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High-temperature conductivity of one-dimensional electrons

O. Entin-Wohlman
The Racah Institute of Physics, Jerusalem 91904, Israel

and School ofPhysics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel*
(Received 25 July 1984)

The inelastic phonon scattering of one-dimensional electrons is analyzed by a diagrammatic tech-
nique. The contribution of the maximally crossed diagrams is evaluated for ~»~pq&&1 and
cop&'Tpp Q( 1, where copq and 1 pg are the phonon frequency and the inelastic relaxation time, respective-
ly. The dependence of the conductivity upon copI, and ~p], is found. In the ~pq~pq && 1 limit, the scal-
ing result of Abrikosov and Ryzhkin is reproduced.

I. INTRODUCTION

Electronic conduction in one-dimensional disordered
systems has attracted considerable interest in recent years.
In the case of static disorder, Mott and Twose' argued
that all electronic states are localized and consequently the
dc conductivity vanishes. Later Mott showed that the
frequency-dependent conductivity is proportional to
co (lnco) at low frequencies. These results are supported
by rigorous diagrammatic treatments of the elastic
scattering of the electrons from static impurities.

Dynamic disorder destroys the strong interference ef-
fects which in the case of static disorder leads to localiza-
tion. This kind of disorder may arise from the electron-
phonon interaction. At temperatures higher than the
characteristic phonon frequency the quantum effects of
the phonons (e.g., the Peierls transition) may be neglected, .

and the main effect is the inelastic scattering of the elec-
trons.

In considering the electronic conduction in the presence
of dynamic disorder alone, one can distinguish between
two regimes. The first is the regime of strong inelasticity,
where ~~q~p~~&1. Here co~~ and 7pI, are the typical pho-
non frequency and inelastic electronic relaxation time,
respectively. In this regime the leading term of the con-
ductivity is proportional to

happ
and does not depend expli-

citly upon cori, . This is the usual result of the
Boltzmann equation. The situation in the weak-
inelasticity regime, co&I,~„q && 1, is much less clear. The di-
agrammatic approach of Gogolin, Melnikov, and Rashba
fails in this region. The scaling approach of Abrikosov
and Ryzhkin yields a conductivity linear in co~I, and
quadratic in 7pI, while Madhukar and Cohen obtain a
quadratic dependence upon cop&.

The aim of this paper is to study the phonon-induced
conductivity of one-dimensional electrons by a diagram-
matic technique similar to that of Vollhardt and Wolfle.
They have developed this technique to study the elastic
scattering of electrons by static impurities. In particular,
they have pointed out the important role played by a spe-
cial class of diagrams, the maximally crossed diagrams,
which in d &2 lead to the Anderson localization. We ex-
tend their method to the case of inelastic scattering. We
show that the sum of the maximally crossed diagrams is

important in the co~I,~~~&&1 limit and evaluate its contri-
bution to the conductivity. In the strong inelasticity re-
gime (cori, rvi, && 1) we find the correction to the
Boltzmann-equation result. In the weak-inelasticity re-
gime we reproduce the scaling result of Abrikosov and
Ryzhkin.

The system we consider is that of one-dimensional
electrons interacting with three-dimensional phonons.
This corresponds, for example, to organic inetals like
tetrathiafulvalene tetracyanoquinoclimethane (TTF-
TCNQ). These quasi-one-dimensional materials in which
the electronic conduction is along the chains have a rela-
tively high conductivity that obeys a T law at high
temperatures. The v~t, dependence of the calculated con-
ductivity in the weak-inelasticity regime reproduces this
temperature behavior since rvi, cc 1/T for a linear
electron-phonon coupling. An alternative explanation to
the T law is based upon a quadratic electron-phonon
coupling in conjunction with the first Born approximation
for the inelastic relaxation rate. ' The two expressions
for the conductivity differ in their dependence upon cori, .
Thus, the question of whether the prominent electron-
phonon interaction in organic metals is linear or quadratic
in the phonon operators should be determined by probing
experimentally the phonon frequency dependence of the
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FICx. 1. Diagrammatic representation of the conductivity

bubbles [Eq. (2.2)]. The upper solid line is the retarded electron
line and the lower solid line is the advanced electron line. The
wavy lines represent phonon insertions.
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conductivity and other properties related to the electron-
phonon interaction.

