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Revised theory of relaxation ultrasound attenuation in glasses
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The effect of phonon disturbance by two-level systems on ultrasound attenuation and velocity is
considered. It is shown that the phonon distribution function is substantially disturbed when the ul-
trasound frequency is much less than the inverse two-level system and phonon relaxation times. In
such a case, the ultrasound attenuation appears to be much greater than Jackie's theory predicts.
The transition to the phenomenological theory of ultrasound propagation is discussed. A new mech-
anism of phonon energy relaxation due to spectral diffusion is shown.

I. INTRODUCTION 60
A 0—

Nearly all the thermodynamic and kinetic properties of
glasses at low temperatures are rather well described by
the two-level-system model. ' According to this model,
glass contains a great number of localized two-level sys-
tems (TLS's) with a very broad distribution of energy
splitting. ' TLS's form the main contribution to the
specific heat of glass at low temperatures and such kinetic
properties as ultrasonic and microwave attenuation as
well. The only relaxation mechanism of TLS's is the
emission and absorption of phonons, which are considered
to be in thermodynamic equilibrium. The last assumption
is the least well-founded one. The r'elaxation process con-
nects TLS's and phonons, so that a nonequilibrium en-
semble of TLS s would disturb an equilibrium phonon dis-
tribution function The .disturbance might be neglected if
there were another effective relaxation mechanism to
reduce the phonon distribution function to its equilibrium
form. But it is well known (e.g. , from ultrasonic experi-
ments) that the main relaxation mechanism of the phonon
distribution function is connected with the absorption and
emission of phonons by TLS's. So TLS's and phonons
should be considered as a united system, and in general
any external force disturbs the system as a whole. Such a
situation is known in the theory of paramagnetic and
paraelectric resonance as a phonon bottleneck. The pur=
pose of this paper is to explore how a deviation of the
phonon distribution function from its equilibrium form
affects the attenuation and velocity of small-amplitude ul-
trasound in glasses.

A TLS can be imagined as an atom or a group of atoms
tunneling through a potential barrier between two poten-
tial energy minima, though its microscopic model is of no
importance to the thermodynamic and kinetic properties
of glasses. It is enough to consider the TLS model as a
phenomenological one and to characterize a TLS by an
energy spacing b. of levels in isolated potential wells and a
tunneling coupling energy 50——Acuoe where %coo is a
typical zero-point energy in either well and k is a tunnel-
ing integral, so that the Hamiltonian of a TLS has the
foITIl

Diagonalizing A o, one can describe a TLS by the energy
splitting of its levels E =(b, +b.o)' and a parameter 4:
b, =E cos5, 60 Esin@.——A state of a TLS can be
described by the populations n of the upper level and
1 —n of the lower level. In thermodynamic equilibrium
the mean upper-level population is

where T is the temperature. Interaction of an ultrasound
wave and phonons with a TLS is usually described by the
Hamiltonian

1 0
cP ] 0 ] Pfj Qfj (3)

where y,j. is a deformation potential tensor, and u,j is a lo-
cal strain.

The theory of ultrasound propagation in glasses was
formulated by Jackie' (see also Refs. 11—13). He found
two contributions from TLS's to ultrasound attenuation
and velocity. The first is the resonance contribution. It
results from the absorption of ultrasound quanta by the
TLS's whose energy splitting E is equal to %co (co is the
sound frequency). The absorption probability depends on
a mean TLS population n. Thus for resonance attenua-
tion, at lea'st in a linear approximation, the deviation of a
phonon distribution function from thermodynamic equi-
librium can be neglected.

The second contribution to ultrasound attenuation is a
nonresonant or relaxation one. It results from the fact
that an ultrasound wave periodically modulates the energy
splittings of TLS's and so shifts their equilibrium state.
Due to TLS—phonon relaxation, a phonon distribution
function becomes periodically modulated too. Naturally,
a considerable disturbance of the phonon distribution
function can be expected if the average phonon relaxation
time r is much smaller than the period of ultrasound wave
2m/co. In such a case, phonon occupation numbers relax
to the values corresponding to the current TLS population
n (E,8) before n (E,5) changes its value. That is, if
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co%&&1, the phonon system is in a quasiequilibrium state
and deviation of the phonon occupation numbers from
their thermodynamic equilibrium values can be expected
to have the same order of magnitude as the deviation n ~

of n from its equilibrium form (2). To be more precise,
one should recall that phonons with the same wave num-
ber k can be emitted and absorbed by TLS's with different
parameters 4. Thus, the phonon distribution function
feels only some sort of an average of the TLS population
over 5, n, and its deviation from the equilibrium form (2)
is proportional to n ~ (E).

