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Hydrodynamic theory of density-response functions at a metal surface

W. L. Schaich
Physics Department and Materials Research Institute, Indiana University, Bloomington, Indiana 47405
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The density response of a metal surface to charge and potential perturbations is derived using a
hydrodynamic description of the mobile electrons. Spatial dispersion and Ohmic damping are al-
lowed for and results are found for both the retarded and nonretarded cases. The theory is carried
through via three separate schemes: the density response is found from second-quantized density
operators, from the effect of an applied potential, and from the effect of applied charge and current
sources. The formulas are compared to earlier work. We confirm the nonretarded results of
Eguiluz, but not those of others.

I. INTRODUCTION

' There has been a strong interest in recent years in the
electronic response of a metal surface to electrodynamic
perturbations and a variety of theoretical approaches have
been developed; see Refs. 1—3 for reviews. In this paper
we shall further extend the particular approach based on
the hydrodynamic model, focusing on the calculation of
density-response functions. The same quantities will be
derived in several ways in order both to illustrate various
techniques and to serve as checks on the results. This re-
petition is necessary because, in earlier work on this prob-
lem, different groups found different answers. Our re-
sults in the nonretarded limit corroborate only those of
Eguiluz. The methods we develop also allow us to treat
the retarded regime with nearly the same ease.

We begin by briefly setting up the basic hydrodynamic
model that will be solved. " At its center is the linear-
ized, phenomenological equation of motion for the mobile
electrons,

2
2E—P V(5p) —j/~,

Bt 4m

where the induced current density j and charge density 5p
are further related by the equation of continuity,

Bt
5p+V j=0,

and the electric field E is determined from Maxwell's
equations. In the nonretarded limit only the longitudinal
part of E is used, which is determined by Cxauss's equa-
tion,

V E=4m5p (3)

In the retarded limit the other three Maxwell equations
are also needed. The material parameters introduced in
(1) are the bulk-plasma frequency co~, the spatial disper-
sion parameter p, and the relaxation rate 1/r. We use a
single density step model so co~, p, and 1/r are constant in
x ~ 0, where the metal is, and all vanish in vacuum, x & 0.
Typical values may be found in Ref. 2, but we are more
concerned here with analytical rather than numerical re-

suits.
The version of the hydrodynamic model that we have

introduced contains several simplifications compared to
previous work. Only the effects of mobile electrons are
included; the responses of bound electrons" and of ions
are omitted. We do not allow the equilibrium density pro-
file (proportional to co~) to vary except for the discon-
tinuity at the vacuum interface. Some variation, in the
form, say, of several density steps, 2 ' ' would make the
model more realistic but complicates the algebra. Such
improvements could be incorporated in quantitative appli-
cations. There are limits, however, on how far one may
improve the model before encountering fundamental limi-
tations. ' ' We will not list all of these faults again, but
discuss below the possible singular response at x =0,
which causes both mathematical and physical problems.

A related concern is the need to specify an additional
boundary condition (ABC) when matching fields across
the x =0 plane. For a single density step only one ABC
is necessary, but its choice does require further justifica-
tion. " In our analysis we shall illustrate the conse-
quences of two alternate ABC' s. The first, which we call
the stress ABC (S case), requires the density fluctuation,
5p, to vanish at the surface. Its physical picture is that of
a free surface subject to zero stress. The second, which we
call the current ABC (C case), requires the normal com-
ponent of the current, x.j, to vanish at the surface. It im-
plies a rigid surface barrier that allows no charge to cross
the equilibrium plane. Further arguments in support of
each of these have been given before, " but it is still an
open question as to which is more appropriate. One bene-
fit of our analysis is the ability to compare their implica-
tions.

