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The structure factor of dilute magnetic systems in the ordered phase contains, in addition to the
usual q-dependent susceptibility, another term, which results from the fluctuations in the local
quenched magnetic moments. This term, first considered by Grinstein, Ma, and Mazenko (GMM),
is discussed here using scaling arguments, and calculated explicitly in d =4—e and d =2+a dimen-

sions, as well as for an infinite number of spin components, n ~ ao. Contrary to the earlier calcula-
tion by GMM, this term is shown to have no coexistence singularities when n & 2. In the Ising case,

J

this term combines with the usual susceptibility term to affect the measured critical amplitude ra-
tios: The measured amplitude of the structure factor below T, is not equal to that calculated for the
susceptibility, as previously assumed.

I. INTRODUCTION AND RESULTS
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in which ro is linear in the temperature, and P(x)
represents the fluctuation in the local interactions,

[P]=0, [P(x)P(x')]=65(x —x') . (1.3)

It was shown heuristically by Harris [for Eq. (1.1)],
and confirmed using the renormalization group [for
Eq. (1.2)], that such randomness does not affect the criti-
cal exponents of systems with a negative specific heat ex-
ponent, a. This applies, e.g., to spin systems with n & 2 at
d =3. Renormalization-group studies in d =4—e dimen-
sions found a new, "random, " fixed point, when the non-
random ("pure") system has ct &0. In particular, this
"random" behavior is expected for the Ising case (n =1)
at d =3.

The critical properties of quenched random systems
have been the subject of much active research in the last
decade. ' In the present paper we discuss in particular the
theory of the structure factor, measured by neutron
scattering, of dilute magnets. To be specific, a possible
model Hamiltonian describing such systems is

I= g J,,S, .S, = —g ([J]+5J,, )S, .S, ,
(~,j) (I,j)

where the IS; j are n-component spins on the sites i of a
d-dimensional lattice, and the JJ- are quenched random
exchange interactions, with configurational average [J]
and with mean-squared fluctuation 6=[5J,&]. An alter-
native formulation starts with the Ginzburg-Landau-
Wilson formulation,

Since a is typically small, it has been generally believed
that this modified critical behavior might be difficult to
observe. However, recent experiments on the dilute Ising
antiferromagnet Fei ~Zn„F2 seem to yield new values for
the exponents and the universal amplitude ratios. These
amplitudes roughly agree with recent one-loop calcula-
tions (to order e' ) for the "random" Ising behavior.

Much of the experimental effort on critical phenomena
relies on neutron-scattering measurements of the spin
structure factor P'&(q). This factor is related to the aver-
age Fourier transform of the spin-spin correlation func-
tion, [&S„(0)S„(x)&],where & & denotes a thermal
average and [ . ] denotes a configurational one (over the
quenched random variables). In the present paper we dis-
cuss the properties of

x~~(q) = [&s~~(q)s~~( —q) &
—&s,~(q) & &s~~( —q (1.5)

The function C"(q), first discussed by Grinstein, Ma,
and Mazenko (CxMM), is specific for random systems. It
measures the fluctuations in the local quenched magneti-
zation m(q)=&S~, (q)&,

C"(q)=[m(q)m( —q)] —M 5(q) . (1.6)

where S~~ is the longitudinal-spin component {parallel to
the average magnetization M= [ & S(x) &]), in the ordered
phase. A simple addition and subtraction shows that
W~~(q) can be split into three terms,

W(~(q)=X)~(q)+C"(q)+M 5(q) . (1.4)

The last term represents the usual Bragg peak, centered at
the wave vector q =0 and related to the long-range order
(for antiferromagnets, the point q =0 is at a corner of the
Brillouin zone). X~~(q) is the Fourier transform of the usu-
al longitudinal-spin correlation function,
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No such term is expected for the transverse structure fac-
tor, W, (q).

In a nonrandom system, one has C"=0, and the mea-
surement of W~~(q) at q&0 yields the q-dependent longi-
tudinal susceptibility X~~(q). For the Ising case, X=X~~(q)
is often well approximated by a Lorentzian,

X( q)=1/[X '(0)+Cq'], (1.7)

C"(0)=2 AX{0),

where A is a constant. Thus,

W(q)~(1+Ah)X(0) as q~O .

