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Exact and approximate results for the ground-state energy
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The ground-state energy of a two-dimensional (2D) Frohlich polaron is calculated to second order
in the coupling constant (a) and gives E/~, = —(m/2)a —0.06397&v with %co, the surface optical-
phonon energy. In the strong-coupling limit the adiabatic approximation is used and

E/fm, = —0.4047m is found to leading order in a. The Feynman path-integral approximation, the
Gaussian approximation, and the modified Lee-Low-Pines unitary transformation approximation to
the polaron ground-state energy all satisfy the scaling relation E20{u)= 3E3D((3a/4)a), where

E2D (E30) is the ground-state energy of the 2D (3D) polaron.

I. INTRODUCTION

An electron near the surface of an ionic or polar crystal
interacts with the longitudinal surface optical- (SO) pho-
non mode. The electron with its virtual-phonon cloud in
this situation is referred to as a "surface polaron" and has
been studied by several authors. ' They calculated the
ground-state energy using several approximations. In
Refs. 3 and 4 a "phase transition" of the surface polaron
from a quasifree to a self-trapped state was found. In the
present paper we will question this conclusion.

In this paper we discuss the ground-state energy of an
electron moving in a two-dimensional (2D) space and
which is coupled to SO phonons. The Hamiltonian for
the interacting system of electron and SO phonons is
given by'

20= ++fico,a~ak+g(Vt, e' 'aq+Vke ' 'aq)
2m k k

with

Vk = —itrtco, (v 2+a/Ak)'~2(tri/mco, )'~4 .

p and r are the electron momentum and position opera-
tors. az (at, ) is the creation (annihilation) operator of a
SO phonon with wave vector k and energy @co,. The
strength of the interaction between the electron and the
SO phonon is represented by the coupling constant o..

The organization of the present paper is as follows. In
Sec. II we calculate the exact ground-state energy: (i) to
order a in the weak-coupling limit and (ii), to leading or-
der in o.'in the strong-coupling limit. In Sec. III we dis-

cuss different approximate theories valid for all a and we
find a scaling relation between the ground-state energy of
2D and three-dimensional (3D) polarons. Our results are
summarized and discussed in Sec. IV.

II. EXACT RESULTS

In this section we present exact results for the 2D pola-
ron ground-state energy in the limit of weak and strong
electron-phonon coupling.

A. Weak-coupling limit

The path-integral representation for the polaron parti-
tion function allows one to eliminate the phonon coordi-
nates exactly. The free energy (E) can be obtained from

e (e gs
ps» s, [~~~~]

(2)

where Fo is the free energy of a free electron which 1s
described by the action

S,= — f [r(t)] dt .
p

2m

The interaction part of the action is given by

S't —y ~
Vk

~ f dtt f dtt'G (tt tt')e'" ('"'p p

k
0 0 S

(3)

with

6 (tt)= ,'n(co)(e" ~"—~+e '~ ~" ~')

the Green's function for the phonons. ( )s is a path-
0
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integral average with weight e . We choose units such
that m =to, =%=1 which 'results in

I Vk
I

=(v 2@a/
A )(1/k).

Since SI is of order a, we may expand

e '=1+St+Sl/2+

E = —Aa —Ba +O(a )

where A and 8 are given by

(5)

presented in Appendix A. The result can be summarized
by

To second order in a, Eq. (2) can then be written as
—p{F—Fo~ ~2

e =1+b]a+ o;
2

(4a) B= — —6 +2 f dx =0.063 97,
(1+x )

(6)

(7)

or
2b) b2 —b)F=Fo — u—

13 2P
(4b)

where

6 = g ~
=0.91596

ao
( 1)m

p (2m+1)
with

b ~a = &St[r(t)] &s

and

bract' ——
& St [r(t)]SI[r(t)] &s

In the limit P~oo (i.e., T~O, since P=1/k&T) the free
energy (F) equals the ground-state energy (E). The alge-
braic work involved in the calculation of the averages is

is Catalan's constant and K(x) is the complete elliptic
function. The coefficient 3 =n/2 was already obtained
earlier. ' The coefficient B =0.06397 is different from
a resu1t obtained by Das Sarma and Mason using di-
agrammatic techniques. They found B =0.057. We have
examined carefully (see Appendix 8) their approximation
and calculated B using their method, and found again
8 =0.06397, which is exactly our result which was ob-
tained from expansion in u of E using path integrals.

