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The self-consistent electronic structure and adhesive energetics are computed for contacts between
all com.binations of Al(111), Zn(0001), Mg(0001), and Na(110). The electronic structure is quite dif-
ferent from that of contacts between identical metals, with large electronic potential barriers appear-
ing even at the smallest separations. Charge transfer and/or rearrangement distributions are plotted
for various contact separations. These density differences lead to potential differences, or changes
in the electronic potential distributions in the interfaces due to charge transfer and/or rearrange-
ment. They have little relation to the contact potential, and vary rapidly with contact interfacial
separation. The kinetic energy initiates the bond, while the exchange-correlation energy is the dom-
inant contributor to the strength of the adhesive bond. The range of strong bonding is about 0.2 nm.
Electronic barrier heights saturate more slowly with contact separation. One can expect metallic
transfer for the contacts involving Na, but it is less likely for the others. A universal adhesive ener-

gy relation was found to accurately describe the energetics of all ten bimetallic interfaces considered
here. Because of this universality, one can expect to determine the energetics of other bimetallic in-
terfaces via a simple scaling of the universal relation. A close relationship is revealed between dia-
tomic molecular bonds and bonds across a bimetallic interface.

I. INTRODUCTION

Because of the strong interactions occurring between
metals in intimate contact, there can be significant
changes in the electronic structure as a function of separa-
tion between the surfaces. We have studied' this
phenomenon for the case in which the two metals are
identical. When the two metals are different, charge
transfer can occur with the formation of contact poten-
tials. Unlike identical-metal contacts, this charge transfer
can cause significant electronic barriers in the interface
even at the smallest separations. The interface electronic
structure influences electronic contact behavior. Further,
metallic transfer is found when the bond between the two
metals is stronger than either of the parent metals. The
strong adhesive bonds formed between metals in intimate
contact play an important role2 in the deposition of metal
films, grain-boundary energetics, friction and wear, elec-
trical contacts, and fracture.

Earlier calculations on the bimetallic interface were
done by Bennett and Duke and by the authors. The
work of Ref. 3 was not fully self-consistent and binding or
adhesive energies were not computed. In Ref. 4 binding
energies were computed as a function of separation be-
tween interfaces, but the approximation of simple overlap
of the solid-vacuum electron distributions was made.

In the following we report the first fully self-consistent
calculations of adhesive energies and electronic structure
for bimetallic interfaces. All combinations of Al(111),
Zn(0001), Mg(0001}, and Na(110} are treated. The results
for adhesive energetics led to the discovery of a universal

energy relation5 in terms of which the energetics of bime-
tallic interfaces can be described in considerable generali-
ty. Subsequently, it was found that this universality ex-
tended to chemisorption, cohesion, diatomic-molecule en-
ergetics, and even to nuclear matter.

II. THEORETICAL METHODS

The calculational formalism and methods used for ob-
taining self-consistent interface electronic structure will
now be presented. The discussion of these methods, while
apparently similar, will differ essentially from that of Ref.
1 since in this case we will be considering dissimilar met-
als in contact.

The adhesive interaction energy E,d between two metal
surfaces is a function of the distance between the two sur-
faces, a (see Fig. 1). E,z is defined as the negative gf the
amount of work necessary to increase the separation from
a to oo divided by twice the cross-sectional area A. Thus

E,d ——[E(a)—E( oo )]/2A

where E is the total energy. For identical metals, E,~ is
the negative of the surface energy when a is at the energy
minimum.

The total energy is given by ' (atomic units are used
throughout unless otherwise specified)

IEn(r)} = JU(r)n(r)dr+ —,
' g +Fjn(F)J,

l- j R)j
(i+j )

(2)
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where U~ is the potential produced by the jellium, y is the
direction normal to the surfaces, and 5U is the average,
over planes parallel to the surface, of the difference in po-
tential due to an array of pseudopotentials and that from
a jellium surface. As in our calculations' for cases when
the two metals are identical, for the pseudopotential we
chose that due to Ashcroft. ' The Schrodinger equation is
of the form

1
, + .rt(n;y) pk'(y) = —,

' (k' —k+)l('k'(y), (5)
2

where

5E„,{n (y, a) I
v,&t(n;y) =P(y,a)+

5n y, a
0
-0.8

li t 'I t
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POSITION y (nm)

0.8

FIG. 1. Electron number density n and jellium-ion charge
density n+ for an Al-Mg contact. %'hen a =0.0, the distance
between Mg and Al atomic planes is (d~+dMg)/2, where dAI

and dM~ are the respective bulk interplanar spacings.