(1.10)

If one writes X(0)=I '
~

t
~

r, with t =(T T, )/T„ then-
one concludes that a measurement of W(q) will yield the
amplitude (1+Ah)I", instead of I '. The amplitude ratio
measured in Ref. 7 is therefore not I /I", but rather
(I"/I")/(1 + 3b, ). For the Hamiltonian (1.2), we show in
Sec. V that 3 = I/u +O(1), so that the measured ampli-
tude ratio is

(I /I")/[I+ &'/u'+O(~' ') ] =(I /I")/I —,
' +O(~' ') I,

and not I /I '. Of course, the corrections of order e'~
may be large, and the detailed comparison with the exper-
iment should await their evaluation.

For finite small q, C" may also have corrections of or-
der q . These will modify the measured coefficient of q
in 1/W(q), and thus the amplitude ratio of the correlation
length. For n )2 we combine scaling arguments with
new calculations in the limit n~00 (Sec. III) and at
d =2+a dimensions (Sec. IV) to derive the behavior of
C"(q). In the limit of small q we show that the leading q
dependence of D(q) has the form 1/(a+bq ), so that
(contrary to COMM) C"(q) is not singular as q~O. This
result also arises from a corrected exponentiation of the
expansion in @=4—d used by COMM (Sec. V). The lead-

neglecting effects of the order of the small critical ex-
ponent g. For the systems with continuous symmetry,
n )2, one encounters coexistence-curve singularities; at
T(T and small q one has P~~ocq

" and P& q
Equation (1.4) shows that a fit like (1.7) to P'(q) is wrong
for random systems. In addition to X(q), W(q) contains
the nontrivial term C"(q). For some purposes it is con-
venient to write

C"(q)=XII(q)D(q) .

For d )4, where mean-field theory applies, GMM showed
that D(q) =6M . In the Ising case, this becomes

bMC(~)( )
™

(1.9)
[X '(0)+Cq ]

which is very reminiscent of the squared Lorentzian ob-
served in systems with random fields. ' Indeed, one might
argue that a fluctuation in the exchange JzS;SJ generates,
within mean-field theory, the term JJM,SJ, which acts as
a random field. '

In Sec. II we present a general scaling analysis of
C"(q), and show that Eq. (1.9) must be modified for
d ~4. In the Ising case, near the "random" critical
behavior, we find that for small q one has

II. SCALING

We start with a summary of the scaling properties of
X~~(q). Writing X~~ as a function of the three small vari-
ables q, t, and the (dimensionless) magnetic field h, and
rescaling lengths by a factor b, one expects"

X~(( qt, h)=g b X(~(bq, b' "t,b "h), (2.1)

where g=b'd +"'~z is the rescaling factor of the spins, v
is the correlation length exponent, and yp, =(d +2—q)/2.
The exponent ri is defined via X~~(q, 0,0) a: 1/q ". In gen-
eral, X~~ may also depend on the momentum cutoff A, and
the right-hand side of Eq. (2.1) may thus depend on bA.
We shall ignore this dependence except for special cases,
emphasized below. Choosing now b'~

~

t
~

to be of order
unity, and remembering hM is a function of M

~

t
~

we conclude. that one has

with y=(2 —g)v. At h =0 and t &0 one has
M =&

~

t
~

~, so that M
(
t

~

~=& is a constant. We then
expect that

X„{q,t)= ~t
~

—X,(q ~t ~-"), h=o. (2.3)

The correct limit
~

t
~
~0 is now recovered if

Xo(x) ccx ' "' for x~ ao. For the Ising case n =1 one
expects no coexistence-curve singularities, and thus

Xo{x)=1/[Xo '(0)+Cx ] for x «1,
justifying the approximate form (1.7).

For n &2, we must have' Xo(x) ~x '" ' for x &&1,
so that

X ~ ~t(' ' rq ' ' q&&~t~ (2.4)

When the randomness is "switched on, " we must add the
variable h. Near the "pure" behavior, there exist various
arguments~ ' showing that 6 scales as A~b
Within our scaling approach, this introduces an additional
scaling variable, b

~

t
~

. This variable decays to zero
for o, &0, leaving the above asymptotic results unchanged.
When a&0, 6 is renormalized towards a fixed-point
value 5, and all the critical exponents are changed.

ing temperature dependence of C" in this limit is
~
t

~

for the "random" (unstable) behavior and
~

t
~

r for
the "pure" (stable) behavior. The behavior of C"(q) at
large q is more complicated, and one needs more informa-
tion before one can uniquely predict it. However, we ex-
pect that, in any case, C"(q)~0 as

~

t
~
~0, so that

C '(q) «Xll{q) q
"-'i~ (large q) .

