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Electronic and x-ray-absorption structure in compressed copper
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Using electronic band-structure techniques, we calculate the K- and L-edge absorption spectra for
fcc copper over a wide range of compressions. As copper is compressed the x-ray-absorption struc-
ture greatly increases and copper deviates more and more from its normal-density free-electron-like
behavior. We explain this additional structure in terms of an increased scattering amplitude with
pressure and relate it to both extended x-ray-absorption fine-structure (EXAFS) theory and a simple
Friedel-model calculation. We show that specific band symmetry points can be well correlated with
the x-ray-absorption near-edge structure features, but that this procedure is useless at higher ener-
gies above the edge (the EXAFS region). We suggest that the energy dependence of the peaks in the
spectra can be used as a high-pressure volume diagnostic. We also discuss general complications
and limitations in our knowledge about high-pressure x-ray-absorption spectra as well as overall
changes in the electronic structure of copper under compression. To correlate our results with ap-
plied pressure, we also present zero-temperature equation-of-state calculations (pressure versus
volume).

I. INTRODUCTION

In recent years, x-ray absorption has been increasingly
used as an experimental probe of electronic structure in
matter under high pressure. Static high-pressure cells and
the availability of synchrotron-radiation sources, in addi-
tion to conventional x-ray sources, have made room-
temperature investigations up to 0.33 Mbar possible. '

Diamond-anvil cells can achieve pressures approaching 1

Mbar, although x-ray-absorption measurements are then
complicated by the Bragg scattering out of the beam from
the diamond crystal planes. Much bigger pressures can
be obtained by dynamic methods, i.ncluding a novel laser-
driven technique that is currently being used to measure
K-edge absorption structure in shock-compressed samples
up to almost 30 Mbar. These experiments can achieve
nearly threefold compression, although with concomitant
heating of the sample to temperatures on the order of 10
eV. Far more extreme conditions than these occur in
inertial-confinement fusion targets, where the x-ray-
emission rather than -absorption spectrum is of most in-
terest as a diagnostic.

There has also been considerable theoretical progress
over the last five years in using the techniques of
electron-band theory to calculate x-ray-absorption spectra
for solids at normal conditions. ' These calculations
extend up to 100—200 eV above the absorption edge, cov-
ering the x-ray-absorption near-edge structure (XANES)
region from 0 to 50 eV and some of the extended x-ray-
absorption fine-structure (EXAFS) region' considered to
range from 50 to 1000 eV above the absorption edge. Cal-

culated K- and L-edge spectra for transition metals
and rare earths' have compared quite favorably with ex-
periment. ' To our knowledge, however, there has been
no application of this approach to a systematic investiga-
tion of the pressure dependence of x-ray-absorption spec-
tra in solids.

The present work reports electron-band-structure calcu-
lations of the volume and pressure dependence of K- and
L-edge x-ray-absorption spectra for fcc copper, a material
whose absorption spectrum at 1 atm has already been well
studied, both experimentally' ' ' and theoretically. ' '
As in previous work at 1 atm, ' the present calculations
extend in energy through the XANES into the EXAFS re-
gion. We have focused on the effects of zero-temperature
compression, in order to understand first the far more
tractable problem of cold, compressed matter before add-
ing the complications introduced by thermal disorder at
elevated temperatures. Nevertheless, our results are still
relevant to compression techniques which do not substan-
tially heat the sample. These include isothermal
diamond-anvil compression, nearly isentropic techniques,
and shock compression well before melt. It is important
to note that thermal disorder, as indicated by the Debye-
Waller factor, typically decreases in the course of both
isothermal and isentropic compression. '

As already noted, diamond-anv'il cells can achieve pres-
sures approaching 1 Mbar, or about a compression of
Vo/V=1. 4 in the case of room-temperature Cu. %'hile
Cu melts at about a compression of Vo/V=1. 5 under
shock loading, quasi-isentropic techniques use multiple
weak shocks to achieve high pressures with greatly re-
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duced temperature increases. Multi-megabar pressures
have been achieved in such experiments using both mag-
netic flux compression and mechanical density-gradient
impactor techniques. ' The use of temporally shaped
laser pulses to achieve near-isentropic compression has
also been one of the original goals of the laser-fusion pro-
gram, and it has been recently suggested that the pulse-
shaping techniques could achieve tenfold compression in
aluminum-slab targets.

Existing quasi-isentropic and multiple-shock capabili-
ties are not now able to generate both very high compres-
sions and low temperatures. Nevertheless, these methods
appear to have long-range promise, and so we have ex-
tended the calculations in this paper beyond the current
experimentally accessible range up to as high as tenfold
compression. In fact, we find a nearly V ~ energy-
scaling relation of the Cu x-ray-absorption structure in
the EXAFS region over this full range of volume, which
may well offer a valuable volume diagnostic as these tech-
niques develop.

In the remainder of this paper we report equation-of-
state, electronic-structure, and x-ray-absorption calcula-
tions for Cu in Secs. II, III, and IV, respectively. A dis-
cussion of the results, and our conclusions, are presented
in Sec. V.

II. EQUATION OF STATE

The theoretical techniques used in the present work
directly provide the x-ray-absorption spectrum as a func-
tion of compression or volume. In order to also correlate
these results with the applied pressure, an accurate
pressure-volume relation of Cu is needed. Since neither
experimental data nor rigorous calculation of this relation
are available up to the compressions of interest here, we
have carried out such calculations ourselves, and report
them in this section. Furthermore the augmented-plane-
wave (APW) method used for this purpose has also pro-
vided the self-consistent one-electron potentials used in

the electronic-structure and x-ray-absorption calculations
described in the remainder of the paper. To assess the ac-
curacy of our APW T=O pressure-volume relation, we
have used a second electron-band-structure technique, the
linear muffin-tin orbitals (I.MTO) method, for compar-
ison, and have also made a comparison with what limited
experimental data is available. The results are given in
Table I as a function of compression, Vo/V, where
Vo ——79.70 bohrs is the experimental room-temperature
zero-pressure volume per Cu atom.

The APW method and the particular computer pro-
gram used have been described elsewhere. The calcula-
tions were nonrelativistic and employed the Hedin-
Lundqvist exchange-correlation potential. All electrons
were treated self-consistently, and because of the extreme
compressions considered, the 3s, 3p, and higher-lying
states (19 electrons in all) were treated in a band mode.
For compressions Vo/V) 2, all states were sampled with
20 points in the irreducible wedge of the fcc Brillouin
zone. For lower compressions, the 3s, and 3p levels were
samples with 20 points per irreducible wedge, and the 4s,
3d, and higher-lying states with 89 points per wedge. In
all cases, tests with reduced Brillouin-zone sampling indi-
cated that the T=O AP%' pressures I'0 in Table I are
converged to better than 1%, or to within about 8 kbar
for the first three entries in the table.