Given the above hydrodynamic model, the basic quanti-
ty we seek is the density-response function P, defined by

—5p,„d(x;Q,~)=f dx'X(x, x', Q, cu) V,„t(x',Q,~),
e '"d —00

(4)

where 5p;„d is the charge density linearly induced by the
applied (external) scalar potential, P,„,= V,„,/e, with e ~ 0
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the charge of an electron. We assume that the perturba-
tion and all the responses are at a common frequency,
co & 0, and a common wave vector parallel to the surface,
Q. Usually we will suppress explicit reference to the Q, co

dependence. Since the only excitations in the model are
plasmons, we assume the temperature is zero. By stan-
dard arguments, ' a function with the same information
but an often closer relation to experimental probes is

R (x,x') = ——ImX(x, x'),

where Im denotes "imaginary part of." Using inversion
symmetry in planes parallel to the surface and the absence
of a static magnetic field, one may formally express R as
a density-density correlation function,

R (x,x', Q, co) =—f 8'"'((nq(x, &)n q(x') »0,

(6)

where A is the quantization area, n is the operator of the
electron-density fluctuation, with a possible Heisenberg
time dependence, and the double angular brackets denote
an ensemble average of expectation values in the unper-
turbed system.

The plan of the remainder of this paper is as follows.
In Sec. II we first determine the eigenmodes of density os-
cillation allowed by the nonretarded hydrodynamic model
and then carry out a second quantization of them to find
an approximate n, from which (6) is easily evaluated.
Next, in Sec. III we develop a direct approach to 7 based
on solving the hydrodynamic equations for 5p;„d(x)given
V,„,(x)=5(x —x'). The method is derived with full retar-
dation, but is incapable of unambiguously determining the
possible singular response when x'=0. To correct this
flaw, in Sec. IV we develop an indirect approach to X
based on solving the hydrodynamic equations for 5p;„d(x)
given 5p,„,(x)=5(x —x'). This scheme has been applied
before in the nonretarded regime. ' Our derivation shows
how it may be done with full retardation. Finally, in the
Appendixes we present digressions on related topics: the
constraints of the f sum rule and the derivation of poten-
tial response functions.

II. DERIVATION VIA QUANTIZED MODES

The scheme that we develop in this section is closely re-
lated to the analysis reviewed by Barton. ' However,
several technical points are treated differently here, in-
cluding the allowance of alternate ABC' s, and the goal of
density-response functions has not been explicitly exam-
ined by this method before. The method requires in its
present form that we set w= oo and c = Oc, where c is the
speed of light. The first constraint seems unavoidable
since we wish to produce eigenmodes with real eigenfre-
quencies. The second constraint can probably be removed
(see Refs. 16 and 17 for an idea of what is required). We
do not pursue this extension here since the schemes of
Secs. III and IV easily allow the inclusion of both finite c
and finite ~. For the same reason, we do not dwell on the
subtleties of the method.

The derivation starts by finding the eigenmodes of den-

sity oscillation allowed by the hydrodynamic model. In
the nonretarded limit we may use potentials to simplify
the analysis. We write

and

Vf—.

= —poV g+po 5(x),
Bx o—

(10)

with all derivatives only evaluated up to x =0 . With
the same caution, Eqs. (1)—(3) may be reduced, when
~=ao, to

(co +P V )V 4mpyb=co~V P,
plus

V'y=4~poV'y 4~5p,„,. — (12)

Equation (12) also applies when x &0 if we set /=0
there. For now we allow no external perturbation and
combine (11) and (12) into

82
2 2 P2Q2+P2

P Bx

5Q— 0 (13)

which, together with sufficient boundary conditions, de-
scribes the eigenmodes of the unperturbed system.

We solve for these modes by the method of partial
waves, " noting that (13) has solutions proportional to

+QLxe- and e- ",~here
2 2

COp
—CO

QL pL 2 +Q (14)

The latter are strictly longitudinal (yielding a finite 5p in
x &0), while the former, which we call Coulomb waves,
may be interpreted in different contexts as of either trans-
verse or longitudinal nature, but are strictly neither away
from x =0. Since we use them here to construct g and P,
they appear longitudinal at this moment. For a surface
mode we use

0, x~0q„g,ae "+o,e ", x &0

and, from (11) and (12),

(15)

Here,

3='~pot

where g'(x;Q, co) measures the displacement of the hydro-
dynamic fluid and po ——