Heuristic arguments, consistent with appropriate exponen-
tiations of the e expansion (Sec. V), are given to show that
C " vanishes as M for the "pure" behavior and as—t ~ M' ~ for the "random" Ising behavior. In general,
C"(q) is a mixture of M and M'~~ for large q.

In addition to the scaling behavior near T„we also dis-
cuss the behavior at low temperatures, using both scaling
(Sec. II) and renormalization-group (Sec. IV) techniques.
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However, the asymptotic scaling forms quoted above
remain unchanged.

We now turn to the scaling of C". We start in the
neighborhood of the "pure" fixed point, when h~Ab i".
The same arguments which led to Eq. (2.1) now yield

C&'~(q t h b, ) =g'b-'C"(bq b'"t, b""h b '&) (2.5)

c"(q,t,M, ~)=~
l
t

l

' &(q
f
t

f
(2.7)

Such a form is borne out by all our perturbative calcula-
tions, as well as by those of GMM, and is also confirmed
by the (exact) mean-field result (1.9) and large nlimit -(see
below). It would helpful to have a general proof of this
analyticity in A.

At zero field, M
l
t

l

~ is again equal to the constant 8,
and we have

C"=b, ltl r K,(qltl —-)-, h=o. (2.8)

In the Ising case n =1 one has a correlation length of or-
der

l
t

l

". In the limit q l

t
l

«1 one expects no
singularity in q, and thus we expect that %0(x) ap-
proaches a nonzero constant for x —+0, yielding

The factor g comes from having two spin (or magnetiza-
tion) factors [see Eq. (1.6)], and the factor b comes
from the 5 function in their momenta. Thus,

c"(qtM~)= ftf '&(qftl ",Mltl ~ ~ltl ) ~

(2.6)

As mentioned before, we expect C"' to vanish for the
"pure" system, i.e., when 5=0. Assuming that C"' is an-
alytic in 5, the leading power of 5 will be 1, and we con-
clude that for b,

l

t
l

one can write

C"=6 ft f
rC, „(q ft

f
"), h =0 (2.13)

c"=ca*ft f-', q ft f-"«I, h=o (2.14)

respectively, confirming Eq. (1.10). Indeed, these results
are borne out by all our explicit calculations. Similarly,
Eq. (2.11) is now expected to be replaced by

c"=D b,*tq " &+'i"-'+-D a'
l
t l't'q

qltl "»I, (2.15)

Note that at fixed q, the (positive) function C" increases
with decreasing

l
t

l
for q f

t
l

"«1 [Eqs. (2.9) or
(2.14)], and decreases to zero as

l
t

l
~0, when

q l
t

l
"»1. Thus, C" should have a maximum at

l
t

l
ccq' ', with a C",„of order q

'r+ 'i" ("pure") or
q

' "' ("random").
So far we have considered only scaling near the critical

point, T=T, . A similar analysis can be carried out at
low temperatures, near the zero-temperature fixed point.
Since T=o is a "discontinuity" fixed point, ' one has
P=o, or A,l, =d. Therefore, g b "~b, and Eq. (2.5) is
replaced by

We now turn to the "random" fixed-point behavior.
Here, b, approaches a fixed-point value 5, and this value
replaces b i"b, in Eq. (2.5). [In fact, one will have
b.*+(b. b.*)—b, with A,t, &0. We ignore the corrections
to scaling which arise from the expansion in b, b,'.]—Re-
peating the same arguments as before, Eqs. (2.7), (2.8),
and (2.9) are now replaced by

C"(q t m, h)=h
l
t

l
rÃ„( ltd ",Mlt

l

t'), (212)

c" sftf r-, qltl "«1, h=o. (2.9) C~'i(q, T,h, g)=b "C"i(bq b T, b h b ~g) (2.16)

C"(x)= [m(0)m (x)]—M (2.10)

vanishes at T, . If the singularities in the two terms in
(2.10) do not cancel exactly, then we expect that C"(x)
may have a contribution of order M ~

l
t

l

~. In addi-
tion, one might expect terms analytic in temperature, i.e.,
of order t cc M' . The correlat—ion function X&i(x) also
has energylike terms, of order

l
t

l

' cc M"— 'it', coming
from [(Sii(0)Sii(x))] (for small x).' None of our explicit
calculations yields such terms in C", and we would be
surprised if any other singular terms appear. Fourier-
transforming C"(x), a combination of these considera-
tions with Eq. (2.8) yields

Our detailed calculations for n & 2, which correct GMM,
arrive at the same conclusion, despite the possibility of
coexistence-curve singularities.