The LMTO method ' and the computer program
used have also been described else~here. While the
present LMTO calculations assumed the exchange-
correlation potential of von Barth and Hedin, tests for
neighboring Ni have shown the calculated pressures to be
negligibly different from those obtained using the Hedin-
Lundqvist potential. ' As in the APW calculations, all
electrons were treated self-consistently, and the same
Brillouin-zone —sampling choices were made for the same
band electrons. Components through g character were in-
cluded in the angular-momentum basis, as it was found
that inclusion of g components reduced the pressure by
3% at the highest compressions considered. Both the

TABLE I. Calculated APW and LMTG T =0 pressures Pp for Cu as a function of compression
Vp/V. These Pp results omit zero-point corrections and are nonrelativistic; relativistic pressure correc-
tions are given by AP„~. For comparison, room-temperature pressures P, (reduced from shock data)
.-~s well as Hugoniot pressures PH and temperatures T~ are shown. Pressures are in Mbar and tempera-
tures in eV.

Vp/V

1

1.1
1.2
1.3
1.4
1.5
2
3
5
7

10

APW Pp

—0.038
0.134
0.372
0.672
1.064
1.543
5.456

22.67
105.2
257.5
617.9

LMTO Pp

—0.078
0.088
0.323
0.632
1.012
1.492
5.450

22.92
106.0
260.2

LMTO AP„~

—0.046
—0.054
—0.063
—0.072
—0.082
—0.092
—0.146
—0.30
—0.9
—1.3

0.0
0.164
0.389
0.685
1.066
1.548

0.0
0.168
0.409
0.746
1.209
1.843

0.025
0.032
0.051
0.100
0.193
0.327

'Reference 40.
"Reference 42.
'Reference 43.
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combined-correction term to the atomic-sphere approxi-
mation and the muffin-tin (or Ewald ) correction were
included in these LMTO calculations. The muffin-tin
correction significantly improves agreement between the
LMTO and APW calculated pressures, which is not
surprising, as it may be derived from the muffin-tin ex-
pressions used in APW calculations in the limit in
which the muffin-tin radius is extended to the Wigner-
Seitz radius. The LMTO PD values in Table I already in-
clude this positive correction, which is 0.062, 0.272, and
2.1 Mbar for V0/V=1, 2, and 5, respectively. They are
also nonrelativistic for direct comparison to the APW re-
sults. Both omit zero-point corrections. Our LMTO pro-
gram can also be run in a scalar-relativistic mode, in
which only the spin-orbit relativistic effect is neglected.
The resultant change in the LMTO pressure is given by
the quantity AP„~ in Table I.

A Murnaghan fit to the first three APW pressures P0
in Table I, plus a 9-kbar zero-point correction, yields a-

T =0 equilibrium lattice constant of 6.787 bohrs and a
bulk modulus at the experimental equilibrium volume of
1.51 Mbar. These values are in close agreement with
similar Korringa-Kohn-Rostoker (KKR) calculations of
these quantities, and in good agreement with experi-
ment (6.809 bohrs and 1.42 Mbar, respectively). The
agreement with experiment is partly fortuitous in light of
the nontrivial relativistic corrections in the fourth column
of Table I, which improve the bulk modulus, but reduce
the APW equilibrium lattice constant by 1%. The
LMTO pressures plus relativistic corrections yield an
equilibrium lattice constant smaller yet by about another
percent, consistent with other LMTO calculations for
transition metals.

It is important to note that the percentage differences
between LMTO and APW pressures in Table I, as well as
the percentage of the relativistic correction, diminish with
compression. Nevertheless, we expect our relativistically
corrected (i.e., Po+b, P„&) APW results to be the most
rigorous in Table I. An interesting comparison is provid-
ed by the room-temperature pressures (fifth column in
Table I) used in calibration of the ruby-fluorescence
scale, which were obtained by theoretical reduction of
shock data. As the total 293-K nuclear vibrational con-
tribution to the pressure is about 0.022—0.030 Mbar for
pressures ranging from 0 to 1 Mbar, ' our relativistically
corrected T=O APW pressures are in excellent accord
with the volume dependence of this room-temperature iso-
therm, but too low by about 0.06 Mbar. We do not know
the cause of this discrepancy.

The last two columns in Table I give the experimental
pressures and calculated temperatures along the
Hugoniot or shock-compression curve for Cu. It has been
predicted that Cu will melt along the Hugoniot curve at
a temperature of 0.45 eV, at V0/V=1. 54. This compres-
sion is well within the region accessible by both mechani-
cal and laser-driven shock-compression techniques, and
beyond the current Va/V& 1.3 limitation of the diamond
anvil for this material. Our T =0 x-ray-absorption calcu-
lations should apply throughout much of the solid phase,
as the electrons are still highly Fermi degenerate, and the
shape of the leading edge is mostly determined by the

core-state lifetimes. The existence of Fermi degeneracy
may be checked by comparing the Hugoniot temperatures
in Table I to the width of that part of the 4s,3d valence
band lying below the Fermi energy. This width in eV is
approximately exp[2.2( V0/V)'~ ] for VQ/V& 5. As tem-
perature is increased, thermal disorder of the lattice will
eventually broaden the x-ray-absorption features beyond
that due to lifetime effects. Nevertheless, if this broaden-
ing is symmetric and does not obscure the dominant
features, the volume dependence of the present x-ray-
absorption calculations may apply to shock-compressed
Cu for VD/Vapproaching 1.5.

Our calculations are clearly directly applicable to
room-temperature diamond-anvil compression for both
volume and pressure dependence. As we have discussed
earlier, the full volume range of our calculations is also
relevant to quasi-isentropic compression, either by multi-
ple weak shocks, or by impactors with density gradients, '

which could achieve relatively cold compressions well.
beyond VQ/V= 1.5 in the solid phase.

III. ELECTRONIC STRUCTURE

An essential constituent of the x-ray-absorption calcula-
tions to be described in the next section is the electronic
structure of the material under consideration. In this sec-
tion we report calculations of the one-electron energy
bands and density of states over a broad range of energy
for fcc Cu as a function of compression. While the x-
ray-absorption calculations require the angular-
momentum-decomposed density of states, at this point we
focus on the total density of states in order to more sim-
ply illustrate systematic trends in the evolution of the
electronic structure in Cu with compression.