I

and where k is the Bloch vector component in the y direc-
tion.

In order to calculate the wave functions, we define two
regions in energy space. Refer to Fig. 2, where our nota-
tion is defined for the example case of Al(111) on the
left-hand side and Mg(0001) on the right-hand side. The
first region (region 1), is for energies below the bottom of
the band of smaller width, which in this case is below the
bottom of the Mg band. There is only one linearly in-
dependent solution in this case, with asymptotic forms

F{n(F)I= T, {n(r)I+ ,' II-" ' " '

+E„,{n(r)I,

fk ( y)=( 2n. kL)
'~ (e +u„e ~"), y~ —~

Pk„(y)=(2m.kg) '~'u„e ", y~ ~
(7a)

where kz —= (kFD —kI. )
2 2 1/2

The second region (region 2) is above the bottom of the
band of smaller width (which is hereafter assumed to be-
long to the metal on the right-hand side), and below the
Fermi level E~. The two linearly independent, degenerate
solutions have asymptotic forms as

E{n(r)I= 2 JUq(y, a)n(y, a)dy

+ —,g g ~I'{n(y,a))
g (~J) sg

+A J5U(y, a)n (y, a)dy, (4)

u(r ) is the ionic potential, and n (r) is the electron num-
ber density. The first two terms in Eq. (2) are the
electron-ion and ion-ion interaction energies, respectively.
The ionic charge is z and R,z is the distance between ion-
core nuclei (there is no ion-core overlap in the systems
considered here). T, {n(r)I is the kinetic energy of a sys-
tem of noninteracting electrons with the same density
n (r), the next term is the classical electron-electron in-
teraction energy, and E„, is the exchange-correlation ener-
gy.

The metals Zn, Mg, Al, and Na are well described by
the jellium model (Fig. 1) in the zeroth-order approxima-
tion. That is, the difference between the total pseudopo-
tential and the potential due to the jellium for each metal
is small for the closest-packed plane. Thus for a given
separation a, one obtains E to a first-order perturbation
approximation as

0
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Flax. 2. Electron potential energy v,n(y) versus position for
an Al-Mg contact (Al is on the left-hand side), at separations of
0, 0.16, and 1.6 nm.
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P'k'(y)=(2 kI )
' (e +uiie ), y

fk„(y)=(2~kg )

gk (y)=(2n.kL, ) ui2e, y-+ —ao
(2) —1/2

@'k„'(y)=(2m'kg) (e " +uzze " ), y~~ .

From the fact that the Wronskian is independent of y we
find that the wave functions f"(y) are orthogonal. The
expressions in Eq. (7b) satisfy continuum normalization
conditions. For Eq. (7b) we then find that the collision
matrix u is unitary, where

T, [n(y, a) j =A f t, In(y, a)jdy,

now remains, where
2

In (y a}j y y (kL +k +k }
I yk (y}

I

i =1 kl, k, k
(occ)

(15)

where e„,(n(r )) is the exchange-correlation energy of a
uniform electron gas af number density n(r ). We use
Wigner's interpolation formula for the correlation energy
and the Kahn-Sham exchange energy. 9

The specification of the kinetic-energy functional of
Eq. (3),

d P(y, a}
4n[n (y, a—) —.n+(y)] . (12)

p(y, a) is the electrostatic potential; n+(y) is the jellium
density (Fig. 1).