B. Strong-coupling limit

In the o, &&1 limit the adiabatic approximation becomes exact. Following Pekar we use the product ansatz
I
N& =

I g& I P& and optimize with respect to the phonon part
I
P&. Following Miyake the ground-state energy is given

by the equation

2

+X,'k-
I & @ I

""'
I @& I

'-2 X (g)
k Ak

where
I g& is the electron wave function. We may make a

transformation r~r/v 2a, k~kv 2a, which results in
the following integro-differential equation:

—b, —2 f d k 0 I

e'"'I 0& e tkr- '

2mk
+V P

(9)

with

I dzk I &@ I

e'"'I @& I

'
2wk

and 5 the I aplacian operator. In 20 the equation is hard
to solve numerically. Therefore, we note that Eq. (9) is
equivalent to a variational evaluation of

—(A/2)r ~
(1) A Cxaussian trial wave function: Q=Ne

which gives A =+/8 and E = —m. /8 a = —0.3927a .
(2) An exponential trial function: g=¹ ' '", where

A becomes %=3m. /8 and E = —(3m /16) a = —0.3470a .
(3) A Pekar-type ansatz: Q=N[1+br+a(br) ]e

which after a numerical minimalization results in
a =0.367, 5 = 1.45 with the energy E = —0.04046m'.

In the 3D case Miyake solved Eq. (9) numerically and
showed that the Pekar wave function is accurate enough
to give E/a to an accuracy of 0.01%. In the 2D case it
is much more difficult to solve Eq. (9) numerically.
Therefore we proceeded as follows in order to get an idea
of the accuracy of the Pekar wave function. In a succes-
sive way we incorporate more parameters and higher-
order terms in r and investigate how E/a changes. %'e
found that the variational choice

with respect to the function P(r).
Now, we may choose different functional forms for

g(r) and make a variational calculation of Eq. (10) with
respect to the parameters contained in g(r). We take the
following.

g= N [1+br +a (br) +c (br)3]e

did not give a lower value for E because minimalization
leads to c =0. Therefore we consider the following four-
parameter wave function (which we will call the modified
Pekar wave function):

Q=N[1+br+a(br) +c(br) +d(br)")e '. (ll)
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III. APPROXIMATE RESULTS
I

We will discuss three approximations which have been
worked out for the 2D polaron ground-state energy and
which are intended to be valid for the whole electron-
phonon coupling range.

(1) Feynman's path-integral treatment of the 3D pola-
ron problem can be easily translated to the 2D case. Us-
ing the Feynman polaron model the following upper
bound is obtained to the 2D polaron ground-state energy:

I /2
(U —w) a m

(12)
2U 2 2

dt

where

0.5

A numerical minimalization of the ground-state energy
leads to a =0.3606, b = 1.2567, c = —0.083 89,
d =0.007 464, and E = —0.4047m . The resulting
ground-state energy E/a is less than 0.02% different
from the result obtained with Pekar's wave function and
we may expect that E=—0.4047a corresponds to the
exact result for the given digits. The normalized wave
function for the above electron wave functions it(r) is
shown in Fig. 1. The difference between Pekar's wave
function and the modified Pekar wave function is very
small, as it is apparent from the inset of Fig. 1. E=——a +O(a )

8
(13b)

the leading term in u is identical to the result for a Gauss-
ian wave function.