Especially at high energies, where the electron bands
are quite steep, a fine sampling of the Brillouin zone is
necessary to accurately model the density of states, and a
band-structure technique that is considerably faster than
the APW method used in the preceding section is re-
quired. The broad energy range considered also requires
simultaneous treatment of more than one principal quan-
tum number for a given value of the angular momentum,
which is not easily accomplished with either the standard
LMTO or linear —augmented-plane-wave (LAPW)
methods. The band-structure calculations reported in
this section, therefore, have used a recent modification" '

of Andersen's LAPW method, designed to fulfill both
requirements. Calculations were carried out including all
relativistic contributions except for spin-orbit (scalar-
relativistic) contributions, up to dimensionless energies
of ES —100 (about 190 eV for Va/V= 1), where S is the '

Wigner-Seitz radius (4mS /3= V, the volume per atom).
At each compression VD/V, this energy range has been di-
vided into three panels for separate computation, chosen

. to maximize the accuracy of the calculated projected den-
sity of states over the entire range of interest. For the
lowest panel, at both V0/V=1 and 2 we have retained
angular-momentum components through 1=4(g), while
for all other panels and all other compressions angular-
momentum components through /=8 have been retained.
In all cases, the Brillouin zone has been sampled with 256
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k points in the irreducible wedge for the fcc structure.
The current version of our LAPW program is not self-

consistent. Since our APW. calculations for the equation
of state already provide suitable self-consistent muffin-tin
potentials, we have used these in the LAPW calculations.
It should be noted, however, that we perform scalar-
relativistic LAP W x-ray-absorption calculations using
these nonrelativistic APW potentials. While this pro-
cedure incurs errors of about 20 eV in the position of the
ls level (out of -9000 eV), and thus in the location of the
absorption edge, our primary interest in this work is in the
location of structure relative to the absorption edge. In
this regard there is no problem, as we have demonstrated
by the following LMTO calculations: We have performed
scalar-relativistic calculations of the logarithmic deriva-
tive DI(E) of the radial component of the one-electron
wave function, both for self-consistent nonrelativistic and
scalar-relativistic potentials. The difference in the inverse
of these functions E~(D) for fixed D in the two cases is a
measure of the error in the band structure incurred by our
procedure. We find these shifts at Vo/V= 1 to be less
than 0.34 eV, for l =0—5, and for energies ranging up to
nearly 300 eV above the Fermi level. At higher compres-
sions the shifts are also similarly quite small in relation to
both the structure and scale of the x-ray-absorption
features reported in this work.

The effects of pressure on the overall electronic struc-
ture of Cu are shown in Fig. 1, where we plot the
Wigner-Seitz band-edge positions as a function of
compression. The energies are relative to the muffin-tin
zero of energy UMT and the energy axis is in the dimen-
sionless units of ES . Cu has eleven electrons in the
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FIG. 1. Relative band positions for fcc copper as a function
of compression Vo/V determined from the Wigner-Seitz band-
edge positions. The energies (in Ry) are relative to the muffin-
tin zero of energy at each compression, and are presented in the
scaled dimensionless units. ES, where S is the Wigner-Seitz ra-
dius (in bohrs).

4s-4p-3d valence band, and aside from the effects of hy-
bridization, which are neglected in Fig. 1, the 3d band
remains completely filled throughout the entire range,
Vo/V=1 —10, shown in the figure, as is evident from

placement of the Fermi level EF. In fact, both the 3d and
4f bands drop in energy under compression, relative to the
lower angular-momentum bands (although, of course, all
the bands move up under pressure relative to EF). This
reflects the low kinetic energy of the nodeless 3d and 4f
radial wave functions, compared to other states, and the
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FIG. 2. Fully hybridized scalar-relativistic energy bands of fcc copper along symmetry directions. These bands were generated by
the same LAPW code used to calculate the x-ray-absorption spectra. These plots were made by ordering the energy bands at each k
point and connecting the different band points with straight-line segments band by band in increasing order of energy. The lines are
thus a guide to the eye in the sense that no attempt was made to draw the lines to match bands of the same or related symmetry
across points where the energy bands cross. (a), (b), and (c) show the bands at normal-density ( Vo/V=1), at fivefold, and at tenfold
compression, respectively. To aid the discussion in Sec. III, some symmetry labels have been added. On the right-hand side of the
plots we have also added the labels 3s, 3p, 3d, 4s, and 4p (where appropriate) to indicate roughly the atomic origin of the bands.
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growing impo ancortance of kinetic versus potential energy as
volume decreases due to the different scaling, V an
V ', respectively, of these contributions. Ultimately,
the 3d band drops entirely below the 4s band, as seen near
Vo / V- 7. The same phenomenon occurs for nicke,
which, with one less valence electron, is predicted to have
a region of insulating behavior at very high compres-
sions. ' The additional electron in Cu occupies the bot-
tom of the 4s band at this point, and is predominant y s
in c arac er, ah t although with increasing f content, as ur-
ther compression brings the initially unoccupied f an
closer to and then below the Fermi level.

Fi s. 2&a~This evolution is more precisely shown in Figs.
2(b), and 2(c), where we give the fully hybridized scalar-
relativistic energy bands along symmetry directions for
V /V= 1 5, and 10, respectively. For Vo/V= 1 [Fig.
2( )] the 4s band extends from I i to the mostly p- i e 4

0

level, and is crossed by and hybridized with the narrow 3d
band near E=0.4 Ry. At Vo/V=5 [Fig. 2(b)], the bot-

f th 4 b nd I lies in the middle of the 3d bands,
3d, while by the time Vo/V=10, it has moved above the

bands. The L, 2 state, which lies just above the 3d bands
and just below EF, is initially of pure p character. Under
pressure it becomes increasingly f-hke and, by the time
Vo/V=10, it represents the bottom of the 4f band,

h' h h n lies below E~. One can also see the downward
movement of the 4f band by observing the drop o I 2,
which is a pure 4f state. From Fig. 2 it is evident that
this trend will continue for Vo/V) 10, where we would
expect I i to rise above I 2, and for I 2 to merge into t e
3d band with a resulting 3d 4f conduction b-and near the
Fermi energy.

Under compression the 3s and 3p core states broaden
an mus ed t be treated as bands for Vo/V&3. They are the

2 c). Onebottom two bands shown in Figs. 2(b) and (c. ne
should also observe that the 3s and 3p core states have
nearly merged together by the time Vo/V= IO, and that
the gap separating them from the 3d band is beginning to
close. At higher compression the 3s, 3p, 3d, and 4f (and
higher-lying) bands will all merge into one continuous
conduction band.