~

e
~
no is the magnitude of the

equilibrium charge density. Inside the medium (x &0)
one has, from (2), 5p;„d——poV g= —poV P, but the possi-
bility that the fluid surface may undulate leads to an ap-
parent surface charge density " too. Explicitly separat-
ing the singular contributions yields

5p;„d——poV. g —pox
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Xe-{2", x)0
4'=4~no, & „,, g,.

cop ae&"+(cop/co )ae, x (0 (16)

where (19b) holds only in the nonretarded limit. For (11)
+QLx

applied to partial waves proportional to e ", DL ——0 is
identically zero; while for the Coulomb waves [or strictly
transverse waves —see (41)],

We have assumed that co &coz+P Q, so QL &0 and,
with QL & 0, only partial waves that decay away from the
surface have been kept. For bulk modes we imagine that
~ =co~+P (Q +pL))co~+P Q, with p„&0. Since
there are now propagating waves, we must allow them to
both come to and go from the surface:

0, x)0
ae ~"+a, cos(pLx) +a„sin(pLx), x & 0

(17)

Note that the matching parameters in (15) and (16) are
numerically unrelated to those in (17) and (18), even
though there are some common symbols (A, and a).

Each of (15)—(18) satisfies (13) and is normalizable. To
determine the unknown coefficients we need to apply
boundary conditions. Two of these are standard: the con-
tinuity of parallel E and normal D. Since the variation
parallel to the surface is controlled by the (implicit) factor
e'~', continuity of parallel E means continuity of P.
The displacement field 0=E+4mP, where P =i j/cu.
Hence,

D=E—4mpog

= —V(p —4m.p01( ),
(19a)

(19b)

CO

0 =4~po
COp

A8 ~, X~0
ae "+(a)~/co )[a, cos(pLx)+a, sin(pLx)],

x &0 . (18)

Dz ——[e(x ) +eB{—x)]E~,

co (Q)=
co~/2, S case

(20)

[~ +11~Q2+/3Q (2coz+P Q )'~ ]/2, C case .

At this point we have the eigenfrequencies of the densi-

ty oscillations and results for f and P to within normali-
zation factors. These factors are determined by the

second quantization process, which we only outline brief-

ly. ' One begins with the total-energy expression

where e= 1 —co&/co and e(x) is zero for x &0 and unity
for x &0. The subscript L (T) means the part of a field
that is longitudinal (transverse); i.e., has a finite (vanish-

ing) divergence away from x =0. For this distinction
Coulomb waves appear transverse. The above allows us to
replace continuity of the full normal D by continuity of
x Dz, irrespective of ABC. There remains the choice of
ABC. As discussed in the Introduction, we shall exhibit
the results of two possibilities.

Thus we have three boundary conditions to apply to ei-

ther (15) and (16) or {17)and (18). In the latter case there
are four unknowns, so we will find f and P to within a
normalization constant. For the surface mode there are
only three unknowns in three homogeneous equations,
which implies that three boundary conditions may only be
satisfied at particular (surface-mode) frequencies. For our
simple model we find just one allowed frequency at each
Q'

5 5@'= f d x[ —,nom(g)'+ —,nomi3'(V f)']+ —,
' f d'x f d'x' p (21)

where m is the electron mass and g' is the time derivative of g. Treating 8' as a classical Hamiitonian, the equation of
motion for the field variable g is

8 58'
Bt (22)

which, with the use of (10) and either ABC, becomes

I

mnog=mnoP V(V g)+poV f d x'
/x —x'[

T»»s equivalent to the nonretarded version of (1) if we recall (9) and (10) and define co =4rinoe2/m Since (21.) yields
the proper classical equation of motion, we use it next as a quantum Hamiltonian expressible as

8'~M=g fuo„(a„a„+—,), (24)
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where the sum on n runs over the eigenstates of energy fico„which are created (destroyed) by the Boson operators
a„(a„).The replacement (24) can be extracted from (21) if we use linear combinations of the g from (15) and (17) to
form an operator 4'(x, t):

4(x,t)=6( —x) pl(x)e' ' [a~(t)+a ~(t)]+ g I ~& (x)e' [a~&„(t)+a q~„(t)] (25)
Q QpL

The I ~(x) follow from (15),

1/2
1 SKAG( Q)

2po mAQ

e~, S case

X QL ~~/v 2

QL —Q ~(Q)
Qt.