It is useful to combine the first two terms of Eq. (4)
along with the classical electron-electron interaction term
of EIn(y, a) j as follows:

py~ y& y+~1nt & (13)

where p(y, a) is the net charge density of the zeroth-order
jellium solution. W;„,(a) is the exact difference between
the ion-ion and the jellium-jellium interaction and is negli-
gible unless the facing planes are in registry, i.e., cam-
mensurate. In this calculation we assume for definiteness
incommensurate adhesion [W;„,(a) =0], unless the two
metals are identical, since registry is not obtained with
dissimilar metals in contact without corresponding loss of
energy due to strains. This strain energy can be evaluated
in specific cases." Zn and Al have Wigner-Seitz radii of
3.0 and 2.9 a.u, , respectively. Mg and Na have radii of
3.3 and 3.9 a.u. , respectively. Thus on that basis alone, Zn
and Al would most easily distort into commensuration.
Such distortion is ignored in this first investigation of the
bimetallic interface.

The exchange-correlation energy E„, is written in the
local-density approximation,

E„,In(r )j=fn(r )e„,(n(r ))dr, (14)

Q]) Q )2 ()
The electron number densities from the twa regions are
thus given by

ni(y, a) = 2s +1 'FD
«(eFi e)

I W,(y—)
I2' 0

~I'I.
nz(y, a) = g f, «(&FI. —&)

I 0"(y}I

' (10)
E

where continuum normalization was used for the wave
functions of Eqs. (7a) and (7b) and e=kL, /2.

The electron density is then

n (y, a) =ni(y, a)+n2(y, a) .

Equations (5)—(11) must be solved self-consistently with
Poisson's equation

+ [v,ff(n; —oo ) —v,fi(n;y)]n (y, a) . (16}

The sum is over all occupied states. The summation in-
dex i again refers to degenerate wave functions as in Eq.
(5). In Appendix B of Ref. 1, an expression for
T, In(y, a) j T, In (y—,0) j is presented which is based on
kinetic-energy densities in the interface region. We find
this appraach more natural for our problem, as it is the
interface region in which the large changes in kinetic-
energy density occur upon adhesion.

The Hamiltonian is now completely specified. In the
remainder of this section we will elucidate some of the
techniques used to deal with Eqs. (5) and (12).

The numerical integration of the Schrodinger equation
and Poisson's equation was done over a slab width (dis-
tance between the bulk matching point in one metal to the
carresponding point in the other metal) of 40+ a a.u. (a is
the distance between jellium surfaces). The solution to the
Schrodinger equation proceeded by breaking the k space
into two regions, below the conduction band in the less
dense metal and above it. Below the conduction band the—k~y
integration was started by assuming f=e deep in the

—'k yless dense metal and matching to 8(e ~ +uiie ~~)

deep in the more dense metal [see Eq. (7a)]. Above the
conduction-band bottom, the doubly degenerate solutions
were started by assuming froin f=e+-'& deep in the left
or right half-space and matching to C(e —'~'+ue '@}

deep in the other half-space. The solutions were then nor-
malized to the form given in Eq. (7). The potential was
required to match the bulk potential at the matching
points.

The calculation was initiated from a trial potential gen-
erated by splicing together at the midpoint potentials
from same-metal calculations. The solution proceeded by
integration in which the potential for the input of an
iteration loop was obtained from a linear combination of
input and output potentials. The system of equations is

highly unstable, and, consequently, only a small percen-
tage of the output is included in the input. The percen-

tage is periodically increased to speed up convergence and
then decreased to damp out' the instabilities created by the
higher convergence factor. The calculations were stopped
when the differences between input and output were less
than 10 meV everywhere. As a further check on self-
consistency, a comparison was made with an extension of
the Budd-Vannimenus sum rule' for bimetallic interfaces
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TABLE I. Raykov self-consistency check for Al-Zn. From
the exact expression for the bulk pressure difference, we have
1.1932& 10 3 a.u. for all values of separation.

1.2

Separation
(a.u. )

0.0
0.25
0.5
0.75
1.0
1.5
2.0
2.5
3.0
4.0
5.0

10.0
15.0
30.0

Bulk pressure difference
between Al and Zn

from computed surface potentials
(10 a.u. )

1.1951
1.1953
1.1926
1.195
1.1952
1.1966
1.1960
1.1932
1.1912
1.201
1.1936
1.1919
1.1946
1.1956
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FIG. 4. Electron density versus position for an Al-Mg con-
tact (Al is on the left-hand side), for separations of 0, 0.16, and
1.6 nm.

performed by Raykov. ' Raykov showed that the differ-
ence in bulk electronic pressures can be written in terms
of the electrostatic potentials at the two jellium surfaces.
A typical result for all metal combinations is shown in
Table I for an Al-Zn interface.