(2) Using the Gaussian approximation, which is a spe-
cial case of the Feynman approximation (i.e., w =0),
Farias et al. found the following upper bound:

V CX oo eE= ~~v U dt
2 2 e

—ut)i/2 (14)

where v is a variational parameter. When a(2.48 Eq.
(14) gi~es E = —(vr/2)a as a variational result. For
a »1, E = —(m./8)a is obtained.

(3) Bodas et al. recently applied an extension of the
Lee Low I'ines -unit-ary transformation method and found
the following upper bound to the polaron ground-state en-
ergy:

exp[ —(1—q) x /2k]E — d

2 U2 W2
D(t)= t+ (1—e "'),

2v 2v

and v and w are variational parameters which are chosen
such that the smallest upper bound is obtained. For
a && 1, Eq. (12) gives to order a

2

E = ——cz — o,2 (13a)
2 216

In the strong-coupling limit (a »1)

where X and q are two variational parameters. For
a (3.62 the variational result leads to E = —(m/2)a. In
the strong coupling limit E = —(m/8)a is obtained.

The last two upper bounds to the 2D polaron ground-
state energy, i.e., Eqs. (14) and (15), lead to a first-order
phase-transition behavior, i.e., the first derivative of the
ground-state energy to a(BE/Ba) exhibits a jump at a
critical value a, . The critical points are a, =2.48 for the
Gaussian approximation and o,,=3.62 for the unitary
transformation approximation.

If we compare Eqs. (12), (14), and (15) for the 2D pola-
ron ground-state energy with the equivalent results for the
3D polaron ground-state energy [see Eqs. (1), (4), and (6)
of Ref. 10], we find the following scaling relation:

E»(a) = —,
' E»((3~/4)a) . (16)

1 2 3 I+ 5 6 7

FIG. 1. Normalized polaron wave function for the 20 pola-
ron in the strong-coupling limit r~ =(A/2m', )' (1/u).

Here E2D and E30 denote the 2D and 3D polaron
ground-state energy, respectively. The scaling relation
(16) is valid for the approximate upper bounds.

This scaling relation (16) implies that the numerical re-
sults for the ground-state energy and the first (BE/Ba)
and the second (B E/Ba ) derivatives of E to a for the
above approximate results are, up to a simple rescaling of
E and a, identical to those of the 3D case which were
presented in Ref. 10. The analysis concerning a possible
phase transition of the 2D polaron can thus be taken over
from Ref. 10, which suggests that the phase transitions
found in Refs. 1, 3, and 4 are rather a consequence of their
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approximation than an intrinsic property of the Fro'hlich

Hamiltonian.
The Frohlich polaron in ZD, as studied in the present

paper, behaves essentially different from the 2D acoustical
polaron as was discussed in Ref. 11. The latter one shows
a discontinuous transition from the quasifree to the self-
trapped polaron state, when studied within the Feynman
polaron model, in contrast to the 20 Frohlich polaron
which behaves continuously as function of a. This is sug-
gestive for the fact that the dispersionless nature of the
polaron spectrum is crucial for the continuous nature of
the quasifree to self-trapped state transition.

We will supplement the numerical results given in Ref.
10 by calculating the third derivative, i.e., 8 E/Ba,
which shows even more dramatically the difference be-
tween the Feynman, Gaussian, and umtary transformation
approximation (see Fig. 2). In the Feynman approxima-
tion 8 E/Ba turns out to be continuous. For a(4. 1,
8 E/Ba is negative. With increasing a, 8 E/Ba3 de-
creases first and reaches its minimal value at a=2.7.
Then it increases and at +=4.1, 8 E/Ba becomes posi-
tive. At a slightly higher a value, 8 E/Ba reaches a
maximum after which it continuously decreases to zero
when a —+Do. The Gaussian (a, =2.48) and the unitary
transformation approximation (a,=3.62) to E gives
8 E/Ba =0 for a&a, . For u&a„B E/Ba is positive
and a continuous decreasing function with increasing u.