The other limit, q l
t

l
")&1, concerns the limit t +o-

at fixed q. For ferromagnets (or antiferromagnets) we ex-
pect all m (x)'s to have the same sign as M (or the stag-
gered magnetization). Since M=+„m (x)/N, the van-

ishing of M as
l
t

l
~0 implies the vanishing of ail m (x),

and thus for any distance lx l
« f

t
l

"we expect that

The scaling of T near T =0 depends on n, and is believed
to be with A, z. ——1 —d for n = 1, and A, z. ——2 —d for n )2. '

The exponent A,~ is found as follows: An expansion of the
free-energy density of (1.1) to second order in 5JJ and
averaging yield

C"=b, @(Tq A/q) (2.18)

+,, g I((S, S, )').—(S; S, &.'I/~.
p 21 (&~)

(2.17)

Each of the factors in the last term, (S; SJ )0, scales as the
energy density, E cc B(F/T)/B(1/T). Since (F/T)0 scales—kT ':-d
as b ", and 1/T scales as b, we find that E ~ b

2A T —2d
Thus, the last term in (2.17) scales as b . Compar-
ing with (F/T)o ~b, we identify (b, /T )

~b (5/T ), and hence A~b 6, i.e., A~ ———d, in-
dependent of n. It therefore follows that randomness I.n
the exchange is highly irreleuant at low temperatures. Ex-
panding (2.16) to leading order in b., setting h =0, and
choosing bq =1, we thus find

g(s) D gt —(d —2+q+1/v)+D g f t f 2P —2/v+. . .

q ft f
"&)1, h=0. (2.11)

The explicit dependence on A/q is needed for finding
corrections at low T.



31 STRUCTURE FACTOR FOR DILUTE MAGNETIC SYSTEMS 353

If the randomness is weak, so that J,z &, 0 for all i,j,
then as T~O we expect m(x) —+I for all x, so that
C")~0. Explicit calculations (Sec. IV) for n &2 yield
C(x,y)=x (1—ay ) for some positive constant a.
Hence,

C(s) T2g(u 2~2(d —2) 2& Pd 2qd—-2+q 2(d —2)
) (2.19)

In the percolation problem, m(x)m(x ') is equal to 1

only if x and x' are on the same cluster, so that C" need
not vanish at T~O. In that case, C(x) may approach a
nonzero constant at T—+0.

Q

1+—,unII(O, q )
(3.2)

and II(O, q ) is the bubble graph shown in Fig. 1 given by

dd
II(O, q )=

~p ~
(1 (2~)d 2(~+~)2 (3.3a)

=q II(0, 1)—Kd/(4 —d) . (3.3b)

Here, u21 is the renormalized four-point vertex given
10, 15

III. EXACT SOLUTION FOR n ~ ap

In the limit of an infinite number of spin components,
n ~ ao, C"(q) can be calculated exactly. This calculation
confirms the general scaling ideas presented in the preced-
ing section and settles some but not all of the ambiguities
present in the scaling analysis. In addition, as we discuss
in Sec. V, knowledge of C" in the n~ oo limit allows us
to infer the correct exponentiation of the e=4 —d expan-
sion of C"' calculated by GMM.

%e begin with the Ginzburg-I. andau-Wilson Hamil-
tonian (1.2) and assume, as in n~ oo calculations for the
pure problem, ' ' that the four-point coupling u is of or-
der I/n. Exact calculations for the nonrandom model
show that' a=(d —4)/(d —2)+O(1/n), so that random-
ness is irrelevant near the "pure" fixed point for 2 & d & 4.
It is therefore sufficient to calculate C"(q) to first order
in 5, which we do by using the decomposition (1.8) and
calculating D(q) to first order in b, and X~)(q) to zeroth
order. [In fact, the O(5) corrections to '

X)~(q) are
O(1/n) ]The dia. grams entering the calculation of D(q)
are shown in Fig. 1. Evaluating these diagrams we find

D(q)=EM t 1 —u21nII(O, q )+—„'n u21[II(O, q )] ) (3.1a)

&&csc [rf( —,d —1)), (3.4)

where B is the beta function, and Kd
' ——2 'm I ( —,'d).

Combining all these results we see that

D(q) =a~'/[I+ -,
'

un 11(o,q)]'

=aM2/I 1+—,
'

un [qd -'II(0, 1)—l~d /(4 —d)] ]2 .

