Heat capacity of the commensurate phase and ordering transition of para-H₂ monolayers on graphite

F. C. Motteler and J. G. Dash

Department of Physics, University of Washington, Seattle, Washington 98195

(Received 15 August 1984)

Heat-capacity data for the $\sqrt{3} \times \sqrt{3}R 30^{\circ}$ commensurate-solid phase and commensurate ordering transition of para-H₂ monolayers on graphite show striking similarities to He monolayers. The commensurate-solid disordered-fluid phase boundaries have similar shapes and the transitions show similar critical behavior. A value of 0.36 ± 0.05 is observed for the critical exponent α . At low temperatures the commensurate-solid phase behaves like an Einstein solid with a characteristic temperature of 53.4 ± 1.2 K.

INTRODUCTION

Diffraction studies of para-H₂ monolayers physisorbed on graphite^{1,2} indicate the presence of a $\sqrt{3} \times \sqrt{3}R30^\circ$ commensurate structure on the graphite basal plane over a range of submonolayer coverage and T < 20 K. A heatcapacity study³ comparing low-density para-H₂ with ⁴He suggests analogous phase diagrams for the two systems. Current work by Lerner *et al.*,⁴ on para-H₂ and recent work by Ecke et al.⁵ on ⁴He should permit more detailed comparisons at low densities. The correspondence between para-H₂ and ⁴He on graphite is a consequence of their molecular properties. Both are small, light, effectively spherical molecules that are weakly interacting and strongly influenced by quantum zero-point motion. Thus, para-H₂ provides another physical system with which to test theories developed for ⁴He. This paper reports results of a heat-capacity study of the commensurate-solid phase of para- H_2 on graphite and its ordering transition. The results show remarkable similarities to the corresponding phase and transition for ⁴He on graphite.

EXPERIMENTAL RESULTS

A high-precision adiabatic calorimetric technique was used in this heat-capacity study.⁶⁻⁸ The basic apparatus is that used by Ecke, but includes significant experimental modifications made possible by an improved computercontrolled electronics system. These modifications reduce measurement scatter from roughly 1.0% of the total measured signal plus background to about 0.2%. The advantage of using the same calorimetry cell is that the substrate is well characterized by the previous work, allowing accurate comparison of the ⁴He and para-H₂ systems. The substrate is a single piece of graphite foam⁹ with mass of 16.47 g and surface area of 486.9 square meters. Surface-area calibration is determined by assuming that maximum peak height and critical temperature of the ⁴He commensurate order transition occur at $\rho = 1.0 \ (n = 0.0637 \ \text{\AA}^{-2})^{.6,7}$ A disadvantage of this exat perimental cell is the relatively large background heat capacity due to a massive copper container. For the ⁴He system the monolayer heat capacity is roughly equal to the copper container heat capacity. For the para-H₂ system, the higher temperature of the study reduces the relative monolayer heat capacity to roughly 2-10% of the container background. The experimental modifications compensate for most of the reduction in signal to background, but the H₂ film heat-capacity results are still less precise than for ⁴He. Further details will be published elsewhere.

Our study consists of nine monolayer densities from n = 0.0634 Å⁻² to 0.0690 Å⁻². Figure 1 shows net heat-capacity data for 0.0645 Å⁻² after background subtraction. To reduce the effects of scatter in the data, the transition was traced twice with 1.0% temperature steps and three times with 0.3% temperature steps. This density has the highest specific-heat peak of all of our samples, $11.7C/Nk_B$ at 20.42 K. The critical temperature T_c is identified as the temperature of the maximum of the heat-capacity peak. The transition region scales closely to the corresponding region for the ⁴He order-disorder transition measured in the same cell.⁶ For para-H₂, full width at half maximum (FWHM) of the heat-capacity peak with the highest critical temperature is 2.1% of T_c , compared to a FWHM for ⁴He of 2.2%. At higher and lower densi-

FIG. 1. Heat capacity of para-H₂ monolayer on graphite at density $n = 0.0645 \text{ Å}^{-2}$.

<u>31</u> 346

FIG. 2. Commensurate-solid disordered-fluid transition specific-heat peak height versus density (\triangle , left axis). Transition critical temperature versus density (\bigcirc , right axis).

ties the peak height drops rapidly and T_c decreases, as illustrated in Fig. 2. One of the samples, n = 0.0635 Å⁻², was studied before the apparatus modification was complete and hence these data have somewhat larger uncertainties. Vapor pressure was monitored with a thermocouple gauge calibrated against a capacitance manometer with normal H₂ gas. Desorption is not significant for any of the densities until several degrees K above the transition.