Including the temperature dependence within the above
approximative results would not alter the scaling relation
(16). The temperature dependence of the internal energy,
the entropy, and the specific heat can therefore be easily
obtained, within Feynman s approximation, from Sec. IV
of Ref. 12 using the scaling relation (16).

IV. CONCLUSION

derived in this paper, which is satisfied by the approxi-
mate theories [see Eqs. (12), (14), and (15)]. It should
be noted that the exact result for the weak-coupling ex-
pansion up to a [see Eqs. (5)—(7)] and the exact strong-
coupling limit do not satisfy this scaling velation Th. us the
scaling relation (16) is only approximately valid. Note
that the weak-coupling expansion of the polaron ground-
state energy up to order a satisfies the scaling relation.
But the scaling relation breaks down for higher orders in
a. The reason is that in the approximate theories and for
the coefficient of a in a weak-coupling expansion of E
one has to calculate integrals of the form

f d3k —Ak2
(18a)

and

d2k e —Ak

k vg 2
(18b)

and

I d3k d3k -8(k1+k2)-Akl k2
3D ~ 1 2e (19a)

I = d2k d2k -8{kl+k2)-Akl. k2
2D 2e (19b)

which contain integrals over the angle P (cosP
=k~.kz/k~k2) which are different in three dimensions:

f —Ak
&

k& cosP

0

from those in the two-dimensional case:

which differs only by a constant factor. However, in the
exact perturbation expansion to order a and in the exact
strong-coupling limit the corresponding integrals are of
the form

In the first part of this conclusion we will digress on
the scaling relation —Ak l k2 cosg

Q+8a
E/D(a) = —,E3D((31T/4)a) (17)
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The difference is no longer a simple constant factor. In
the approximate theories no coupling between the dif-
ferent directions in space exists [cf. Eqs. (18a) and (18b)
with Eqs. (19a) and (19b)]. This is the underlying reason
for the validity of the scaling relation for the approximate
theories.

For the same reason there exists a similar scaling rela-
tion for the approximate Feynman expression of the pola-
ron mass m*:

2.48,

2

I

3
K(20)

2
I

—-0,05

TABLE I. Ground-state energy in the weak-coupling limit to
order cx .

—E/Ace,

FIG. 2. Third derivative of the ground-state energy with
respect to the coupling constant a for different polaron theories.
Left and lower scale is for the 2D polaron, right and upper scale
is for the 3D polaron.

Exact

Feynman

Gaussian

—++0.063 97m
2 I

—a+0.045 69&x
2

2
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Exact
Pekar
Feynman
(Gaussian)
Exponential

0.4047~'
0.4046'
0.3927a

0.3470o,

TABLE II. Ground-state energy in the strong-coupling limit
to leading order in a.

—E/fiiu,

coupling constant a and to leading order in a in the case
of the strong-coupling limit (i.e., a»1). These results
are summarized in Tables I and II and are compared with
the corresponding expansions of some approximate
theories. We found that the ground-state energy (and also
the polaron mass) of the approximate theories can easily
be obtained from the corresponding 2D results by apply-
ing the scaling relation

E2D(a) = —,E3D((3n/4)a) .
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APPENDIX A

In this Appendix we present a detailed calculation of the 2D polaron ground-state energy to second order in the
Frohlich coupling constant a. The calculation relies on a path-integral representation of the partition function. This
calculation is similar to the 3D case as given in Ref. 13 but with the difference that in the 2D case not all integrals can be
done in the zero-temperature limit.