Figures 3(a), 3(b), and 3(c) give the total density of
states D(E) for Cu at Vo/V= 1, 5, and 10, respective y,
corresponding to the band structure plotted in Fig. 2. In
each case, D(E) is shown only above the muffin-tin zero,
which is taken to be the zero of energy in these figures.
The smooth dashed lines are the familiar free-electron
density of states (V/2m )E'~, shown for comparison,

h' h
'

e a reasonably good average of the band-
structure D(E) at high energies. This is consistent wit
the expectation of increasing free-electron-like behavior at
h' h energies as the large electron kinetic energy begins toig ene
dominate the relatively weaker Coulombic interactio
One also expects increased free-electron-like behavior at
hi h compressions, due to the different scaling of kineticig comp
and potential energies mentioned above, althoug
not articularly evident in Fig. 3. Both limits may be
better understood with the help of a simple model calcula-
tion based on the Friedel sum rule.

For a single muffin-tin potential embedded in the elec-
tron gas, the number of states N(E) below energy E is
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given by

&i(E)
N(E) = E +g 2(2l+ 1)

3m-2

and the density of states by D(E)=dN(E)/dE. The first
term corresponds to the unperturbed electron gas, while
the second (Friedel sum) gives the additional number o
states arising from the "impurity" muffin-tin potential.

I- 0
0 10 20 30 40

E(Ry)

FIG. 3. Total density of states (including both spins) of
compressed fcc copper. The jagged solid line was calculated
from the same LAP%' code that was used to calculate the x-
ray-absorption spectra. The smooth dashed line, the simple
free-electron parabolic density of states, is shown for compar-
ison. (a), (b), and (c) are the results for normal-density, fivefold,
and tenfold compression, respectively. The energy scales along
the x axis of each part of the figure are relative to the respective
muffin-tin zero at each compression. In (a) the normal-density
3d band (between 0 and 1 Ry on the plot) has been multiplied by
a factor of 0.25 to keep it within the scale of the figure.
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One may view Eq. (1) as the first two terms in an expan-
sion of the crystal D(E), with successive terms introduc-
ing the effects of multiple scattering of the electrons by
the full lattice of muffin-tin potentials comprising the
crystal. Yet it is interesting to note that the two terms of
Eq. (1) alone yield the correct number of electrons in Cu
to within 0.5 electrons, over the entire compression range
considered in this paper, when it is evaluated at the APW
(or LAPW) Fermi energy EF, with phase shifts 5~(E) ob-
tained from the APW potentials. Since the first term in
Eq. (1), evaluated at E~, varies from about one to nine
electrons throughout this compression range, this agree-
ment is not accidental, and lends credence to our use of
Eq. (1) to interpret Figs. 3(a)—3(c).

Figure 4 shows the second term of Eq. (1), the Friedel
sum (solid curves) evaluated using phase shifts 5~(E) ob-
tained from the APW potentials at various compressions,
as a function of the dimensionless energy ES . The phase
shifts were chosen so that 5~( oo ) =0, and thus according
to Levinson's theorem the Friedel sum gives the number
of bound states in the muffin-tin potentials as E~O
(which we take to be the muffin-tin zero). As can be seen,
there are 18 bound states for all the highest compression,
Vp/V= 10, where the 3p level has moved into the contin-
uum as a resonance. The sharp rise in the solid curves
near the middle of the figure is, of course, the 3d reso-
nance, and the Fermi level lies, in each case, somewhat
above this resonance in energy. Away from the 3d reso-
nance, the Friedel sum for Vo/V= 1 is seen to be quite
flat up to energies well above the Fermi energy
(E~S =4.1). In this flat region, D(E), which is the ener-

gy derivative of N(E), will be dominated by the free-
electron (V/2m. )E'~ term, and it can be seen why the
electronic structure of normal-density Cu is considered to
be very-free-electron-like, except near the 3d band.

The evolution towards free-electron behavior both at
high energies and at high compressions can also be clearly
seen in Fig. 4, and arises from rather different behavior of
the Friedel sum. At high energies, where high-l 6I are in-
creasingly important, elementary scattering theory
shows the Friedel sum to approach the limiting behavior
of (V/2m)EOE'~, where th.e volume-dependent Eo is
given by

4~ MT
Eo = J r u(r)dr,

p
(2)

and where RMr and u(r) are the muffin-tin radius and
potential, respectively. In this limit Eq. (1) becomes the
first two terms in a Taylor expansion of (V/3' )(E
—Eo) ~, the continuum-lowered free-electron N (E).
When plotted against ES, the limiting form of the
Friedel sum is only weakly dependent on compression,
and is shown as the shaded region in Fig. 4. Thus the up-
ward bend in the solid curves to the right in Fig. 4 shows
the approach to free-electron behavior at high energies,
while the overall downward shift of these curves with
compression shows the approach towards the free-electron
behavior (shaded region) at high compression. In the lim-
it of extremely large compressions, far beyond the
Vp/V=10 limit considered here, all bound states of the
muffin-tin potential will have moved into the continuum,
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with sufficiently large resonance widths, so that the initial
"staircase" structure of the Friedel sum will have evolved
into smooth E' behavior at all energies,

The dashed curve in Fig. 4 shows the first term in Eq.
(1), which is much larger than the Friedel-sum contribu-
tion for energies above ES )30. Because of its much
larger slope than the Friedel sum (away from the 3d reso-
nance), the derivative of the first term also dominates the
Friedel contribution and explains the good average agree-
ment of (V/2' )E'~ (the smooth solid curves) with the
band-structure D(E).in Figs. 3(a)—3(c) over much of the
upper range of energy plotted.

In Table II we present results for the Fermi energy and
the density of states at the Fermi energy. For the band-
structure LAPW results, the Fermi energy Ez moves up
relative to the muffin-tin zero of energy uMT as the sys-
tem is compressed. This increase reflects both the in-
crease of kinetic energy of the electron states under
compression, as well as the broadening of the conduction
band. The density of states, evaluated at the band-
structure EF, decreases under compression, and hence is
consistent with the increasing bandwidths with increasing
pressure. The free-electron results shown in Table II for
comparison correspond to the first term of Eq. (1) and its
energy derivative. The Fermi energy was determined by
filling these states with one electron per atom. The densi-
ty of states evaluated at the free-electron value of EF
agrees surprisingly well with the band-structure density of
states. Nonetheless, since the free-electron FF values are
so much lower than the band-structure values, and since
there is so much structure in the band-structure D (E)
near EF, we believe the agreement is probably fortuitous.