II. METHOD OF CALCULATION

sF—p
2m

(2.1)

In the weak scattering limit the conductivity is deter-

We consider a system of noninteracting electrons with
energy spectrum g» measured from the Fermi energy

mined by the electrons at the vicinity of pF, i.e., by the
states with momenta p =pF+k and p = —p~+k, where
k «pF. Therefore, following Abrikosov and Ryzhkin
we write the free-electron energy as vko. 3, where u is the
Fermi velocity and cr; (i=1,2,3) are the Pauli matrices.
Accordingly, the single-particle Green's function G» is a
2)&2 diagonal matrix, in which the I 1 and 22 entries cor-
respond to p =pF+k and p = —pF+k, respectively. In
these notations, the wave-vector- and frequency-dependent
conductivity is given by '"

o.(q, co) = fS 2m

Bf g Tr(cr3G» (e)cr3G» «(e —co) ) .
BE

(2.2)

Here S is the cross-section area of the unit cell perpendicular to the chain on which the electrons are moving, f (e) is the
Fermi function, and G and G" are the retarded and advanced Green's functions, respectively. The angular brackets in
Eq. (2.2) denote all possible phonon insertions into the electron-hole bubble (see Fig. 1).

We now denote

II„(q,co)=(G (e)o, G', (e-co)) (2.3)

and construct an equation for II in terms of the single-particle Green s functions and the irreducible vertex part. The
derivation extends that of Vollhardt and Wolfle to the case of inelastic scattering. (Note that each phonon line in Fig. 1

changes the energies of the particle and hole lines. )

We rewrite Eq. (2.3) in the form

II»,(q, co)=G» (e)o3G» «(» co)+ f—de~ g G» (e)l »», (ee~)G», (e~)cr3G»" «(e~ co)I»,»—(e~c)G»" «(e co) . — (2.4)
P~

Here G» denotes the single-particle Green s function which includes all self-energy insertions [e.g. , diagrams (a) and (e) in
Fig. 1]. The notation I »» (ee&)X», (q, co)l »»(e&e) stands for all insertion of phonon lines between the particle and the
hole lines [e.g. , diagrams (b), (c), (d), (f), and (g) in Fig. 1]. In the matrix notations introduced above the electron-phonon
vertices, and consequently I', are matrices. The explicit expressions for them are given in the next section. The vertex
function I includes reducible [diagrams (c) and (g) in Fig. 1] and irreducible [diagrams (b), (d), and (f)] contributions.
Denoting the irreducible vertex function by U we have

f de~+ I»», (re~)G», (e, )cr36»" (e, —co)l» (e,e')

Pj

= f de& g U»» (ee&)G», (e, )cr3G», «(e& co)U»,»(e&e)—
IP&

+ f de, de P U (ee, )G (e,)l;„(e,e, )G (e, )cr G" (e co)I" ~,(e,6—, )G (~—co)U ' (E,6). (2.'5)

Pj P2

Inserting Eq. (2.5) into Eq. (2.4), we obtain II in terms of the irreducible vertex function U:

II»,(q, co)=G» (e)o3G»" «(» co)+ f d—e, g G» (e)U»» (ee, )II». ..(q, co)U»»(E, E)G (e co) . —(2.6)

The integral equation (2.6) for II is solved as follows. The Green's function G»
' ' is given by

GR(A)( ) [ k XR(A)( )]
—1 (2.7)

where the self-energy part X ' ' is a 2&(2 diagonal matrix. The matrix UIIU is also diagonal, since scattering by the
phonons affects only the electron states with p at the vicinity of +pF. We therefore rewrite Eq. (2.6) in the form

[ co+X»(e)——X» «(» —co)+uqcr3]II», (q, co)=bG» (q, co) cr3+ f de, g U (~e, )11, , (q, co)U (E~G)

P)

where

(2.8)

,co)=G» (t) —G» «(E"co—'

Using the Ward identity (the proof is given in Appendix A)

(2.9)
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Xq(e) X—p q(E co—)= f dEig Upp (eEi)bGp, (q&cv)Up, p(sic) &

p&

we obtain from (2.8)

( co +vqc73)IIp, (q, co ) =b Gp, (q, co )o 3+ f de, g [b Gp, (q, co ) Upp (e'E, )II, (q, cv) Up p(e, e)
p)

—
Upp, (E&i)EGF, (q, co) Up p(cia)IIp, (q, co)] .