The coefficient of order a is given by [see Eqs. (3) and (4b)]

l (St[r( t) ]&s
13 aP 0

g ~
V

~ f du f du'G (u u')(e—'"('"' '"')&P P

p
k o o a& so

(A 1)

(A2)

where ( &s is a path-integral average with weight e . One readily finds
0

/ ik [r{g)—r{u')] ~ —k D{u —u')2

0

with

(A3)

D(t)= 1—
2

(A4)

Inserting Eq. (A3) into Eq. (A2) and performing as many integrals as possible gives

p G (u)f du
2 o D(u) (AS)

In the zero-temperature limit we obtain the well-known result

lim A= f dt
p~ao 2 o t 2

(A6)

The coefficient of the a term is [see Eqs. (3) and (4b)]

(A7)

where
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bz =
z &~1[r(~) l~r [r(~)] &s,

1

1 P P, P I3

, XX I &~, I'
I &~, I' f, du i f, du i f, duo f, du2G. , (ui —ui )G. (u, —u,')

k1 k2

gk1'f Q1 ~
1 )~ k2 ~ "2 —r(u2 )] iQ(e e pg

(A8)

The average in Eq. (A9) can be found in Ref. 13 and is given by

ik1 tr(u1) —r(u1 )] ik2 [r(u2) —r(u2 )] 2 2(e e ) =exp[ —k~D(u& —u& ) —k2D(u2 —u2) —k& kzM(u&, u&, u2, uz)],
where

(A10)

M(ufyu] yuz&uz) D(ul u2)+D(u2 u 1 ) —D(u j —u2) —D(u )
—u2)

By inserting Eq. (A10) into Eq. (A9) and performing the transformation
T

(Al 1)

1
1

2
1

2 0
R

1 — —— 01 1

2 2

1

2

and performing as many integrals as possible, we ended up with the following expression:
r

p/2 G„(~]) r, G„(~2)
b2 ——4p d~)

0 [D(r )]1/2 0 [D(r )]I/2diaz (~)—rp) K( x)2+(P rg —~g)K—(x))

+2[D(r&)D(~2)]'/ f dx K(x)—x1
(A13)

where x~ v&r2/P[D(r——&)D(&2)]', x2 ——r2(1 —r&/P)/[D(r&)D(&2)]', and K(x) is the complete elliptic function. In
the limit of zero temperature we obtain

1 ~2 XOC 00 12B=—
2 0

'

(& )1/2 0 ( )1/2d&2 (r~ —'rq) K(x&z) ——+2(r~v2)
2 0

dx K(x)——
2

(A14)

with x~2 ——(~z/r&)' . This expression can be further sim-
plified to I 1 dp d q 1, (B2)

(2~)' p q (p'+1)'[(p+q)'+2]
8= — —6+2 x K(x)

(1+x )

where 6 =g 0( —1) /(2m+1) .

APPENDIX B

(A15)

1 dp dq 1

(2m)' p q (p'+ l)(q'+ l)[(p+q)'+2]
(B3)

8 =I) +I2+I3
with

(B1)

In this Appendix we apply conventional fourth-order
perturbation theory to obtain the correction —Sa to the
2D polaron ground-state energy to second order in the
Frohlich coupling-constant a. Qne obtains the following
form:6

1 dp dq 1

(2~)' p q (p'+1)'(q'+1) (B4)

where I~,Iq, I3 is the contribution of the nested, crossing,
and reducible diagrams, respectively.

I3 can easily be calculated; we obtained I3 ———m /8.
To calculate I~ we may integrate first over q, which re-
sults in
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I1 —— dp K . (85)
O ( 2+ 1)2(p2+2)1/2 (p2+2)1/2

With the transformation x =p /(p +2), Eq. (85) be-
coIIles

written as a twofold integral which we were unable to
reduce further:

oo m/2 1
I2 —— dp dp

(p +1)2+4p cos P

1 —xx E x
(1+x )

(86)
x 1 —p cos2$

(p 2+ 2 p
2 2y )1/2

A numerical evaluation of the integral in Eq. (86) gives
the result I~ ——0.822 93.

Performing the q integration in Eq. (83), I2 can be 8 =0.063 97 . (88)

We have calculated numerically I2 ——0.47474. Finally we
obtain
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