surface state. It
would therefore affect the kinetics of carrier exchange be-
tween the surface states and the bands. Thus, in principle,
variation of temperature and current direction may be
used to study the surface density of states and Fermi-level
position. Illumination of the surface during the measure-
ment might yield additional information. (Actual heating
of the sample by the tunneling or field-emission current is
not expected to be a significant factor. While the current
density is quite large, it passes through a sufficiently
small area such that the total heat produced is very small

and is easily dissipated by thermal diffusion. )

In conclusion, we find that an excess surface charge
density is induced by the applied electrical field gradients
used in scanning tunneling microscopy, but that under
"usual" operating conditions this surface charge density is
inadequate to cause the reconstruction of relatively stable
surface structures. However, we also find that under cer-
tain conditions, such as near a phase transition or in com-
plex structures with "vulnerable" bonding units, there is a
possibility that reconstruction might be induced by
operating the STM in an atypical, high-field mode. In ad-
dition, when the density of those surface states pinning
the Fermi level is sufficiently low to preclude surface con-
ductivity, then the temperature dependence of the forward
and reverse currents may, in principle, be used to gain in-
formation on their number and energy position within the
gap. We hope that the next series of experiments will be
able to address these questions and provide definitive
answers as to the possibility of using the STM to influ-
ence surface structures and phase transitions.
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APPENDIX

f(x,p) =C'i R(x,p)X(x), (A2)

where R(x,p) is a slowly varying function of x of the
form

R(x,p)=[(a+x) +p ] (A3)

From the Schrodinger equation, V P(x,p)
=(~—Px)g(x,p), where a=2m (C —W)/fi2
P=(2m /A )(2Vob/a ). Therefore,

In the tunneling region O~x &D, the wave function
should decrease radially from the central axis between the
tip and the surface In a. ddition, it is damped (and at
lower applied potentials strongly damped), on going from
the surface to the tip. At the surface, we know that

x =0,
~
g(0,p)

~

=o(p)/t =2C/(a +p ), (Al)

where t is the "thickness" of the surface layer and
C=Ep Vpba /t. Therefore, the wave function in the tun-
neling region may be approximated as

—1 —[ ~R 8 R M
Bp Bp ()

BX =a —Px .Bx' (A4)

Now

R 'V' R =3/4[(a+x)2+p ]=3/4d (A5)

where d =(a+x) +p . This term roughly accounts for

the decrease in the transmission current with p for those
portions of the sample that are not directly under the tip.
Properly speaking, this p dependence should be accounted
for in X(x) but, as the solution is not exact, it will suffice
to replace p and x in d by nominal values. The term
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R ' -=—3x/(a +p ) & —3x/a
BX

which may be neglected for a »x. Therefore, we have

a'X(x) = (a' —Px )X(x),
C)X

(A7)

where a'=o, —3/4d . Following Nordheim and Fowler, "
this leads to a solution for X(x) of the form of a Bessel
function of the —,

' order in the tunneling region

0&x &D, X(g)=g' Jf/3(2$ ~ /3),
and a Hankel function

D &x X(g) =g' II"' (2g /3) (A9)

beyond the barrier, where g = [(u'/p) —x ]p'~ . This
functionality, in turn, leads to a transmission coefficient

through the barrier of the form

T(W)=C '[W(C —W)]'~ exp[ —4(o.') ~ /3P], (A10)

where the argument of the exponential is

4(a') /3P=(4/3)(2m/A' )'

&& [(C—W) —3' /Smd ] ~ /(2Vob/a )

=(a/Zb)(4/3)(2m/A' )'~

&& [(C—W) —3A' /Smd ]'~ ( Vo/a ) .

(Al 1)

Note that this differs from the Fowler-Nordheim expres-
sion by the inclusion of the term a/2b, which is a mea-
sure of the relative diameter of the tip, and by the term
3A' /Smd =36 /Sm(a +p ) which will be less than 1 eV.
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