(3.5)

For small q this becomes

D(q)=AM q
' )[ —,'unII(0, 1)] (3.6)

Since M is of order n, our expansion in b, becomes
meaningful only if b, is of order I/n or smaller. When
6=0, the susceptibility X)((q) is given in the n ~ ao limit

16

The zero argument in II(O,q ) denotes that we are on the
coexistence curve, where h =0 and the transverse propa-
gators have zero mass. In evaluating (3.3a) we have as-
sumed that the Brillouin zone is a unit sphere (A=1).
The constant II(0, 1) is given by

II(0, 1)= , B( —,d ——1,—,'d —1)Kdm( —,d —1)

=~ [1——,'u2tnII(O, q )]2. (3.1b) X (q)= 1

+(2M /n)II '(0, 1)q
(3.7)

Using the n ~ ao exponents, P= —, and y =2v=2/
(d —2), we can write (3.7) in the scaling form (2.3), with
the scaling function Xo(x) given by

1
X()(x)=

x +(2B /n)II '(0, 1)x
(3.8)

where B is the amplitude of M and x =q
~

t
~

". The
limiting behavior of Xo(x) is

x
x" "II(0,1)n/2B, x «1 .

(3.9a)

(3.9b)

FIG. 1. Diagrams entering the n= ao calculation of D(q},
defined in (1.8). The crosses represent impurities, two crosses
joined by a dotted line represent a factor of b, wiggly lines
represent factors of M, solid lines are transverse, fully renormal-
ized propagators, and the solid square represents a renormalized
four-point vertex.

C(s) g
~

g,
~

—lg (
~

r
~

—1/(d —2))

where

(3.10)

Equation (3.9a) describes the critical region, with
q =O(1/n), and (3.9b) agrees with the scaling result (2.4).

Inserting (3.6) and (3.7) in (1.8), we find that to O(h),
C"(q) is given by
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Ko(x) =(2/un) II (0, 1)B

~ 2(4—d)

X
[x +(2B /n)II '(0, 1)x ]

(3.11)

This confirms the scaling form (2.8), since a+y= 1 and
v= 1/(d —2). The scaling function Ko(x) has the follow-
ing limiting behavior:

1/u B, x «1Cox =
(2/un) II (01)Bx ' ' x»1

. (3.12a)

(3.12b)

Equation (3.12a) is in agreement with the asymptotic
behavior displayed in (2.9) 'and indicates that there are no
coexistence-curve singularities in C"(q), contrary to the
results of COMM. Comparing (3.10b) to (2.11), we see that
we cannot distinguish between the two terms in (2.11),
since 213= 1, and thus the result (3.12b) is consistent with
both terms (but not with a term of order

~
t

~

' ).

IV. LO'W- TEMPERATURE
AND d =2+e EXPANSIONS

For n & 2 we can calculate the behavior of C"(q) in
any - dimension in the low-temperature regime

q ~

t
~

&&1 by constructing a low-temperature renormal-
I

ization group (RCx). In d=2+ e dimensions and for
n &2, this calculation should also, in principle, give the
behavior for q ~

t
~

'&&1, since T, =O(e).' However, as
we will explain below, there are difficulties in extracting
the behavior of C'*' in this limit.

The low-temperature renormalization group begins with
the fixed-length spin Hamiltonian (1.1). Following the
conventional notation, ' we write S=(o,m) and assume
that M is along the o direction. The vector m has n —1

components and is a measure of the fluctuations about
uniform ordering. Using the constraint S =1=cr +sr,
we can write the continuum version of (1.1) (measured rel-
ative to the ground state) as

FI= —, J d x(I[J]+5J(x)][V'rr(x)]

+ [ q[1 ~2(~)]1/2]2) (4.1)

In writing the reduced Hamiltonian H =H/T, we will ab-
sorb the constant [J] into the temperature prefactor. To
construct low-temperature recursion relations, we expand
the nonlinear interaction in (4.1) in powers of m. To ob-
tain recursion relations to O(T, Tb ), we can drop the
factor 5J(x) multiplying the nonlinear term and simply
expand the nonlinear term to O(m ). In Fourier space, we
then have

dd d
2T (2 ) 2T (2 ) (2 )"( — )+

d"q, d'q, d'q,
+2'T '' '' ''q-q-q -q -q'--q-q-q+0-'.

(2n )" (2m)" (2~)"
(4.2)

and the probability distribution of 5J(q) obeys

[5J(q)]=0,
[5J(q)5J(q ')]=A,5(q+ q ') .