III. RESULTS AND DISCUSSION

Before proceeding with the results of the different-
metal calculations, we present a result which extends our
previous same-metal calculations and acts as a further
check on those results. In Ref. 1 the calculations were
stopped at a separation of 15 a.u. since the binding energy
had essentially saturated at a separation of 10 a.u. The
potential barrier height had not saturated at 15 a.u. , and
the bare metal work function differed substantially from
our 15-a.u. value. In the bimetallic case we are interested
in barrier heights at large separations in order to compute
contact potentials. Consequently, the calculations were
extended to a 30-a.u. separation. The results for the
same-metal barrier height (maximum in potential minus

bulk potential) versus separation for the four contacts are
shown in Fig. 3. As can be seen, the barrier in the present
calculation approaches the Lang-Kohn'" solid-vacuum in-
terface values asymptotically, as they should.

Figure 4 shows the electronic charge distributions in the
interface between Al and Mg at separations a =0, 3, and
30 a.u. (0, 0.16, and 1.6 nm). It is typical and exhibits the
large differences in bulk electron densities in the metals
considered. Because of these large differences, there is a
strong gradient in the charge distribution through the in-
terface even at the smallest separations. This and the net
charge transfer leading to a contact potential are the most
obvious differences between a bimetallic junction and a
junction between identical metals.

For example, even for a =0 the Al-Mg junction (see
Fig. 2) exhibits a significant electronic barrier height in
the interface, 4.6 eV. For the identical-metal junctions the
barrier is zero at a =0 (see Fig. 3). As with junctions be-
tween identical metals, the charge and potential distribu-
tion gradients increase with a, as do the Friedel oscillation
amplitudes (see Figs. 2 and 4). The interface barriers, i.e.,

16— I I I

TABLE II. Comparison of interface barriers at large separa-
tion with work functions.

Lang - Kohn
Barrier Hts.

(Q = ex&)

0 0.4
l

0 8 1.2 1.6
SEPARATIQN {pm)

I

2.0 2.4

FIG. 3. Electronic barrier heights as a function of separation
in the following contacts: Al-Al, Zn-Zn, Mg-Mg, and Na-Na.

Interface barrier (eV)
a =1.59 nm

Al-Al 3.79
Zn-Zn 3.76
Mg-Mg 3.62

3.01
Al-Zn 3.76
Al-Mg 3.69
Al-Na 3.42
Zn-Mg 3.69
Zn-Na 3.41
Mg-Na 3.32

'See Ref. 14.

Work functions' (eV)

Al 3.87
Zn 3.80
Mg 3.66
Na 3.06
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5 V= 4mf— y .5n (y)dy, (17)

the difference between the highest point in the potential
distribution and the Fermi level, varies rapidly with a as
exemplified in Fig. 2. In Table II these barriers are listed
for an a =30 a.u. =1.59 nm. For comparison, the solid-
vacuum work functions are given. The same-metal results
appear to approach the work functions as expected (see
also Fig. 3). The bimetallic interface barriers are inter-
mediate between the work functions of the two metals.
The electronic barrier heights (and shapes) really have lit-
tle relation to the contact potential. Unlike the barrier
heights, the contact potential is independent of separation
a, in principle, and is typically much smaller than the bar-
rier heights.

Our earlier" simple-overlap results by constraint did not
allow for charge rearrangement and resulting contact po-
tentials. In Fig. 5 we plot the self-consistent electron-
density distribution in an Al-Na interface at zero separa-
tion (a =0.0) as the dashed curve. The solid curve is the
result of adding the solid-vacuum densities for Al and Na,
respectively (simple overlap). One can see that these two
curves are indeed very close, and for some quantities —like
perhaps total energies —simple overlap might be a reason-
able approximation for the electron densities. Figure 6(a)
shows the self-consistent densities minus the sirnple-
overlap densities for a =0.0. It suggests that there is a
net charge transfer from the Na (the metal on the right-
hand side) to the Al (the metal on the left-hand side).
This is consistent with the work function of Na being
smaller than that of Al (Table II).