(2.10)

(2.11)

Making the ansatz

IIp, (q, co) =b Gp, (q, co)21(q,co),

where 21 is a 2 X2 matrix, we find from (2.11)

( —co+ vqo'3)g(q, vc) =cr3+M (q, co),

where

(2.12)

(2.13)

M (q, cv) =iv f dad t, g [~Gp,(q, cv) Upp (Eki)&GF, (q, co)21 U (e,e)a'. -,
—

Upp (eei)bGp, (q, co)Up p(cia)EGp, (q, cv)ri] . (2.14)

Inserting Eqs. (2.3), (2.7), and (2.12) into (2.2), we obtain

e u
cT(q&co)= ( —E)Tr(o'3r/(q&cv)) . (2.15)

Thus, solving Eqs. (2.13) and (2.14) for 21 and inserting the result into (2.15) gives an expression for the conductivity. In
the next section we investigate various contributions to M(q, co) and cr(q, co).

III. THE CALCULATION OF THE CONDUCTIVITY

Since we consider electronic states at the vicinity of p~, we shall distinguish between two phonon processes. In the
first, an electron initially at the vicinity of pF ( —pF) remains close to pF ( —pF) after the emission or absorption of a
phonon. This corresponds to forward scattering. The second process takes an electron from the vicinity of pF ( —pp) to
the vicinity of pF (pF) and —corresponds to backward scattering. The electron-phonon interaction is written according-
ly in a matrix form

~e-ph g [g( 1 k2)9 ki — Ak2) tk i+2g(2pF+kl k2)9 2pp+ki —k2 2 Pki(o 1+ o2)fk2
1

kik2

+g( 2pp+ki k2)Cp 2pp—+k —kz gk—i(CJl iC—724'k ]
1 (3.1)

where g denotes the electron-phonon matrix element,

f'k ~k+~ —k

b and b t are the phonon operators, and
r

CpF+k

Pk (cp +k c —p +k)C pF+k

(3.2)

(3.3)

where c and c are the electron operators. Equation (3.1) describes the interaction of one-dimensional electrons with
three-dimensional phonons. For convenience the dependence of g and y upon the transverse components of the momen-
tum is suppressed. The first term in (3.1) describes forward scattering and the last two terms give the backward scatter-
ing.

Now consider a phonon line insertion, as depicted in Fig. 2. We denote the right-hand side of the diagram by
Xp p+p p(Fir'+ei —e) where X is some 2X2 matrix. In the high-temperature limit, where T is larger than any typical
phonon frequency, one obtains
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e' e'+ p-p
FIG. 2. Insertion of a phonon line. The shaded area is denot-

ed X~ ~+~ ~ in the text. (Energy indices are suppressed for

convenience. )

Ii'

P-Pi 1&

P-q p-q
FICx. 3. Lowest-order contribution to M(q, co) [Eq. (3.9)].

Energy indices are suppressed.

I g1 I
[5(E E1 ——co1 )+5(e @1+—co1)]X~ ~ +~ ~(61 6 +61—e)2T

+
I g3 I

[5(e e1 —co2)—+5(e e1+—co2)] , (o,X—~~+~ ~cr1+cr2X + cr, ) .2T 1 (3.4)

Here we have introduced the following notations. The matrix element for forward scattering is g1 and the corresponding
phonon frequency is co1. (Note that co1 includes the transverse momenta, and thus does not vanish even if the momentum
transfer along the chain is small. ) Similarly, g2 and co2 are the matrix element and phonon frequency for backward
scattering, respectively. The factors T/co1 and Tlco2 result from the phonon occupation numbers in the high-
temperature limit.