The commensurate-solid disordered-fluid phase boundary is very similar to that for ⁴He. Figure 3 compares the phase boundaries of para-H₂, ⁴He,^{6,10,11} and the results of a triangular Ising-model calculation.¹² The para-H₂ and ⁴He data have been shifted so that their maximum critical temperatures occur at a coverage of ρ =1.012, the ideal coverage of maximum T_c for the triangular Ising model. Agreement between the shifted experimental results is excellent, but their critical temperatures fall more rapidly than the theoretical curve on both sides of the maximum. A significant difference between the para-H₂ and ⁴He systems is that the monolayer of

FIG. 3. Comparison of commensurate-solid disordered-fluid phase boundaries of para-H₂, ⁴He (Refs. 6, 10, and 11) and a triangular Ising-model calculation (Ref. 12). The coverage scale corresponds to $x_g = \frac{1}{3}$ at the density of perfect $\sqrt{3} \times \sqrt{3}$ structure.

maximum critical temperature and heat-capacity peak height is about 1.3% denser for para-H₂ than it is for ⁴He. Analysis¹² of the ⁴He results yielded a value for the interaction term J/k_B equal to 2.08 K. On the same basis, we find 14.53 K for para-H₂. This results in a nearestneighbor repulsion term of 8.32 K for ⁴He and 58.1 K for para-H₂.

We determined the critical exponent α by a fit to Eq. (1):

$$C(T) = A |t|^{\alpha} + B + DT , \qquad (1)$$

where $t = (T - T_c)/T_c$. Data in the region 0.008 < |t|< 0.12 are included in the fit. Our data are consistent with Eq. (1) in that all of the peaks are symmetrical about T_c in the region of fit. The coefficients A, B, and D were determined by a least-squares fit for each trial set of α and T_c . Final values of α and T_c were determined by a grid search for the minimum total squared deviation of the data points from Eq. (1). For the sample with the highest peak height, n = 0.0645 Å⁻² ($\rho = 1.013$), the empirical exponent is $\alpha = 0.331 \pm 0.026$. This is in excellent agreement with the theoretical value $\frac{1}{3}$ and with ⁴He data. 5,10,13 For the three samples with densities closest to $\rho = 1$, we obtain an average exponent $\alpha = 0.36 \pm 0.05$. Exponents for all of the samples are plotted in Fig. 4, which shows that the effective α is monotonically reduced as ρ moves away from $\rho = 1$. Qualitatively this is expected as the heat-capacity peak becomes lower and more rounded away from $\rho = 1$.

The temperature dependence of the commensurate-solid heat capacity below the transition is different from that of He. The para-H₂ signal resembles that of an Einstein solid with characteristic temperature $\Theta_E = 53.4$ K. A plot of effective Einstein temperature Θ_E versus *T* for n=0.0645 Å⁻² is presented in Fig. 5. The empirical Θ_E is essentially constant over the range 6–12 K. Above this range Θ_E decreases due to the influence of the orderdisorder transition. The decrease of Θ_E below 6 K is consistent with the effect of a small concentration of ortho-H₂. Similar anomalous low-temperature behavior is observed in bulk solid H₂ measurements.¹⁴ The empirical Θ_E is in excellent agreement with inelastic neutronscattering measurements on in-plane excitations.¹ The

FIG. 4. Specific-heat critical exponent α versus density.

FIG. 5. Characteristic temperature Θ_E determined from specific heat, for $n = 0.0645 \text{ Å}^{-2}$.

scattering measurements indicate an excitation mode of narrow-energy width at 4.9 meV. This energy corresponds to $\Theta_E = 57$ K. Since the Einstein model works well, the mode is evidently a type of independent particle motion. The fact that the excitations are seen by in-plane neutron scattering and not by out-of-plane scattering indicates that the mode is the in-plane oscillation of molecules within each adsorption site. Our measurements of vapor pressure show why only in-plane modes are excited. A series of measurements were made on monolayers with densities near $\rho = 1$ and temperatures in the range 25-30 K. The isosteric heat $Q_{st} = k_b T^2 (d \ln P/dT)_n$,¹⁵ obtained from these measurements is 500 ± 50 K. This is an order of magnitude greater than the thermal Θ_E , and more than an order of magnitude greater than the temperatures of this study. Thus, the out-of-plane mode is essentially in its ground state in the experimental temperature range.

