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Domain-wall renormalization-group study of the random Heisenberg model
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The random Heisenberg model with a Gaussian distribution of nearest-neighbor interactions is
studied for the pure spin-glass case where the average interaction vanishes. The distribution of
,domain-wall energies at zero temperature is calculated using a spin-quench algorithm to find the
ground-state energy for finite lattices. A renormalization-group transformation is set up which
preserves the domain-wall energy distribution when the lattice parameter is changed. In the strong-
coupling regime (zero temperature) the model iterates toward weak coupling and therefore exhibits a
"phase transition at zero temperature" in both two and three dimensions. The correlation-length ex-
ponent is v=0.714+0.015 in two dimensions and v=1.54+0.19 in three dimensions. The lower crit-
ical dimension is four.

I. INTRODUCTION

It has recently been shown' that the three-
dimensional random Ising model exhibits a spin-glass
phase transition at finite temperature, whereas in two di-
mensions there is only a "phase transition at zero tempera-
ture". Here, we study the random Heisenberg model us-
ing the domain-wall renormalization-group (DWRCi)
method and find a phase transition at zero temperature
in both two and three dimensions and a lower critical di-
mension of four.

J. The second system has lattice spacing a'&a, n'" lat-
tice sites with L =n'a'=na, and Hamiltonian parameter
J'. We require that the two systems have the same mac-
roscopic properties and that the variances of the distribu-
tion of the domain-wall energies be equal:

~„(J')=w„(J) . (2)

We choose J ' so that (2) is satisfied and (2) is the implicit
recursion relation for J.

II. DOMAIN-WALL RENORMALIZATION GROUP

We consider a hypercubic lattice of dimensionality d
with n sites, lattice spacing a, and lattice size L=na.
The Hamiltonian is

with nearest-neighbor interactions JJ chosen from a
Gaussian distribution with zero mean and variance J. We
choose either periodic boundary conditions in all d direc-
tions or antiperiodic boundary conditions in one direction
and periodic boundary conditions in the others; an-
tiperiodic boundary conditions introduce a domain'wall.
For a given configuration of interactions let E~ and E' be
the ground-state energy for periodic and antiperiodic
boundary conditions, respectively. The domain-wall ener-

gy at zero temperature is then W=E' —E~. For each
configuration of interactions, one obtains a different
domain-wall energy and one is interested in the distribu-
tion function of the domain-wall energies. We character-
ize that distribution by its mean 8' and variance 8' 8'is
zero for the model considered here.

We set up a renormalization-group transformation by
considering two systems with the same physical size but
different spacings. The first system has lattice sparing a,
n lattice sites with L =na, and Hamiltonian parameter

III. SPIN-QUENCH ALGORITHM

In order to implement the DWRG method we need a
numerical algorithm to generate the ground-state energy
for a particular configuration of interactions. We begin
with a randomly chosen configuration of spins and use a
spin-quench algorithm to find the ground state or possibly
a metastable state. We examine each spin in turn, find the
local field acting on that spin due to interactions with its
neighbors, and rotate the spin to its minimum energy con-

'figuration in the local field. This procedure is iterated un-
til the total energy converges to the desired accuracy. We
find metastable states for the larger lattices in all three
dimensionalities and we use several starting spin configu-
rations in the search for the ground state. In this way we
find the ground-state energy for periodic and antiperiodic
boundary conditions; the energy difference is the domain-
wall energy for that particular configuration of interac-
tions. The calculation is repeated for N configurations of
interactions, where N is between 5000 and 20000, to pro-
vide N samples of the domain-wall energy from which we
estimate the variance of the domain-wall energy distribu-
tion. For a model with a constant density of metastable
states we expect the variance of the domain-wall energy
distribution to converge as 1/M for large M, where M is
the number of starting spin configurations used in the
search for the ground state. We observe this l/M
behavior and use it to extrapolate the data to large M; the
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TABLE I. Spin-quench results for the random Heisenberg
model. d is the dimensionality, n is the number of lattice sites,

N is the number of interaction configurations, J is the variance

of the interaction distribution, and 8' is the variance of the
domain-wall energy distribution. The errors quoted are three es-
timated standard deviations.

TABLE II. Fitting parameters for the least-squares fits of
the data in Table I to the scaling form of Eq. (3). d is the
dimensionality, "range" is the range if n values are used in the
fit, "g " is the ratio of the value of g found in the fit to the
largest acceptable value at the 98% confidence level, and "eigen-
value" is the A, parameter in Eq. (3). The errors. quoted are from
the g test at the 98% confidence level.
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1.259+0.030
0.904+0.021
0.689+0.017
0.530+0.013
0.353+0.008
0.202+0.007
1.870+0.042
1.449+0.032
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corrections are small and we use an M of three or four
starting spin configurations.

IV. RESULTS

The spin-quench results for the variance of the
domain-wall energy distribution are given in Table I. The
errors quoted are three estimated standard deviations.
The scaling form for W is

Wn=Bn J . (3)

We fit (3) to the data in Table I using a least-squares pro-
cedure with the 7 test; the fitting parameters are given in
Table II for several ranges of n. The value of 5 normal-
ized to the largest acceptable value of 7 at the 98% con-
fidence level, is given in the table; if this ratio is less than
1, the fit is acceptable. In two dimensions we find an
unacceptable fit when lattice sizes from 3 to 12 are in-
cluded, a marginal fit when 4 to 12 are included, and a
good fit when only 5 to 12 are included. Corrections to
scaling are important for the smallest lattice and the ex-
ponent is biased when the smallest lattice is included in
the fit (for the unacceptable fits we estimate the uncer-
tainty in the eigenvalue from the value which causes 7 to
double). The bias in the eigenvalue is no larger than the
statistical uncertainty in the eigenvalue, even when the

Range

3&n &12
4&n &12
5&n &12
3&n&6
4.&n &6
3&n &4

4.82
1.08
0.17
2.92
0.80

eigenvalue

—1.32+0.07
—1.37+0.04
—1.40+0.03
—0.77+0.08
—0.65+0.08
—0.16+0.07

corrections to scaling are sufficiently large to be detected
with the 7 test. The errors quoted herein are the statisti-
cal errors and one should keep in mind that the systematic
errors may be of comparable magnitude.

In two dimensions, the eigenvalue is A, = —1.40+0.03.
The interaction iterates toward weak coupling and there is
a phase transition at zero temperature with correlation-
length exponent v= —I/k=0. 174+0.015. In three di-
mensions the eigenvalue is A, = —0.65+0.08, The interac-
tion iterates toward weak coupling and there is a phase
transition at zero temperature with correlation-length ex-
ponent v= —1/A, = 1.54+0.19. In four dimensions we
find A, = —0.16+0.07; given the systematic errors found
for small lattices in two and three dimensions we believe
that this value is not significantly different from zero and
that the lower critical dimension (at which the eigenvalue
vanishes) for the random Heisenberg model is four.
Several theoretical papers have predicted that the
lower critical dimension of the random Ising model is
four; that prediction is now known to be incorrect. '
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