Finally, we observe that the fine-scale structure in the

FIG. 4. Friedel-sum contribution (solid line) to the number of
states per atom N(E), as a function of scaled energy ES, where
S is the Wigner-Seitz radius, for compressions Vo/V=1, 1.3, 2,
3, 5, 7, and 10. For comparison, we have also shown the high-
energy limit, ( V/2m. )EoE', of the Friedel sum (shaded region)
and the free-electron result (dashed line). The large dots on each
of the solid lines indicates the position of the Fermi energy for
each compression.
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TABLE II. Fermi. energy E~ (in Ry) and the density of states at the Fermi energy D(E+) (in
states/atom Ry) as a function of compression Vo/V. The band-structure results are given first, and for
comparison purposes the free-electron-model results, corresponding to the first term in Eq. (1), are also
presented. To aid in interpreting the figures, the Wigner-Seitz radius S (in bohrs) and the scaled band-
structure Fermi energy S EF are also shown.

vo/V
Band structure

EF D(EF)
Free electron

EF D (EF)

1

1.3
2
3
5
7

10

2.670
2.446
2.119
1.851
1.561
1.396

' 1.239

4.15
5.10
6.93
8.99

12.26
14.57
16.50

0.58
0.85
1.54
2.62
5.03
7.48

10.75

4.0
3.4
2.4
1.6
1.0
0.85
0.74

0.52
0.62
0.82
1.08
1.51
1.89
2.40

2.9
2.4
1.8
1.4
1.0
0.79
0.63

band-structure density of states, Figs. 3(a)—3(c), seems to
increase in amplitude with compression. This increase is
real and is a consequence of a stronger scattering ampli-
tude from the compressed copper potentials. Although
the density of states as a whole in Cu may be approaching
increased free-electron-like character as Vo/V —+10, indi-
vidual phase shifts may move through regions of strong
scattering f5i-( —, + integer)ir] in their continuing de-

crease with compression towards the ultimate free-
electron limit. Indeed, a calculation of the backscattering
amplitude shows this to be happening for Cu as
Vo/V~10. We will elaborate on this point more fully in
Sec. IV when we discuss the magnitude of the structure in
the x-ray-absorption spectra.

IV. X-RAY-ABSORPTION SPECTRA

The simplest and most direct probe of the unoccupied
electronic states is the x-ray-absorption spectrum. The E
and I.i edges, which arise from ls and 2s core excitation,
respectively, probe the p component of the unoccupied
density of states, while the L2 3 edges, which arise from
the 2p core excitation, mainly probe the d component,
since the s component, which is also allowed by selection
rules, is usually strongly suppressed by matrix elements.

More specifically, the x-ray-absorption spectra from a
core state 4, with quantum numbers c=njl(j=l+ —, )

and energy E, due to a photon of energy Ac@ is given by

4ire 2j+ 1 2

3iricV 2(2l+1)
T

X f, i i(Rco+E, )
l
+

f, (+i(fico+E, )
I+1
2l+3

where we have labeled the energy-band states with the re-
duced wave vector k and the band index n The. effective
dipole matrix element r, i(E) is given by

(6)
i /2

where the partial wave Pi(E) is a solution of the radial
Schrodinger equation with energy E for a single muffin-
tin sphere, and the angular brackets in Eq. (6) denote a ra-
dial integral. The integrations in Eq. (6) extend over the
Wigner-Seitz sphere. The error introduced in replacing
the primitive cell by a sphere of the same volume in these
integrals is negligible.

The calculated p, for each edge will be referred to as
the raw spectra, and, by energy conservation as well as the
Fermi exclusion principle, is zero if irico & EF E, . These—
spectra have been computed assuming sharp core and
band energies. For comparison with the absorption coef-
ficient that would be seen experimentally, we have also
calculated the broadened spectra, P, (iiico), as

p, (E)I'(E)' (m —E)'+r'(E)/4 (7)

where the lower limit of the integral, the Fermi energy
EF, is the edge threshold. More precisely, we use Eq. (7)
twice to obtain the broadened spectra. The first time, we
use an energy-independent I.orentzian broadening func-
tion I, to take into account the core-hole width. %'e then
use Eq. (7) again on the resulting spectra, this time with
an energy-dependent I'„(E), where I „(E) is the width of
the excited band-energy state. Note that we have not in-

TABLE III. Core-hole widths I, used in the broadened spec-
tra for the K and I. edges.

Width
where the partial strength f, i(E) can be factorized into

f,, i(E)=r,, i(E)Di(E)

Here, Di(E) is the partial density of states defined by

D,(E)=2 g S(E—E„)g (
(Im

( e, ) (',
k, n

(4)

Core hole

r
I I
I L

I I

(e&)

1.5
9.2
1.4
1.0

(Ry)

0.11
0.68

0.10

0.07
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eluded any broadening due to experimental resolution nor
any many-body effects such as the influence of the core
hole on the band states.

Since the pressure dependence of the core-hole and
excited-state widths is not accurately known, we have

used our best normal-density values for all compressions.
The core-hole lifetimes that we used are given in
Table III. For the excited-state widths, 1„(E),we have
taken our best estimate of the mean free path A,„(E), of
Refs. 56 and. 57, and used the formula
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FIG. 5. K-edge x-ray-absorption coefficients p/p for fcc copper as a function of compression Vo/V. Two curves are superim-

posed at each compression (which is indicated on the right-hand edge of each plot). The heavy solid curve is the final-state and core-
hole broadened spectra. The lighter solid line is the unbroadened spectra. The energy axes are in units of eV for each compression.
The zero of energy is EF with respect to the energy of the outgoing final-state electron or the K-edge position with respect to the spec-

tra. With respect to each other, the energy scales for the different compressions are scaled as x =(E—E+)S . For clarity, we have
added this additional scale at the top of the figure, which, of course, applies to all the plots below it (i.e., for a11 cornpressions). The
four arrows, from left to right (in order of increasing energy), at each compression indicate the energies of an X4, X5, and L3, and
another L3 electron-energy-band point. For the compressions Vo/V= 5 and 10, some of the highest peaks in the unbroadened spectra
have been truncated to keep the curves within the plots.
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I „(E)= Pi[2(E E—F ) /m ]'

A plot of I „(E) is given in Fig. 1 of Ref. 10. In Sec. V
we discuss our neglect of the pressure dependence of the
broadening.