In Fig. 6(b) we have plotted the self-consistent or re-
laxed potential minus the simple-overlap potential for the
Al-Na interface at a =0.0. Note the charge transfer leads
to a contact potential b, V of 0.81 eV, where
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FIG. 6. (a) Self-consistent electron densities, n(y, a), minus
overlapped solid-vacuum electron densities for a =0.0 in an
Al-Na contact (Al on the left-hand side). This density differ-
ence plot shows the charge rearrangement due to interaction be-
tween the Al and Na surfaces. (b) Self-consistent electron po-
tentials v,

quan;y)

minus overlapped solid-vacuum electron poten-
tials for a =0.0 in an Al-Na contact. The contact potential hV
is given by Eq. (17), where 5n (y) in that equation is plotted in
(a).

and where 5n(y) is the density difference plotted in Fig.
6(a).

+ 0.8—
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FICx. 5. Electron density distributions in the Al-Na interface
at zero separation (a =0.0). The dashed curve is the fully-self-
consistent result, while the solid curve results from a simple
overlap of the solid-vacuum results for each of the two metals.

However, the potential difference or transfer potential
actually peaks 4.2 eV higher than the contact potential.
Thus the commonly used contact potential really does not
adequately describe what takes place in the interface. Fig-
ure 7 shows the corresponding results for the Al-Na inter-
face at a =30.0 a.u. Figure 7(a) shows clearly that elec-
trons are being transferred from the Na to the Al. Note
the change of scale relative to Fig. 6(a). The charge-
density difference must diminish in amplitude as a in-
creases, so that the contact potential hV is independent of
a. Note also from Fig. 7(b) that the contact potential b V
is again 0.81 eV, as it must be, but the transfer potential
has a markedly different shape than it had at a =0.0. At
a =30.0 a.u. , the peak in the transfer potential is quite
close to the contact potential. The potential shape be-
tween the two metals is nearly linear, as one would expect
at large separations since then each surface has a net
charge with a large vacuum region between metals which
has negligible charge in it.

Figure 8 exhibits the adhesive binding energies as a
function of separation in bimetallic contacts made be-
tween all combinations of the four metals. The results
from our previous work on same-metal contacts is includ-
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ed in Fig. 9. As with identical-metal contacts, the range
of strong bonding is about 0.2 nm for bimetallic contacts.
It is clear that there is a considerable variation in shape
and depth of these curves.

FIG. 7. (a) Self-consistent electron densities n(y, a) minus
overlapped solid-vacuum densities n (y, a) for a =1.59 nm in an
Al-Na contact, Al on the left-hand side. This shows clearly that
electrons are transferred from the Na to the A1. (b) Self-
consistent electron potentials v,fi(n;y) minus overlapped solid-
vacuum electron potentials for a =1.59 nm in an Al-Na contact.
hV is the contact potential resulting from the charge transfer
shown in (a).

FIG. 9. Adhesive binding energy versus separation a. Com-
mensurate adhesion is assumed ( 8';„,&0).

In Fig. 10 we show a breakdown of the components of
the total energy as a function of separation for an Al-Mg
contact. Note that the kinetic energy initiates the bond.
In analogy with the molecular bond, ' smoothing of the
wave functions in the bonding region lowers the kinetic
energy with respect to infinite separation. The electrostat-
ic energy is repulsive at large separations, but becomes at-
tractive at smaller separations. The dominant binding
term is the exchange-correlation energy, as is evident from
Fig. 10. The dominant repulsive term is the kinetic ener-

gy at small separation.
It is interesting to compare the binding energies at the

minima with those of the identical-metal contacts (see
Figs. 8 and 9). For incommensurate adhesion (W;« ——0),
Table III indicates that the metal binding energies fall
into two groups: those involving Na and those not involv-
ing Na. The combination involving only Al, Zn, and Mg
all have binding energies around 500 ergs/cm . Those
bimetallic contacts involving Na all have binding energies
around 300 ergs/cm . Perhaps this follows from the re-
sults for incommensurate ( W;„,=0) contacts between
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FICz. 8. Adhesive binding energy versus separation a. In-
commensurate adhesion is assumed ( 8'.„,=0).