On the other hand, TLS's relax only by emitting and
absorbing phonons, and if the phonons are not in thermo-
dynamic equilibrium, the TLS s relaxation brings their

population not to the equilibrium value (2), but to some
other value corresponding to the current phonon distribu-
tion function. In other words, the deviation n~(E, B) re-
laxes not to zero but to n

&
(E). Such a result is due to the

fact that the TLS—phonon relaxation takes place for each
energy E separately and does not allow for any change in
the energy distribution. For low frequencies a value of
n&(E) is limited from above only by the minimum of the
values (cur) ' and (coro) ', where ro is a characteristic
TLS relaxation time. The nonequilibrium population
n~(E, S) and therefore ultrasound attenuation coefficients
acquire the same factor. Hence, for small coro and co% ul-
trasound absorption is much greater than Jackie's theory
predicts.

II. EVALUATION OF ULTRASOUND ATTENUATION AND VELOCITY

(4)

and the phonon occupation numbers X„
BX, BN, mPy, sn

+w, cos8 = k [n(N, +1)—(1—n)N, ]E q~ ksin5d5 .
Bt Bx pw,

S S v= W~

The exact calculation of the relaxation ultrasound attenuation and the velocity shift is based on solving a coupled sys-
tem of kinetic equations for the TLS mean population n,

2
Bn mE sin 5 ys f [(1 n)N, —n(N, +—1)]kpR", w, (2m )

Here Et [(5+2yV——) +b,o]' is the TLS energy split-
ting in the presence of ultrasound wave strain V; w, is a
sound velocity (s =I for a longitudinal mode, and s =t
for a transverse mode); y, are effective deformation con-
stants:

y = —,', [2try +(try) j,
y, = —,', [3 try —(try) j

i (co qw—,cos8—)N, ~

m/2
coth n (sln@d& —N (

S 2T

Here

pw, Aw, k
2 coth

mI'y k

(10)

(see Ref. 1); p is a mass density' and 8 is the angle between

the directions of the phonon wave vector k and the ul-
trasound wave propagation (x axis). The integration on
the right-hand side of Eq. (4) is performed over all direc-

tions of k. The TLS parameters 6 and A, are considered
to be uniformly distributed over intervals much greater
than those important for low-temperature kinetics, ' "' '
so the TLS density per unit energy splitting (0&E & oo )

interval and per unit parameter 5 (0 & 4 & ~/2) interval is
taken as P i/st, P=const

In the linear approximation V~e'~" ~", co=wq, and
onecan put Et —E+2ycos&ReV,

pg =7gp+pg]e~ ~ -~ (7)

s 1)—1+N i(qx cut)— (g)

so that Eqs. (4) and (5) become

dnp—scen i
———2 y V cos5 —n IdE

r

+2m tanh g g', f N, ( 3, (9)2T, (2m)

is the relaxation time of the s-phonon mode,
r 3,

4 2 —1

2mpA4 ~ y.Tp-
S S

(12)

Ts

ws
(13)

The elastic equation for an ultrasound wave in glass has
the form

is the contribution of TLS's to the elastic stress, where an-
gular brackets represent an averaging over all orientations

BQc +o. (14)
Bx Bx

where u is an elastic displacement ( V=Bu/Bx), c =pwo
is an elastic modulus, and

ao m'/2o'=P f dE f . ((2n —1)y)cos@
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of a TLS relative to the ultrasound direction and polariza-
tion. In the linear approximation

cr'=2P f dE f (yn, )cot8d4 . (16)

Substituting Eq. (7) in (15), the first term leading to a con-
stant stress has been omitted.