In Figs. 5—8 we show the K- and Ledge x ray-
absorption calculations as a function of compression. Be-
cause of uncertainties about the correct broadening under
pressure, we show both broadened and unbroadened spec-
tra superimposed on the same plot. Except for an overall
factor of 2, the L2 and L3 edges are virtually identical
and we therefore only show the Lz edge. Since the spin-

orbit splitting that separates the energy positions of these
two edges is small, we have superimposed these two spec-
tra in Fig. 8 at the normal-density energy separation '.o
suggest what the observable spectrum would roughly look
like. Although this splitting will probably not change
much under pressure (cf. Table IV and the discussion in
the following section), if good calculations of the edge po-
sitions as a function of pressure should become available
in the future, Fig. 7 could be scaled and superimposed on
itself to provide a more realistic L2-L3—edge spectrum.
We have not shown any M-edge spectra since the relevant
core states (3s and 3p) broaden into bands at high pressure
[cf. Figs. 3(b) and 3(c)j.
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FICx. 6. L~ edges of compressed fcc copper. The notation for this figure is described in the caption of Fig. 5. For the compres-

sions Vo/V= 5 and 10, some of the highest peaks in the unbroadened spectra have been truncated to keep the curves within the plots.
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FIG. 7. I.2 edges of compressed fcc copper. The notation for this figure is described in the caption of Fig. 5. For the compres-

sions Vo/V=5 and 10, some of the highest peaks in the unbroadened spectra have been truncated to keep the curves within-the plots.

Instead of directly presenting our results for p in the
standard units of cm ', we instead show p/p in units of
cm /g. This scaling, by the mass density p, makes it
easier to compare calculations for different compressions
since it makes the results look more like an absorption per
atom. Vhthout the scaling, the absorption increases
dramatically with compression because the incoming x-
ray beam encounters more atoms to absorb it.

In Table V we demonstrate that the overall magnitude
of the absorption is roughly independent of compres-
sion. The values tabulated were obtained by an rms fit of
the unbroadened p(E) to in@ =a+13lnE over the range of

energies shown in the figures, and then by extrapolating
the fit back to the edge position. At normal density, ex-
periment' ' gives p&/p=274. 5 cm /g after the back-
ground is subtracted out, as compared with 248.3 cm /g
from the calculations. Thus the band-structure results at
Vp/V= 1 are about 9% too low and give an overall mag-
nitude in good agreement with atomic calculations. ' '

More elaborate atomic calculations suggest that this
discrepancy is largely due to the neglect of core relaxation
on the final-state wave functions. ' Among other things,
this means that the initial- and final-state wave functions
are no longer orthogonal to each other since they experi-
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FIG. 8. L2-L3 edges of compressed fcc copper. The relative edge positions of the superimposed L2 and L3 edges for aH compres-
sions are assumed to have the same normal-density energy separations in all of these plots. Otherwise, the notation for this figure is
described in the caption of Fig. 5. For the compressions Vp/V= 5 and 10,'some of the highest peaks in the unbroadened spectra have
been truncated to keep the curves within the plots.

ence different potentials, and hence the matrix elements
between Slater determinants no longer reduce to a single
integral over the initial core wave function and final-
band-state wave function. In short, many-body effects
must be taken into account to handle the problem of core
relaxation.

The insensitivity of the overall magnitude to compres-
sion is probably a consequence of the sum rule on oscilla-
tor strength. The decrease in the density of states with
pressure is compensated for by increased strength in the
squared matrix elements [cf. Eq. (4)].

The energy axes in Figs. 5—8 are scaled by ( V/Vo)

Vp/V
EF—E, (Ry)

Ll L2

1

1.3
2
3
5
7

10

650.565
650.600
650;687
650.845
651.359
652.011
652.876

78.135
78.187
78.305
78.500
79.088
79.809
80.755

68.633
68.685
68.801
68.991
69.566
70.270
71.192

67.119
67.171
67.287
67.478
68.054
68.761
69.688

TABLE IV. Single-particle edge positions EF—E, for the K
and L edges of Cu as a function of compression Vp/V.
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TABLE V. Average extrapolated absorption coefficient just above the K edge of Cu as a function of
compression. For comparison, the normal-density experimental I'Expt. } value is shown in the last (ex-
treme right-hand} column.

Expt.
1

p~/p (cm /g} 248.3 242.9 264.5 253.7 292.8 274.5

for each compression where Vo is the normal-density
volume. Previous calculations at normal density ' on
other materials have shown the usefulness of this tech-
nique for correlating structure in the x-ray absorption.
This scaling, which attempts to remove the increased ki-
netic energy of the electronic energies under compression,
is even more essential if one is to understand the structure
of the current results, which extend to such high pressures
and compressions. Its essential correctness is demonstrat-
ed by examining the energy' bands. With the same num-
bers of bands (about 120 for Figs. 5—8) the energy range
needed to span those bands scales roughly like V

As might be expected, those states far above the Fermi
energy, with the most extended wave functions and largest
kinetic energies, fit this scaling best. For states just above
the Fermi energy, " the potential energy nearly compen-
sates for the kinetic energy, and this scaling works less
well.

For the x-ray-absorption results, this shows up in the
way the structure lines up in Figs. 5—7 once one reaches
20—30 eV or more above the edge (at normal density). In
the energy range just at the edge, the x-ray absorption is
more sensitive to the details of the pressure dependence of
the band structure and the peaks can be correlated with
specific band states. In Fig. 5 we show four arrows that
mark the positions of the energy eigenvalues of an X&,
X5, L, 3, and another I.3 band point. As shown in Fig. 5,
the first three points correlate well with the first three
peaks of the x-ray absorption for Vp/V= 1, and then
faithfully follow these peaks as they coalesce into one gi-
ant peak at Vp/V=10. The fourth arrow is an example
of attempts to correlate features in the x-ray absorption at
higher energies above the edge. At Vp/V= 1, the higher
I.3 point lines up almost exactly at the center of the
fourth peak (exact alignments should not be expected
since broadening can shift the apparent peak positions),
but under compressions it drifts away from the peak. Its
alignment with the fourth peak for Vo/V=I was ap-
parently. fortuitous.

From Figs. 3(a)—3(c) we can see that the density of
states is small near the Fermi energy and grows roughly
like E' at higher energies. Thus a few key states might
be expected to dominate the spectra near the edge. At
higher energies, so many states contribute to the spectra
that it is less likely that any one could dominate enough to
be considered the "cause" of the peaks in the structure.
Also, it is important to remember that the final-state
broadening at high energies is large enough so that peaks
at high energy can survive only if the oscillator strength
for those transitions remains high over an energy range of
the scale of that width () —,

'
Ry), and hence must be

strong for many states. Thus some other interpretation

I

(such as EXAFS arguments or multiple-scattering effects)
other than the details of the band structure must be in-
voked to explain the structure of the x-ray absorption at
energies above the near-edge region. Near the edge, as we
have just shown, band states at symmetry points (where
symmetry forces the bands to come in flat with a resulting
high density of states) with a large component of the re-
quired orbital-angular-momentum character (e.g., p-like
character for a K or LI edge) can be well correlated with
the x-ray peaks.