To demonstrate this procedure we calculate in some detail the lowest-order contribution to the self-energy part
Xz(e) —Xz q(e —co). In this case the matrix X in Eq. (3.4) becomes hGz, (q, co) [see Eqs. (2.9) and (2.10)]. Summing

over p~ and integrating over e& we get

~p(~) —~p-q(~ —~)= ——2
I g1 I' +2 lg3 I'„

CO i C02
(3.5)

which is proportional to a unit matrix. Introducing the forward (1/r1) and backward ( I/rz) scattering rates

(3.6)

we find

(3.7)

In the weak scattering limit and at high temperatures, the single-particle Green s functions are smoothly varying func-
tions of the interaction, as in the case of elastic scattering. Therefore, we shall use for X and X" (which enter the ex-
pressions for G and G") the lowest-order result

yR yA
27

' (3.8)

Having constructed the expressions for Gz
'"' and consequently for b,G [Eqs. (2.7) and (2.9)], we now turn to examine

the matrix M(q, co) [Eq. (2.14)]. The lowest-order contribution to it is depicted in Fig. 3. Carrying out the summations
as indicated in Eqs. (3.4) and (3.6) we find

Mo(q, co) = — [o.1'(q, co)cr1 —g(q, co)] . (3.9)

We now turn to examine the contribution of the maximally crossed diagrams (Fig. 4) to M(q, co). In the case of elastic
scattering these diagrams lead to the Anderson localization. We show in Appendix B that the contribution of the maxi-
mally crossed (MC) diagrams to M(q, co) is

M (q,co)= —I de1 I [—e1 —co 1/r+cr3U(q1 —q)]—'+[e1 co 1/r —cr3U—(q1 ——q)]2~

XKq, q(e1, co)[o,r)(q, co)cr1 r)(q, co)], — (3.10)

where
1

Kq& q(61~co)= z [Lq& q(el~co) —03Lq q(el~co)&3]&1 ~'
(3.11)

+ + + 0 ~ 0

FIG. 4. The series of the maximally crossed diagrams.
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and L represents the infinite series of the maximally cross diagrams. Explicitly,

L«(G 1,Cd)= f de2F& C«(262 —E1—'CO)F, , + f de2dE+& C«(2e2 E—
1 C—O) «C«(262 —'E1—CO)F&

+ ~ ~ ~ (3.12)

where

l l
C (E)= — E —+CT2uq (3.13)

and

F,= [5(E c01)—+5(6+601)]+01 [5(Eco'—2) +5(e+c02)] .
2j1 2' (3.14)

The infinite series of (3.12) can be easily summed over in the case co1 ——A@2
——0 (i.e., elastic scattering). In that case the

e; integrations yield the factor 5(e1) and from Eqs. (3.11) and (3.12) we find

2i co lr1 —1/2
L (e1,co)=5(e1),co1 ——co2 ——0 . (3.15)

r2 co —u (q1 q) +—2ico/r2

M (O, co)= ——MC

7 2co'P2

Inserting this into Eq. (3.10) we obtain (in the small-cor limit)
1/2

[o12)(co.)cr, —q(co)], a)1 ——co2 ——0 . (3.16)

This reproduces the result obtained by Vollhardt and Wolfle and diverges as the external frequency co tends to zero.
In the other extreme limit, where the phonon frequencies are much larger than 1/r, the terms in the infinite series

(3.12) are very small. The general term is of the order (u/w~h)(1/co~hr~h)", where cosh and v~g denote typical phonon fre-

quency and scattering rate, respectively. Thus in the limit ~phTph ))1, the crossed diagrams can be neglected, as has also
been pointed out by Abrikosov and Ryzhkin. The leading contribution of (3.12) to M is

(ol /ol 9) ~ h+ h&&1Mc l 1

T CO 1gl V'2
(3.17)

This is a small correction to the first Born approximation, Eq. (3.9).
To obtain the contribution of the maximally crossed diagrams in the cosh &h && 1 limit, one needs to estimate the infi-

nite series of (3.12). This is carried out in Appendix C. It is shown there that in that limit

MMc(0 ) f 2m'

l
CO+ —O'3' 1

7
+ CO+ +03' 1

7
X,(co)[o1g(co)o.1 —11(co)], (3.18)

where
2

Kq, (CO)= V q1 — +r 2 +
r22 r2 r2

—1
C01

(3.19)