Using Eqs. (14) and (16) the ultrasound attenuation
coefficient cr and the contribution of the TLS to the ul-
trasound velocity Aw =w —wp can be written as

g (E,8)= + cos8-2i cos8 2 1

cow (cor) 4sin 5
(25)

If two of the inequalities cor«1 and corp«1 are satis-
fied, the main contribution in Eq. (23) is from the relaxa-
tion terms I.n such a case, to solve Eq. (23) one should
try to obtain an equation for g from it at first. It has the
form

0.=2 Imhq,
Aw

Here

(17)
i CO%~ 4

ln
2 co'Tp

T E+i——icoV—coth g=1

hq= — q f dE f g(E,S)cot&d&, (18)
p(y~) ~ dnp ~n

pw2 o dE

dnp
n~ ——yV g(E,S), (19) T E=~p — tanh

(26)

(27}

2 cos'5
1 —l CO7

(22)

For cov; «1 expression (20) can be expanded in cor„and
its substitution in Eq. (9) gives

T E 2cos@—i~g =—g —g —icoi coth g +
'T 2T

(23}

Here

-2
pA ws

S PS

where (y ) is equal to yr for longitudinal and equal to y,
for transverse ultrasound.

Equations (9) and (10) form a system of linear integral
equations with degenerated nuclei which can be solved
analytically. The exact analytical solution contains rather
cumbersome expressions useful only for' numerical calcu-
lations. To realize the physical contents of the results and
to obtain simple expressions and estimations, it is more
convenient to consider different limiting cases. Such a
program is realized in the following.

From Eq. (10) one has

coth (E/2T) &dn p

1 —i co~, +iqw, v, cos6 dE
m'/2

g(E)= f g (E,5)sin@d5 . (21)

For cor, »1 Eq. (20) leads to N, r «(1/cor, )nr, so that
the last term on the right-hand side of Eq. (9) can be
neglected. It means the deviation of the phonons from
their equilibrium state does not matter, and

is the value of r at 5=m/2. Apparently there are two
limiting cases: rpln(1/corp) «7., when the value of g is
controlled by phonon relaxation, and the opposite case,
when TLS relaxation plays this part. In both cases the de-
viation of the TLS population from its equilibrium form
(2) is mainly due to a shift of the entire TLS—phonon sys-
tern from the thermodynamic equilibrium state rather
than some violation of an equilibrium between TLS's and
phonons. This fact is revealed when the last term on the
right-hand side of Eq. (23) is neglected after g(E) has
been calculated, so that

g(E,e)= g(. '
1 —i cov'

Now g(E,S) is known for all limiting cases, and one
should make use of Eq. (18).

The case of cor » 1 [see Eq. (22)] corresponds to
Jackie's theory:

~' P(y')
(29)

pw2 w~p

b, w 64m P(y ) 1

w 315 pw (corp)

for corp&&1, and

~ P&y')A'=
pw

b, w 1P(y)1 1

2 pw covp

(31)

(32)

for corp « 1.
For the case of cor « 1, corp)) 1 [see Eq. (25)] a has the

form (29), and

2 —1

pfg 'VI 1X„3
S S

(24)
4 ' P&y')

w 315 pw (corp)

For the case of cor«1, corp«1 [see Eqs. (26) and
(28)],

is an average phonon relaxation time.
If co~p ~&1 then relaxation terms on the right-hand side

of Eq. (23), containing g and g, are small, and

~" P(y')
4 pw wvp

(34)
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ir ln2 P(y ) 1

pio coro[in(1/coro)]

if r &&koln(1/coro), and

1 P(y~) ln(1/cov'o)

pw wi
~ P(y')

pw

(36)

(37)

if ~pin(1/coro) &&r.
The temperature T~, when V=~o, can be expressed as

r 1/2

Ti =Sr PA Q w~ (38)

111. DISCUSSION OF THE LOW-FREQUENCY LIMIT

Using the values P=0.4&10 erg 'cm, w~-6&(10
cm/sec. w, =4X10 cm/sec for fused silica and borosili-
cate glass, ' one has T~ -1 K. The boundary tempera-
ture between cases (34) and (35) and (36) and (37) is close
to Ti and also depends on coro If y., =yt =1 5 eV and
p=2 g/cm (see Refs. 2 and 16—18) then i p=7= 10 sec
at T=T).