Above the near-edge region, at least four peaks in the
Vo/V=1 K-edge spectra can be observed. These peaks
are labeled 2 —D in Fig. 5. Under compression, these
peaks generally grow in magnitude. Furthermore, be-
tween these peaks much additional structure is seen at the
large compressions. Part of the increased amount of
structure in the K-edge spectra (the same effect is seen in
all the edges) might be expected to occur because the elec-
tronic states are spread out over a larger energy region,
whereas the broadening function remains fixed. Hence
the broadening would wash out more features at normal
density. %'e have checked this effect by broadening our
original spectra with a volume-scaled energy-independent
broadening function I =(0.05 Ry)( V/Vp), which
should compensate for the energy scaling under pressure.
The results indicated that the increase in structure with
pressure is so large that broadening effects are relatively
unimportant. In other words, the effect is real and is not
an artifact of the broadening.

We believe that the increased structure is due to an in-
crease in the scattering amplitude of the muffin-tin poten-
tials and correlates with the increased amplitude in the
fine structure of the density of states seen in Figs.
3(a)—3(c). To quantify this hypothesis, we observe that
the standard EXAFS x-ray-absorption formula is given

p=AficuNp[lM( I IX( I+(l+1)MI I+,gg+, ],

exp(2ikRJ )
X~ ——1+(—1) gN Im exp(2i5~) f(n. )J kR.J J

(10)

NJ and RJ are the number of atoms in shell j and the dis-
tance of that shell from the central atom (where the x-ray
absorption takes place), respectively. See Ref. 65 for a de-
tailed description of the notation.

The interference of scattered wavelets, returning to the
central atom after backscattering from atoms in each
shell, with the outgoing wavelet from the central atom,
gives rise to band-structure-like effects. Indeed, barring
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other approximations in Eq. (9), if all possible multiple
scattering off all the neighboring atoms were included,
one should build up the exact band-structure result. Note
that Xi in Eq. (9) plays the same role as the projected l-

dependent density of states in Eq. (3) and is responsible
for the x-ray-absorption structure in Eq. (9), except for an

overall very slow (in energy) modulation by the matrix ele-
ments. This modulation can greatly affect the magnitude
of the absorption, but does not otherwise modify the
structure much.

, In Eq. (10), k =E', and hence we can rewrite it in the
scaled form:

exp[2i(ES )'~ (RJ IS)] f(~)
X&

——1+(—1) g N&Im exp(2i5I )
(ES )' (R&IS)

where S is the Wigner-Seitz radius. From this we can see
that the magnitude of the interference scales in energy as
ES, except possibly for the phase shifts, 5I(E), and is
proportional to the dimensionless quantity f(rr)IS, where

f(ir) is the standard 180' backscattering amplitude.
In Fig. 9 we show the absolute magnitude of the com-

plex quantity f(n. )IS calculated from phase shifts of the
APW potentials as a function of x = (E EF )S an—d
compression. As a function of x, f(vr)IS shows a local
maximum, which moves to smaller values of x as the
compression increases. Because o'f this, f(~)/S near
x-20 becomes more than 3 times larger at V„/V=10
than at normal density, Vo/V=1. This same behavior is
mirrored in the K-edge x-ray absorption, Fig. 5. Note
that the peak labeled A (x -24) in Fig. 5 grows consider-
ably in amplitude as Vo/V increases from 1 to 10. Neigh-
boring peaks show more or less the same behavior, until
by the time peak D is reached (x -85) the maximum am-
plitude is seen to occur more in the range Vo/V=2 —3 .

than at higher compressions. However, this again is pre-
cisely what is indicated by f(rr)IS in Fig. 9 near this
value of x. Furthermore, not only do the peak amplitudes
in Fig. 5 correspond to variations in f(rr)IS, but so too
does the amount of structure in the x-ray absorption.
More structure is seen to develop between peaks A and B
as Vo/V increases, for example, which again corresponds
with the increase in f(m )/S in this region.

We have programmed a slightly generalized version of
the EXAFS equation (10) and compared the results with
the full band-structure calculations of the x-ray-
absorption edges, Figs. 5—8. The EXAFS calculations
also have the same magnitude dependence of peaks as a
function of energy and compression as the band-structure
calculations, which suggests the intuitively plausible result
that, as a rough first approximation, the magnitude or
strength of the atomic scattering amplitude determines
the size of the x-ray-absorption structure as a function of
both energy and compression.

Moreover, the agreement between the EXAFS and
band-structure results become increasingly worse whenev-
er the backscattering amplitude becomes increasingly
stronger. We believe that this is due to the shadowing of
the fourth shell by the first shell of neighbors, an effect
which is not included in the standard EXAFS formula-
tions. We are currently trying to add in these correc-
tions to the more standard EXAFS results to see if they
can restore agreement with the band-structure results for
the case of strong scattering.
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FIG. 9. Scaled backscattering amplitude f(m. )IS as a func-
tion of the scaled energy (E EF)S . Since f(vr) is—a complex
number with real and imaginary parts, we actually show only
the absolute magnitude off(~)IS in order to simplify the plots.

V. DISCUSSION

The method described in Sec. IV has been successfully
used to explain experimental x-ray-absorption data.
In this section we point out some of the more poorly un-
derstood aspects of the underlying physics, which may
slightly change the results in an unknown way with pres-
sure, and discuss the implications of our calculations for
developing a high-pressure density diagnostic.

The first concern is the core-hole binding energy. In
the single-particle picture, the x-ray-absorption edge will
begin at a photon energy of EF E, (if —we ignore
broadening effects), where E~ is the Fermi energy and E,
is the core-state energy. For both solids and atoms, the
experimental binding energy almost always differs from
that predicted by the single-particle picture. ' A large
part of this difference is due to the relaxation of the sur-
rounding electrons as the photoejected electron leaves the
excited atom, which has absorbed the incoming photon.
%'e will refer to this effect as core-hole relaxation. In
principle, this effect could also change the structure of the
x-ray-absorption edge, due to the ensuing many-body ef-
fects. In practice, the successful application of the
method described in Sec. IV seems to indicate that one
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can ignore changes in the structure of the x-ray-
absorption edge due to core-hole relaxation for metals,
possibly because of the extended nature of the final-state
wave functions.