QL+ Q/2
e~"— e ", C casex

Qr.
(26)

and the I q z„(x)come from (17),

I g~ (x)= I ACt)p

2po m.AL(Q +p )co
X

sin(pLx), S case
'2

~
—1/2

1—2M

COp PL
e~ + 1 —

z cos(pLx) ——sin(pLx), C case .2'
COp

(27)

Both sets of I are only determined to within a phase factor. In (26) the appropriate co(Q) must be found from (20), while
in (27) co =co (Q,pL) =coz+P (Q +p L ). Since we use discrete mode sums, A (L) appears as a quantization area (depth).
The components of the parallel wave vector Q change in integral steps of 2m/~A, while the (bulk) normal wave vector

pI is given by positive integer multiples of m/L. For any local physical quantity, A and L will disappear. To treat a
thin film rather than a semi-infinite substrate requires starting over. The content of (25)—(27) is that if one uses this 4
to form the operator g'= —V4' and substitutes into (21), then the use of orthogonality between the separate g's and of Bo-
son commutation relations for the a,a s yields eventually (24) with n either Q or (Q,jr L).

The results for the C case are equivalent to those of Barton, ' while those of the S case are new. To calculate the corre-
lation function R of (6) is now easy if we identify, from (10),

r

nq(x, t)=no f d Xe 'q' V%(x, t)—
A
0'(x, t) 5(x)

X
(28)

We obtain, for the S case,

i')p
Rs(x,x') =

~
5(co —co (Q))Q5(x)5(x')

4me

+—f"dp 5(cu —co (Q,p)) 6( —x)6( —x')(Q +p ) sin(px) sin(px')+5(x)p sin(px')

+5(x')p sin(px)+ z z
5(x)5(x')

Q'+p'
(29)

and, for the C case,

EKE& & & ~p QL+ Q QL(x+x')2 2

R (x,x')= 6( —x)6( —x'). 5( —co'(Q)), Qe '
4n.e 2P L+ /2

+ —f, &p 5(~' —~'(Q,p))(Q'+p')

X cos(px) cos(px )—
2

Q cop

p (co& —2' ) +Q co&

X [ Qco~ cos[p(x +x')] +p(co~ —2' ) sin[p (x +x')] I

This last result is equivalent to Eqs. (3.1)—(3.5) of Eguiluz's paper, 6 if we define v =co~ —co~/2 and note that

2 4

P (~ 2~ )'+Q'~~ =4p'v—"+Q'~~ =4P'(p'+Q') p4+p' Q'+

(30)

(31)
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Thus we corroborate his answer. We have checked that
this agreement also extends to the coupling functions he
finds in his Eqs. (3.13)—(3.18). To calculate these, we
form the operator @ from (16) and (18), which, in turn, al-
lows one to calculate the coupling of a test charge to each
mode. Our result for 4 also agrees with Barton's. '

The above agreements apply only to our C-case formu-
las. The S-case results are rather distinct, with several
singular contributions to Rs(x,x') at x =0 and/or x'=0.
These are a consequence of the ABC that allows charge to
pass through the equilibrium surface plane. We remark
that our coupling constant for the S-case bulk modes
agrees with that of Gersten and Tzoar, ' but both the
dispersion and coupling for the S-case surface modes
disagree with theirs. Eguiluz has discussed possible ex-
perimental checks of the coupling. ' We do not wish to
pursue this here since comparisons with experiment wiH
be impaired by the oversimplified static density profile we
have used.

Instead, we comment on a possible formal difference
between the two R's. This arises from the question of
whether they satisfy the f-sum rule, ' ' which in our no-
tation has the form

f d(co')R (x,x') = Q'+, , 5(x —x') .
0 Bx Bx 4~e

(32)

Several authors6'7 have discussed the possibility that (32),
which is generally true with co& ——co&(x), might be used to
discriminate between approximate theories of R. Eguiluz
has shown (and we agree) that Rc satisfies (32). One may
readily show that Rs does too. Neither of these calcula-
tions allow x or x to be zero. Within this constraint, the
f-sum rule offers no discrimination between the two
ABC s. Reasons for this situation are discussed in Ap-
pendix A.