(4.3a)

(4.3b)

The vertices for this theory are shown in Fig. 2. Recur-
sion relations for T and 6 are constructed without repli-
cas in two steps. "' First, one integrates out the short-
wavelength components of n(q) for an ar. bitrary function
of 5J(q) to obtain recursion relations for 5J(q) and T(q)
(at this intermediate stage the temperature varies spatial-
ly). Subsequently, one forms a recursion relation for
5J(q)5J(q '), which —upon configurational averaging—
produces a recursion relation for b.. Configurational
averaging of the recursion relation for T(q) yields a re-

(d 2)T+ — —T2+O(T3, T2b, ),
dl 2m

= —db+ Tb, +O(b, ', T'b, ),n —2
dl

(4.4a)

(4.4b)

(0)

(c)

cursion relation for the average temperature T. This pro-
cedure is illustrated graphically in Fig. 3, with the results

(a)

FIG. 2. Vertices entering the low-temperature
renormalization-group theory. (a) The interaction correspond-
ing to the second term on the right-hand side of (4.2). The
slashes denote q, and the wiggly hne is 5J(q ). Solid lines are m

fields. (b) The third term on the right-hand side of (4.2). The
dashed line is an expanded vertex which separates m fields with
different vector components.

FIG. 3. Graphs contributing to the recursion relations (44)
(a) Graphs renormalizing T(q). The second graph averages to
zero and does not contribute to T. (b) Graphs renormalizing
5J(q). (c) Graphs renormalizing 6, found by squaring those in
(b) (including the tree graph for 5J not shown) and averaging,
which is denoted by an open circle.
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where the rescaling factor b is now replaced by e . To
study the low-temperature, noncritical properties, it suf-
fices to keep only the lowest-order terms on the right-
hand side of (4A), which also represents the naive dimen-
sion of the operators. These latter terms describe the
behavior around the fixed point T =lV =0, which is the
sink for the low-teinperature phase even when randomness
is present, and which controls any coexistence-curve
singularities which may be present. Note the agreement
with our general scaling arguments, following Eq. (2.16).
In d =2+I dimensions, the recursion relations (4.4} ex-
hibit a "pure*' fixed point T =2m@/(n —. 2), b,' =0, which
is stable under the random perturbation' with an eigen-
value A,~———2+e+ O(e ), which, to this order in F,
equals a/v, in agreement with the expected scaling of b, .

We first examine the behavior of X~~(q) in the pure sys-
tem, to demonstrate how the scaling behavior described in
Sec. II is confirmed by the low-temperature RG analysis.
As noted in Sec. I, X~~(q) is a connected correlation func-
tion of the o field, and, hence, as shown in Ref. 17, it
obeys the homogeneous scaling relation (2.1). Using
b=e in (2.1), we then have

X[](q,T)=g (1)e 'X~~(qe, T(l)),
where the spin rescaling factor g(l) is given by

g(l)=exp dl+ — ln 1+ T(e 'i —1)
2 n —2 2&E

(4.5)

and"
(4.6)

ye —el
T( l) = (4.7)

1+[(n 2)/2m@—]T(e ' —1)

correct to leading order in e. We choose qe'=1, and
evaluate X~~(1, T(l)) using an ordinary low-temperature
perturbation expansion, since there are no infrared prob-
lems. To extract the q dependence of X~~(q) it is sufficient
to keep the lowest term in this expansion, which corre-
sponds to Fig. 4, i.e.,

Xii(1&T(l))=—,
' J d xe'"'"[(n (x)H(0)) —(H)2)

d"= —,'(n —l)T (l)
(2m)» p2(p+n)2

The integration of p is over the entire Brillouin zone, and
n is a unit vector along q. Higher-order diagrams corre-
spond to higher powers of T(l)/e. These diagrams then
will affect the amplitude of X~~(q, T) near T, but not the q
dependence. Using (4.S)—(4.8) we find

2 {3 —n)/(n —2)

X( )= '+' 1—
7

with the limiting behavior

(4.9)

X~)(q) =

2
' {3—n)/{n —2)

(n —1) q" 1—
2K

1 &c
(n —1) q

2+a—l(n —2),
q ~

r
~

1'))1
2m

(4.10a)

C"(q&T&h&A) =g (1)e C"(qe'&T(1}&b(l}&Ae ) .

(4.11)

At low temperatures we have [see (4.4b), (4.6), and (4.7)]
g(l) =e", T(1)=Te ' ', and b(l) =b,e . Choosing

, qe =1,we have

(4.10b)

Recalling that g=e/(n —2)+O(e ), ' we see that (4.10)
gives the expected limiting behavior. In particular, (4.11a}
confirms Eq. (2.4), since

(4—d)v —y=(3 —n)/(n —2)+O(e) .