According to current theory, the correct way to
calculate the x-ray-absorption spectra is to use final-state
wave functions for the excited electron, which are calcu-
lated in the presence of the relaxed core hole. This is dif-
ficult because it requires impuritylike calculations, where,
since the central excited atom differs from the surround-
ing atoms, the simplicity of periodic boundary conditions
is lost. In our calculations, we instead use the band-
structure Bloch states for the final state of the outgoing
electron and treat the effects of core-hole relaxation solely
by shifting the x-ray edge to the experimentally observed
edge at normal density. Because of the energy factor
(fm) in Eq. (3), this also very slightly changes the abso-
lute magnitude of the x-r'ay absorption. Although the
shifts of the x-ray edges due to changes in the single-
particle energies can easily be calculated (see Table IV),
the pressure dependence of the core-hole relaxation shift is
not known, and we therefore also used the same (normal-
density) binding energies for the high-pressure calcula-
tions. The x-ray spectra can easily be scaled for'shifts in
the edge positions if better high-pressure values become
available.

Because of the finite lifetime of the excited core hole
and ejected electron, the initial spectra, which are calcu-
lated assuming sharp initial and final states, must be
broadened as shown in Eq. (7). At normal density, the
core-hole lifetime can be estimated from either atomic cal-
culations or experimental evidence. Since there is no
knowledge about the pressure dependence currently avail-
able, we have used the atomic core-hole lifetimes for
our high-pressure calculations (cf. Table III). For the
excited-state widths I „(E), we have used Eq. (8) Strictly
speaking, the velocity u (E) in Eq. (8) should not be zero
at EF. However, given the uncertainties in A, (E), the use
of a free-electron form for u, and the rough insensitivity
of I to the zero of energy for u„, we have forced u to
zero at EF to guarantee that I „goes properly to zero at
EF. Electron-gas results ' in the random-phase approx-
imation (RPA) suggest that, for energies well above EF,
where the fundamental damping mechanism is plasmon
excitations, I will increase slowly with density, while at
lower energies, where electron-electron scattering dom-
inates, I „will increase more rapidly (roughly as r, ).
However, given the uncertainties in application of the
RPA calculations to real metals, we have used the
normal-density I „(E)for all densities.

Another concern about our calculations involves the use
of a ground-state potential for excited states, which
should "see" a different exchange-correlation potential
than low-lying states. The inclusion of these self-energy
effects, ' which also may have a pressure dependence, is
beyond the scope of this work, although it should be easy
to generalize the method to handle energy-dependent po-
tentials. We also point out that all our calculations are
done in the dipole approximation. Quadrupole and
higher-order corrections should be small" for a low-Z
material such as copper, and, in any case, should be rela-

TABLE VI. Scaled position, i.e., S (E—EF), of the I(-edge
x-ray-absorption peaks of Cu as a function of compression. The
peaks labeled A —D correspond to those shown in Fig. 5.

Position of peaks for E edge
8 C DVo/V

1

1.3
2
3
5
7

10

23.2
22.9
22.7
23.6
23.5
25.2
25.5

46.9
46.7
47.0
49.3
51.7
51.4
51.2

68.2
68;5
68.5
68.2
67.5
66.4
67.7

77.8
81.1
84.5
85.9
87.8
88.0
88.7

tively structureless.
In order to experimentally achieve high compressions,

some techniques introduce large amounts-of heating and
hence strong thermal disorder. These effects, which
would introduce additional broadening, are not included
in our calculations. They are more naturally introduced
within an EXAFS formalism through Debye-Wailer fac-
tors ' instead of in a band-structure formalism. By ex-
tending the EXAFS formulation to the case of liquids,
perhaps through the use of pair-distribution functions, in
the future it may be possible to realistically include these
effects even for strongly shocked systems that undergo
melting. As we have mentioned in the Introduction, we
believe that our present calculations are more appropriate
for isentropic and diamond-anvil compression techniques
for which the Debye-Wailer factor would actually de-
crease with compression. '

Finally, the x-ray-absorption calculations presented
here suggest that one could use the shift of the energy po-
sitions of peaks relative to the x-ray-absorption edge as a
simple diagnostic tool to determine the density of materi-
als under pressure, and hence the pressure itself from
Table I, depending on the mode of compression. The
V scaling that we are about to describe may seem ob-
vious from the appearance of ES =EV ~ in Eq. (11);
however, we note that the phase shifts 5~ that appear in
Eq. (11), both explicitly and through f(~)/S, do not, in
general, scale on volume in this manner. Thus our obser-
vations are a true result of the present calculations and
compliment those already documented for comparing dif-
ferent materials at 1 atm.

In Table VI we show how well various peaks scale with
V . For the most part, the peaks follow the scaling re-
lation reasonably closely. The worst case is peak D,
which sits at x =77.8 at Vo/V= 1 and slowly increases to
x=88.7 by the time Vo/V=10, a 14% increase in x.
Part of this increase is probably a mistake in identifica-
tion between Vo/V= 1 and 2. Because the scattering am-
plitude is changing as a function of energy as well as
function of compression, the relative size of x-ray-
absorption structure also changes. At Vo/V=1, peak D
probably contains a weak substructure, which is washed
out by the broadening. By the time Vo/V=2, the scatter-
ing amplitude is much stronger and the substructure starts
to become observable and distort relative to Vo/V = 1. If
we assume that the substructure in peak D has started to
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resolve into several features, and the relative size of
features is changing as a function of compression, then it
becomes reasonable that the "shoulder" between peaks C
and D at Vo/V=2 might correspond to peak D at
Vo/V=1. If we make this assumption and ignore the
comparison between Vo/V= 1 and 2, then the relative in-
crease in the peak position as a function of x then only in-
creases by about 8% between Vo/V=2 and 10.

If we examine Table VI we find a 10% or less max-
imum variation in x of the peak positions of A —C over
the entire range of compressions up to Vo/V=10. Be-
tween Vo/V= 1 and 2 the variation in these peaks is less
than 1%. Since this is the region easily accessible experi-
mentally, the energy dependence of the x-ray absorption
might indeed serve as a quite accurate density or volume
diagnostic.

The virtue of this kind of diagnostic is that the
elaborate calculations presented in this paper are unneces-
sary to determine the density of the compressed material,
since the normal-density spectra provide the necessary
calibration. For this diagnostic to work correctly the ex-
perimentalist need only be careful enough to be sure to

follow the same peaks, and that the peaks are above the
band-structure-sensitive near-edge region. Moreover,
several peaks in the spectra could be used as a diagnostic
(since all the peaks in the high-energy range should have
the same V ~ dependence) and cross-checked against
each other as a guard against possible broadening prob-
lems or mistakes in identifying corresponding peaks. This
crosscheck might also aid as a rough first estimate of the
accuracy of the density determination made by this pro-
cedure.
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