phonons are considered to be in equilibrium, and n ~ ~co
when co tends to zero. That is, the discrepancy arises
from neglecting any relaxation mechanism bringing the
TLS—phonon system into the thermodynamic equilibrium
state. The most rapid relaxation of this kind is very likely
connected with the spectral diffusion. It can be described
in the following way. Let some TLS with an energy split-
ting E be in the initial state with the upper-level occupa-
tion number n=0. Absorbing a phonon with the energy
Aco=E, it passes into the state with n=1. Then let some
adjacent TLS with an energy splitting E& also absorb a
phonon with energy Ace~ ——E~ and pass from the initial
state with n& ——0 to the state with n& ——1. Due to the in-
teraction of the TLS's by virtual phonons, the energy of
the first TLS becomes E'=E+AE after this second tran-
sition. Here hE-y /(pw r ), r-(PT) '~ is the dis-
tance between the TLS's, and PT is the concentration of
the TLS's whose energy splittings have the order of mag-
nitude lower or equal to T. ' ' Now if the first TLS em-
its a phonon, its energy will be fun'=Rcu+AE. After this,
the second TLS can emit a phonon with the energy
ficoi ficoi b,E——. The res—ult is equivalent to some four-
phonon interaction. As Black and Halperin' have shown,
the mean TLS energy shift due to spectra diffusion for a
time interval t & rp has the order of magnitude EE(t/rp).
Hence, the corresponding energy relaxation time is

Equations (34) and (36) show that ultrasound attenua-
tion does not decrease with co tending to zero. Naturally
the question arises as to how to match this result to the
phenomenological theory which predicts a ~ co if co tends
to zero. ' The answer is that the applicability conditions
of the phenomenological theory are violated in the present
theory as well as in Jackie's theory. ' One can make use
of the phenomenological theory only if the condition
co~ && 1 is satisfied for any relevant relaxation time ~.

First of all, there is a very broad distribution of TLS re-
laxation times ~ in glasses. When u~o &&1 the main con-
tribution in the integral with respect to parameter 8 in
Eq. (18) arises from the region of 8 where cps-1. It re-
sults from the assumption that a tunneling coupling ener-
gy b,o, and so the parameter 5, can attain arbitrarily small
valves. If there is a maximum in the tunneling integral

and so there are minimum values of b,o and 8,
say 4. , then there is a maximum value of the TLS relaxa-
tion time r: r,„-rp/8 (apparently only E-T is essen-
tial). If an ultrasound frequency is so small that
co~,„&&1, then Ja,ckle's theory leads to a o.~ in accor-
dance with the phenomenological theory, but the present
theory gives only ca~~. If the tunneling integral A, can
really acquire arbitrarily large values, then there are arbi-
trarily large relaxation times ~& and indeed there is some
physical reason for the inapplicability of the usual
phenomenological theory in glasses.

The second reason for the discrepancy between the re-
sult of the present theory and that of the phenomenologi-
cal theory is connected with the deviation of the phonon
distribution function from its equilibrium form. The
point is, the TLS—phonon relaxation is shown not to
reduce the average nonequilibrium TLS population n i (E).
So n& ~co ' when co tends to zero. In Ja,ckle's theory

T pw
'TE 7 ~'T ))& .

AE Py2 (39)

P(y') co Rcou„s=~) — —tanh
pw w 2T

shows that the relaxation attenuation dominates for
cp &(T/Pi~i)'~ where r& is the maximum value of r and

For T—T& —1 K it means ~~ —10 sec and
co/2m & 600 MHz. For lower temperature the condition is
stronger. So for T-0.4 K it means cu/2m & 100 MHz.

To conc1ude, it is worth noting that the threshold for
nonlinear relaxation attenuation y V- T is rather high
and does not depend on the existence of a phonon
bottleneck. Another situation takes place for resonance
attenuation observed in many experiments (see, e.g. , Refs.
2, 15, and 25). In this case the deviation of the phonon
distribution function from its equilibrium form can play a
very important role, but discussion of the question goes
beyond the limits of the present paper.

The described relaxation process may be neglected only if
~rE))1. When co becomes so small that cu~E &&1, n&
tends to some large but finite frequency-independent
value, and o. becomes proportional to co in accordance
with the phenomenological theory.

So, an observation of low-frequency ultrasound relaxa-
tion attenuation could give some information concerning
properties of TLS's and their microscopic nature. Com-
parison of Eqs. (33) and (35) with the resonant attenuation
coefficient
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