Inserting (3.19) into (3.18) we find

i ~2r ~1r 2i co
2 2

MM'(0, ~)=—
2 V2 +1%2 +2

—1/2

[o12I(co)o1—2)(co)], copy ph ((1 . (3.20)

Let us now investigate the expressions for the conductivity in the various regimes. To this end we insert M into (2.13),
solve for 2), and insert the result into Eq. (2.15) for o. The lowest-order contribution, i.e., the first Born approximation
[Eq. (3.19)],gives

cr (co)= e v 2
KS —l cO+ 2 /7.2

Taking into account the leading-order correction in the co~h1 &h && 1 limit [Eq. (3.17)] we find

e v 2
o(co)= epg ph ))1

n S

iso+�

(2 /)r(21+—I/co1r1 r)

In the other extreme limit, co„hr~h && 1, Eq. (3.20) yields

(3.21)

(3.22)
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e U 2 1
o(co) = 2 —&co+ 1+—

z +
+2, V g2 %2%1

I

T2

' —1/2 —1

~Ph+Ph ((1 (3.23)

To obtain the qualitative behavior of the conductivity
as a function of cophrph, we set the external frequency co

equal to zero and denote cro e——uv2/mS .T.hen, from
(3.22) and (3.23)

1 —I /2(cophTph), coph~ph )& 1

coph+ph/~2 ~ph+ph && 1
(3.24)

The schematic behavior of cr/oo as a function of copy ph is
shown in Fig. 5.

IV. DISCUSSION

We have extended the diagrammatic method of
Vollhardt and Wolfle for the calculation of the conduc-
tivity to the case of inelastic scattering. %'e have investi-
gated the contribution of the maximally crossed diagrams
to o. and have shown that in the strong-inelasticity limit
(coph'mph )) 1) it yields a correction of order (coph~ph) to
pro, where cro is the Boltzmann-equation result of the con-
ductivity. In the weak-inelasticity limit (coph~ph &&1) the
dc conductivity is linear in soph and quadratic in ~ph, thus
decreasing with temperature as T . Thus, in the small

cophwph limit we reProduce the scaling result of Abrikosov
and Ryzhkin.

In the case of elastic scattering the divergence of
Ke (co) [see Eq. (3.19)] at small external frequency co,

which leads to the vanishing of the dc conductivity, is re-
moved in the presence of time-reversal invariance break-
ing. Vollhardt and Wolfle point out that this results
from the replacement of co by co+i/~„where v; is, e.g. ,
the spin-flip scattering time. From Eq. (3.19) it is seen
that in the weak-inelasticity regime the role of the time-

I

I

reversal breaking rate is played by cophTph and not ~ph' as
might be conjectured.

A recent numerical study of Marianer, Hartzstein, and
Weber' has yielded a diffusion coefficient proportional to
coph at frequencies much less than mph. The model
describes the time-dependent width of an initially local-
ized wave packet using a tight-binding Hamiltonian with
time-dependent on-site energies. This latter time depen-
dence is characterized by a frequency coph. It is assumed
there that fi/mph is not much less than the bandwidth. In
this respect the numerical model is different from the
model studied here. Whether this is the reason for the
discrePancy in the coph dePendence of the diffusion con-
stant is not yet clear to us. %'e hope to study this ques-
tion in the near future.
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APPENDIX A: PROOF OF THE VIZARD IDENTITY

Here we prove the identity (2.10) used in the derivation
of Eqs. (2.13)—(2.15) for the conductivity. The proof is
analogous to that constructed. by Vollhardt and Wolfle
for the case of elastic scattering, though care must be tak-
en when averaging over the phonon lines.

Consider, for example, the retarded self-energy diagram
shown in Fig. 6(a). Subtracting from it the advanced
self-energy diagram we obtain

Xp(e) Xp q(e —co)= f d—eq f de3 g (up p EGp up p Gp +p pup p Gp up
P2 P3

A R+~P —P GP —~"P—P ~ P +P —P"P —P P "P—P

A A+ "p p2 p2 e "p p3-p2+p3-p e "p-p2--- (Al)

I

~ph &pg

FIG. 5. The schematic dependence of the dc conductivity
upon coph~ph [Eq. (3.24)].