In contrast to this simple spectrum of the registered phase of para-H₂, the registered phase of He monolayers cannot be described by a single frequency Einstein oscillator. For both ⁴He and ³He log $[C(T)/Nk_b]$ is linear with temperature over the range $0.08 < T/T_c < 0.89$.¹⁶ Although this empirical dependence fits ⁴He and ³He data quite well, it has not received any theoretical interpretation. We believe that it is an artifact of a broad distribution of excitation energies, and we will present an analysis of the energy distribution in a future paper.⁸

A possible explanation of the specific-heat critical behavior away from $\rho = 1$ is provided by Ecke *et al.*⁵ The two-dimensional (2D) three-state Potts model predicts $\alpha = \frac{1}{3}$ only for paths of constant chemical potential. All heat-capacity measurements are made at or near constant density. Any difference between the constant chemical potential and constant density paths tends to reduce the empirical α determined by a curve fit to constant density

FIG. 6. Heat capacities of films n = 0.0645, 0.0665, and 0.690 Å⁻² in the critical region versus reduced temperature.

data. Ecke *et al.* argue that data further from the critical temperature are affected less by constant density paths. Their arguments are valid only for densities less than $\rho = 1$. Our results for $\rho > 1$ appear to behave in a similar fashion, and this is illustrated by Fig. 6, which shows para-H₂ data in the critical region. For the sake of clarity only 0.0645, 0.0665, and 0.0690 Å⁻² are plotted together. As with ⁴He monolayers on graphite for $\rho < 1$, the film heat capacities overlap away from the critical temperature.

CONCLUSIONS

The data presented here provides striking evidence of the similarity of para-H₂ monolayers on graphite to ⁴He monolayers on graphite. In the immediate neighborhood of $\rho = 1$ a value of the specific-heat critical exponent α of 0.36 ± 0.05 is observed. This is consistent with the critical exponent of $\frac{1}{3}$ given by the 2D three-state Potts model, making para-H₂ monolayers on graphite another physical realization of the Potts model. The para-H₂ commensurate solid, however, behaves much more like an Einstein solid with a single excitation energy than does the ⁴He system. Further analysis of these measurements, together with the results on the incommensurate-solid phase and the intermediate density region between the commensurate- and incommensurate-solid phases, will be reported in a later paper.

ACKNOWLEDGEMENTS

The authors thank O. E. Vilches and R. E. Ecke for their stimulating discussions on the renormalization of the specific-heat exponent. This work is supported by the National Science Foundation under Grant No. DMR-8116421.

¹M. Nielsen, J. P. McTague, and W. Ellenson, J. Phys. (Paris) Colloq. **38**, C4-10 (1977). (private communication and unpublished).

- ²J. L. Seguin and J. Suzanne, Surf. Sci. 118, L241 (1982).
- ³M. Bretz and T. T. Chung, J. Low Temp. Phys. 17, 479 (1974).
- ⁴F. A. B. Chaves, M.E.B.P. Cortez, R. E. Rapp, and E. Lerner
- ⁵R. E. Ecke, Q.-S. Shu, T. S. Sullivan, and O. E. Vilches (private communication); Phys. Rev. B (to be published).
- ⁶R. E. Ecke, Ph.D. thesis, University of Washington, Seattle, 1983.

- ⁷R. E. Ecke and J. G. Dash, Phys. Rev. B 28, 3738 (1983).
- ⁸F. C. Motteler and J. G. Dash (unpublished).
- ⁹Graphite foam is a form of exfoliated graphite from Union Carbide Corp.
- ¹⁰M. Bretz, Phys. Rev. Lett. 38, 501 (1977).
- ¹¹M. Bretz, J. G. Dash, D. C. Hicknernell, E. O. McLean, and O. E. Vilches, Phys. Rev. A 8, 1589 (1973); M. J. Tejwani, Ph.D. thesis, University of Washington, 1979; S. V. Hering, Ph.D. thesis, University of Washington, 1974.
- ¹²M. Schick, J. S. Walker, and M. Wortis, Phys. Rev. B 16,

2205 (1977).

- ¹³S. B. Crary and D. A. Fahey (unpublished); M. J. Tejwani, O. Ferreira, and O. E. Vilches, Phys. Rev. Lett. 44, 152 (1980);
 A. N. Berker, in *Ordering in Two Dimensions*, edited by S. K. Sinha (Elsevier, North-Holland, New York, 1980), p. 9.
- ¹⁴W. H. Orttung, J. Chem. Phys. **36**, 652 (1962).
- ¹⁵J. G. Dash, *Films on Solid Surfaces* (Academic, New York, 1975).
- ¹⁶M. Bretz, Ph.D. thesis, University of Washington, 1971; E. O. McLean, Ph.D. thesis, University of Washington, 1972.