Equation (4.11a} also agrees with the low-temperature
behavior of the n ~ oo result (3.7) since m.(0, 1)=1/~e.

A similar analysis can be carried out for C"(q), al-
though due to the difficulties mentioned below (4.8), re-
garding X~~(q) when T= T„we will not be able to see the
expected vanishing of C"(q) as T~T, . We restrict our
attention theo to low temperatures, but arbitrary dimen-
sionality. Since, upon configurational averaging, C"(q)
is a connected two-point function of the cr field [see (1.5)],
it obeys a homogeneous scaling relation:

(n —1)T (l)+O(e, T (I)}.
4m.e

(4.8) C"'(q, T,E,A)=q C('(1,Tq», bq", A/q) . (4.12)

We evaluate C" on the right-hand side of (4.12) using or-
dinary perturbation theory. The lowest-order diagram is
shown in Fig. S and is given by

FIG. 4. Lowest-order (in T) graph contributing to
P~~(q = 1,T{l) ), evaluated in (4.8). The arrows represent external
momenta q. Solid lines are m. propagators.

FIG. 5. Lowest-order graph contributing to C"(q =1); see
(4.13). See the captions of Figs. 2—4 for the graphical conven-
tions used here.
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C"(1,T(l),h{l),A ')= —,
' f d '" "j[{+())( (0))]—[{ { ))]'j
,

( q A(l)T (l) [(A t)g
(d —2)

where A is a positive constant dependent on dimensionality. Combining (4.12) and (4.13) we find

C"( T S A}=— " ST'(A"'-"—2WA'-' '-'+W' "'-").1 n —1
q& q

(4.13)

(4.14)

Thus, there are no coexistence-curve singularities in C".
In fact, the renormalization-group analysis is not even
needed here since the straightforward perturbation-theory
result (4.13) is finite even if q=0. We also note that
(4.14) is in agreement with n ~ oo result (3.11).

V. EXPANSION IN d =4—e DIMENSIONS

The diagrams needed for the e expansion of D(q), de-
fined via Eq. (1.8), were calculated by GMM. Their re-
sults are summarized in their Eq. (4.33), which reduces, in
the limit h~O, to

D(q)=AM [1——,'K4(4b, —3u)ln(uM )

= [X(q) ' —(6/u )r ]
= [X(0) '(1 —5/u )+Cq~] (5.8)

and the measured amplitudes of both X(0}and the correla-
tion length will be modified.

In the other limit, q » i
t

i
", the assumption of a single

power law yields

(5.7) is equivalent to D(q) =Dr!u, i.e., C"'(0)=AX(0)/u,
identifying A of Eq. (1.10) as 1/u. We also note that
D{q) has no q dependence for small q. Thus, to leading
order,

~(q) =X(q)+(b /u )rX(q)

+3(b —u)Q(uM /q )+K4u(n —1)lnq], D(q) ~&If q" (5.9)

with
(5.1)

D(q) =AM [1—K4(4b, *—3u*)lnM] . (5 5)

Assuming a single power law, this becomes (to order e)

Q(x )= ,K4 (1+4x—)i ln2 ( 1+4x ) —1 +1
2x

(5.2)
and Kq 1/Sm . (Th——e factor —,

' was missing in GMM. )

It is now easy to see that, at this order in u and 6,
D( q) =AM [1—K4(46 —3u )lnM+ E4u (n —1)lnq] (5.3)

for q «M (i.e., q « i
t

i
", to leading order), and

D(q) =bM2I 1 —K4b, lnM+K4[(n +2)u —36]lnq I (5.4)

for q »M ( ~
i
t

i
"). We are now faced with the problem

of exponentiating these forms, after substituting the ap-
propriate fixed-point values, u* and 6 .

In the Ising case, n = 1, Eq. (5.3) reduces to 2

D(q}~ 1+—lnq — ln q2 16

which they exponentiated as

(5.11)

near the "pure" point, consistent with the second term in
Eq. (2.11) [using P 0:q

' "'=q, since g =O(e )].
Similarly, such an exponentiation near the "random"
point yields

D(q) ~5*M' ~q +" (5.10)

consistent with the first term (analytic in t) in Eq. (2.15).
It must be emphasized that both terms in Eqs. (2.11) and
(2.15) have the form M + '" ' 'q '" ' ', so that the
above identifications may be finalized only by checking
terms of order u (lnM) .