(c)
FIG. 6. Second-order irreducible diagrams. (a) Self-energy

correction; (b), (c), and (d) irreducible vertex function.
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Here up p denotes the electron-phonon vertex, b,G is given by Eq. (2.9), and the energy indices are suppressed for con-
venience. Carrying out the phonon averaging according to Eq. (3.4), each term on the right-hand side of (Al) yields
three terms. For example, the first term gives

R R R R R R
P+P —P P+ ~ ~ ~ ~ P ~ P+P —P P3 ~+ ~ ~2 ~ ~3 ] P P+P3 P

where A and B refer to the forward and backward scattering (see text):

(A2)

[5(e co—$)+5(E+co$)], 8,= [5(e—rd2)+5(E+c02)] .
2'T

$ 2~2

One can easily verify that (A2) is also the result of

(A3)

f de& g Upp, (Ee&)KGp Up p(~,e), (A4)
P&

where U here is depicted in Fig. 6(b). Similarly, the other two terms in (Al) give (A4) for U of Figs. 6(c) and 6(d). In
this way the %'ard identity is proven diagram by diagram.

APPENDIX 8: CALCULATION OF THE MAXIMALLY CROSSED DIAGRAMS

Here we calculated in detail the first diagram of Fig. 4, and obtained the general term in the infinite series of the maxi-
mally crossed diagrams. From Eq. (2.14) we see that we need to consider

Upp (ee])Xp g Up p(E/E) (81)

where Xp, is a diagonal matrix [Xp, =b,Gp, q in the first member of M(q, co), Xp, bGp, in the s——econd

member]. Using Eqs. (3.4) and (3.6) we find that for the first diagram of Fig. 4 expression (81) is

f «pg[~q —p2~p —pG Xp, p, G +2~p —pIIg —p(G olXp, gG o$+G ~2Xp, , p, G o2)
P2

+ 4 +e e2IIe2——e)(o 1G loX)p, ep IG ~1+ol ~2X )ep)~IG , o2+~2G ~1Xp),e(~2G ~1+~2G o2Xp), e)o2G o2)]

(82)

where

[5(e—co~)+5(E+co~)], 8 = [5(E cop)+5(—E+co2)],
2v$ 27 ]

(83)

G =Gp, (ep), G"=Gp+p, p, q(e+e) —e2 —co) . (84)

The last member of (82) vanishes since G, G, and X are diagonal matrices and for such matrices the combination in
the brackets is identically zero. The first member vanishes upon integration with respect to p2. Hence only the second
and third members contribute. Carrying out the summation over pz we obtain

o 1Xp),e)~1 f d2e~[e e2+e~ e—) Ckk+—) —q(e+~1 ~2 ~)+&. ;~; .,~, o ick+k& q( +&I —&2 ~)o—1]

where

Ck+k q(e+e~ —2@2—co) = g Gp (ez)o~Gp+p p q(E+e, e2 co)o&—— .R

P2

(85)

l l
e +E'

)
—2E2 —CO — +U ( k +k t —q )0'3

U
(86)

Here we have used the notation p = +pz+ k and p I
——+pz+ k &.

In a similar way one can calculate the higher-order maximally crossed diagrams. We find it convenient to present
their contribution to (81) as follows:

Upp (ee))Xp, , Up p(e)e) =o)Xp, ,o )Kk+k q(E e),co), —

where

(87)
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1

Kk+kl q(E —El&M)= 2 [Lk+kl q(E —61&&)—&3Lk+kl q(E —61&o2)&3]%1

and L represents the infinite series,

Lk+k, q(e' —e'l&m) = f d&2F~ ~2C(a+el 2—e2 co—)F~

+ f de2de3F, , C(k+el 2e—2 co—)F, , C(@+e, 2e—3 o2—)F,

In Eq. (89) all the matrices C [see Eq. (86)] depend upon k +k 1
—q and the matrix F is given by

(88)

(89)

(810)F~=A, +o.]B~,
where A and B are given by Eqs. (83). One notes from Eq. (88) that K is a diagonal matrix. Therefore, inserting (87)
into Eq. (2.14) we obtain

MMC(q, m) = iu f de de, g b, Gq ~lhGp, o 1Kk+k q(e el,—co)[0 lrt(q, to)o 1 ri—(q, co)],
. p~p)

(811)

where p =+pF+k and. pl ——+pz+kl. Changing k +kl ——ql and using Eq. (2.9) we finally find Eq. (3.10).