FICx. 10. Self-consistent energy components of the binding
energy for an Al(111)-Mg(0001) contact.
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TABLE III. Binding energy comparison. All energy values
taken from the minimum in the adhesive energy plots (see Figs.
8 and 9). -0.1

Metal combination
Binding energy (ergs/cm )

8";„,=0 Perfect registry

Al(111)-Al(111)
Zn(0001)-Zn(0001)
Mg(0001)-Mg(0001)
Na(110)-Na(110)
Al(111)-Zn(0001)
Al(111)-Mg(0001)
Al(111)-Na(110)
Zn(0001)-Mg(0001)
Zn(0001)-Na(110)
Mg(0001)-Na(110)

490
505
460
195
520
505
345
490
325
310

715
545
550
230

-0.30-

IX
LLI

Z.'0 4

LU0 05
CO
LU

-0.6

-0.7D

0 -O.a
Q3

a'—:(a —a )/I (18)

and the amplitude E,d(a) is scaled as

E,g(a) =E,d(a)/AE,

where && is the magnitude of E,d(a} at the respective
minima of the curves in Figs. 8 and 9, and where

d E,d(a)l= AE
da

(20)

so that

identical metals in which, as Table III shows, the Al, Zn,
and Mg contacts have nearly the same binding energies
which are about 300 ergs/cm above that for the Na con-
tact.

A topic of interest is whether the interface is stronger
or weaker than the bulk of one of the metals. If the inter-
face were stronger, then there would be a possibility of
transfer of one metal onto the other as a result of an
adhesive bond. Since the bulk of the parent metals is in
perfect registry, one needs to compare the perfect registry
results with the incommensurate bimetallic results. One
can see that only the bimetallic junctions involving Na
could be expected to exhibit transfer. The Al-Zn junction
strength is close to, but less than the Zn-Zn strength. One
should bear in mind that defect structures and true
contact-area considerations may be important to transfer
and are not included in this work.

We wish now to look for systematics in the adhesive en-
ergy relations of Figs. 8 and 9. There are quite a variety
of shapes and amplitudes there. We have found, howev-
er, that these 10 relations can be scaled quite accurately
into a single, universal relation; as shown in Fig. 11. The
deviation of the separation a from the equilibrium value
a is scaled as

-09

0 2 3 4 5 6
SCALED SEPARATION a*

FIG. 11. Adhesive energy results from Figs. 8 and 9 scaled as
described in the text [see Eqs. (18)—(21)).
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One can see from Fig. 11 that the results for all 10 bime-
tallic contacts lie very close to the universal curve. This is
true even though the bulk metallic densities in the various
metals vary by a factor of 8. Thus, the extensive numeri-
cal calculations described earlier have led to the discovery
of very simple relationships [Eqs. (18)—(20)], governing
the energetics of bimetallic interfaces. The scaling length
I can also be defined in terms of a screening length, with
scaled results also lying quite close to a universal relation.

The universal nature of total-energy curves is not limit-
ed to metal interfaces or to simple metals. It has been
found that bulk cohesive energies as a function of
Wigner-Seitz radius scale in exactly the same fashion as
do adhesive energies at interfaces. From the two defini-
tions of I [screening length or Eq. (20}],a simple relation-
ship between surface energies and cohesive energies en-
sues, as described earlier. Furthermore, results for both
simple metals and transition metals when scaled [Eq. (20)]
fall closely on the universal relation. Finally, many dia-
tomic molecular binding-energy relations, as well as those
known for chemisorption and nucleon-nucleon interac-
tions, are also described by the same universal relation
(Fig. 11). It has been commented earlier about the simi-
larity of the results of Fig. 8 to those of diatomic mole-
cules. ' %'e can now see that there is a detailed correspon-
dence between the metallic and molecular bond. '

d E*,d(a*)
da*

(21)
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