We now turn to the case n) 2. We start with the q
dependence. GMM studied the small q dependence only
for the "random" fixed point, K4u"=e/2(n —1), K45*
=e(4 n)/8( —n —1), which is unstable for n & 2 and
d =3. They derived the order-e terms, and found [their
Eq. (4.35)] that

D(q) —,
' /(-,'+q-"") .

Based on our experience in Secs. III and IV [Eqs. (3.5) and
(4.14)], we argue that Eq. (5.10) should really be exponen-
tiated as

D(q) ~ 16/(3+q ') (5.12)
yielding a q-independent constant for C"(0).

Since the stable behavior is governed by the "pure"
point, 6*=0,K4u*=2e/(n +8), we calculated the analog
of Eq. (5.11) for that fixed point and found

D(q)=AM' ' ~
i
t

i (5 6)

for the "pure" fixed point (b*=0, K4 u =2e/9,
y=l + e/6, a=e/6, and 1/p=2+2e/3) and (to order
el /2)

D(q) cc 1+ elnq+ 2
e ln q

2(n —1) (n —1)(2n —11)
n+8 (n +8)

(5.13)

D(q) =~M' (5.7)
for the "random" (Khmelnitzkii) point [K&u*
=4(2e/159)'i, K4LV =3(2e/159)'i, and y =2v=2P
= 1 + —,

' (6e/53)'i; note an error in Eq. (4.16c) of GMM].
Both (5.6) and (5.7) are consistent, to this order, with our
Eqs. (2.9) and (2.14) (using X cc

i
t

i
r).

GMM also calculate the equation of state, which (to
leading order in e'i ) yields X '(0)=r=uM Thus, Eq. .
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which can be exponentiated in the form
2

n —1 n —1
(5.14)

Again, a complete proof of Eq. (2.15) or (5.16) will follow
from checking the terms of order e . However, the con-
sistency of Eqs. (5.9) and (5.16) with their n-dependent
amplitudes for all n is reassuring.

This is the only exponentiation which is consistent with
the large-n limit, Eq. (3.5). (Note that for n ~ ao, to lead-
ing order in e, boih equations have no constant in the
denominator. )

For small q we thus conclude that both fixed points
yield D(q) o: q '. Combining this with Eq. (1.8), we con-
clude that C"(q) approaches a limit independent of q as

q —+0.
We now turn to the t dependence of C"(0). Equation

(5.3) can be rewritten in the form

D( q) -&M ' ~ [ I +X4u*(n —1)ln(q/M)] .

(5.15)

Treating the second factor as before, it becomes of the
form A/[C+(q/M) '], which turns into A(q/M) ' for
q «M. Combining this result with Eqs. (1.8) and (2.4),
and substituting the appropriate fixed-point values and
exponents, we confirm that C"(0) obeys Eqs. (2.9) and
(2.14). Note that our exponentiation procedure can be
checked by deriving the terms of order e (lnM) . Howev-
er, the agreement with the scaling predictions and with
Secs. III and IV gives strong support for our results.

Finally, we consider the limit q»
~

t
~

. Near the
"pure" fixed point, it is easy to check that a single
power-law exponentiation of Eq. (5.4) again yields Eq.
(5.9), for all n. However, for the "random" fixed point we
find that Eq. (5.4) is consistent with Eq. (2.15) only if we
include both terms,

r

( (s) g+ M 1 jP —(2—v~1/v) (n ) M2 —d4&n —l
CC q — '

q4—n

(5.16)

VI. CONCLUSIONS

Theoretically, our paper again shows the danger in ex-
ponentiating low-order e expansions without some addi-
tional information, either from an exact limit (e.g.,n~ Oo) or from physical reasoning [e.g., the behavior of
C"(q) as M or M' P for large q].

For large q ~

t
~

', i.e., close to T„we predict that C"
approaches zero. Since X~~ approaches a nonzero value,
i.e., q +", C" will become negligible as T~T, . How-
ever, it will add up to the corrections to X~~, e.g.,

~

t
~

'
and will introduce a modified coefficient to the analytic
correction, of order t, and a new term, of order
M ~ tt~z~.

For n &2, C"(q) is also small when q ~

t
~

"&&1 since
it approaches a temperature-dependent constant, while X~~
diverges as q However, this coexistence-curve diver-
gence is very difficult to observe anyway, and the addition
of C"will only make it more complicated.

Our main new practical message concerns the Ising
case, n =1. %'e emphasize again that C'" must be in-
cluded in any analysis of critical amplitudes.
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