APPENDIX C: DERIVATION OF EQS. (3.18) AND (3.19)

In order to treat the infinite series (3.12) we write it in the form

L (~1)= f «2Fe2C(2~2 ~1)P(~1&~2)

where

P(e„e2)=F, , + f de3F., ,C(2e3 el)F,—, + =F, , + f de3F, , C(2e3 —el)P(el&e3) .

Fourier transforming the energy variables, Eqs. (C 1) and (C2) become

L (t) =2n f dtldt2F(tl )C(t2)P(t +t2, tl +2t2),

P(tl, t2)=F(tl)5(tl —t2)+2nF(t2) f dt3C(t3)P(tl+t3, t2+2t3) .

Here C(t) is the Fourier transform of C(e) [Eq. (3.13)] and F(t) is the Fourier transform of F(e) [Eq. (3.14)].
In the elastic scattering case F(t) is a constant and consequently the function

P(tl)= f dt2P(tl, t2)

is also a constant. Since, from Eqs. (C3) and (C4)

P(t) =F(t)+L (t),

(Cl)

(C3)

(C4)

(C5)

(C6)

it follows that in the elastic scattering case L (t) is a constant and L (e) a: 5(e).
To treat the inelastic case, we note that C(t) decays to zero at

~

t
~

)r. This implies [see Eqs. (3.10) and (3.13)] that
we need L (t) at times

~

t
~

&r and hence, from (C3), P(tl, t2) at times shorter than r. We accordingly replace F(t) by
F(r) in Eq. (C4) and find

P(tl)=F(r)+2nF(r) f dt3C(t3)P(tl+t3) .

Solving for P and inserting into (C6),

L(t)=L =[1 F(r)C] 'F(r)C—F(r),
where

C=2n. f dt C(t)=2n co+ ——u—qcr3
l l

U 'T

(C7)

(C8)

(C9)

Calculating K from L [see Eq. (3.11)],we obtain

U 2i (co+i Ir)
Kq (E&CO) =5(E) Cos(CO2r) COS(COlr)—

'T2 T]

cos (Q)2T)

~2

cos (cuir)

7 ]

2i (co+i Ir) COS (CO21.)
2

(co+i In. ) uq 1
— c—os(co lr) +

T] ~2

In Eq. (3.19) we use the small-tolr, co2r limit of this expression.

cos (colr)

T$
(C10)



3548 O. ENTIN-WOHLMAN 31

'Permanent address.
~N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961).
N. F. Mott, Philos. Mag. 22, 7 (1970).

SV. L. Berezinsky, Zh. Eksp. Teor. Fiz. 65, 1251 (1973) [Sov.
Phys. —JETP 38, 620 (1974)].

~A. A. Abrikosov and I. A. Ryzhkin, Adv. Phys. 27, 147 (1978).
~D. Vollhardt and P. Wolfle, Phys. Rev. Lett. 4S, 842 (1980);

Phys. Rev. 8 22, 4666 (1980).
A. A. Gogolin, V. I. Melnikov, and E. I. Rashba, Zh. Eksp.

Teor. Fiz. 69, 327 (1975) [Sov. Phys. —JETP 42, 168 (1975)].

~A. Madhukar and M. H. Cohen, Phys. Rev. Lett. 38, 85 (1977).
J. R. Cooper, D. Jerome, M. %'cger, and S. Etemand, J. Phys.

(Paris) Lett. 36, L219 (1975).
~H. Gutfreund and M. Weger, Phys. Rev. B 16, 1753 (1977).
~oS. Marianer, V. Zevin, M. W'cger, and D. Moses, J. Phys. C

15, 3877 (1982).
I L. P. Gorkov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz. S4,

612 (1968) [Sov. Phys. —JETP 27, 328 (1968)].
' S. Marianer, C. Hartzstein, and M. Weger, Solid State Com-

mun. 43, 695 (1982).