III. DIRECT DERIVATION

In this section we develop a scheme that does not re-
quire r +no and c~ ao—. It is based directly on the defini-
tion (4) of X in that we solve the hydrodynamic equations
for 5p;„z(x}with a V,„,(x)=5(x —x'). A finite value of r
is readily included, but the acknowledgment of a finite
value of c deserves some comment. In the retarded case
perturbations come, in general, from both external scalar
and vector potentials:

H'= f d'x 5p(x}p,„,(x, t) ——f d'x j(x) A,„,(x,t),
C

(33)

The resulting (1/e)5p;„q(x) due to this perturbation is by
definition X(x,x'). This 5p;„z is the complete induced
charge density only for the particular gauge used here,
A„,=O. However, our interest lies primarily with 7,
which (both in this section and the next) does not depend
on the choice of gauge.

Now calculate 5p;„z(x) from the hydrodynamic equa-
tions. Since the model allows no material in x ~0, we
have X(x,x')=0 if x'&0. For x'&0, we do the calcula-
tion in two stages: first solving for the response in a
homogeneous bulk medium, and then augmenting this for
the effect of the surface.

Inside the metal we can combine (1)—(3) into

2 z 2 zco + E co/v co& ——P Q +P &p;.~«

2
COp

4' 2Q2
x

(35)

We again use (9) to express j in terms of g, but must now
acknowledge that g' has both longitudinal and transverse
parts. Still the longitudinal part of g' may be written as
the negative gradient of a scalar potential,

gL= —Vg

so, using (10}in x & 0, we reexpress (35) as

co +ldll/T co& —P Q —+P
B2

2

4&P0e
(36)

A particular solution of this equation when
V,„,(x)=5(x —x') and there are no surfaces is

2 —g„~x—~
~gz(x) = — e

8mpaeP'Q,

where 8 denotes "bulk" and
2 2

2Cg+ —CO —l CO/'7
QL PL z +Q (14')

Our phase convention for these complex wave vectors has
QL in the fourth quadrant and pL in the first. We have
made fz(x) propagate and/or decay away from the per-
turbation at x' as a causal response should. From (37) we
find

2
COp —g„~~—~'~4=- (QL sgn(x —x'), —iQ, O)e

8npaeP QL

(38)
where 5p and j are operators. The space and time depen-
dence of P,„,and A,„,are externally set since they are the
applied potentials. We make use of this freedom to take
A,„,=O and

5pg

e

2 2 2COP, QL —Q gzl««
I—5(x —x')+ e

4me p L

P,„,(x,t) =—5(x —x')e'q x1

e

(39)
(34)

The triplet of numbers in (38) give the components of g'~
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+lP X
gz.-(+ip E,iQ, O)e " -(+QL,i Q, O)e

EL-4~pokL,
(40)

along the three orthogonal directions x, Q, and xXQ.
We use this notation extensively below. The right-hand
side of (39) represents XEE(x,x'), the hydrodynamic predic-
tion for X in a uniform bulk medium.

To account for the effect of a single surface we must
append to the particular solution (38) partial waves that
satisfy the homogeneous hydrodynamic equations. Inside
the metal there are two types of these solutions. " The
first are longitudinal waves which vary as

Vx(VxE)+ E=-a' 4~ a
c2 cjt2 e

with (1) to yield

pT = —Qz ———Q +[co —co~(1+i/cor) ']/c

(42)

(43)

co +Eco/'rEc——4mpo 2 gc,
Mp

(44a)

As with (14') we make QT lie in the fourth quadrant and

pT in the first. Note that Coulomb waves are not allowed
partial-wave solutions of the homogeneous equations
when c&oo. If we write g'c-Ve —~, then from (1) and
(42) we would have the conflicting requirements

and the second are transverse waves which vary as
Ec=4~po4c (44b)

+IP Xk -(+Q,pT, O)e —(+Q,iQr, O)e

ET-4npo
COp

(41)

The transverse wave vectors are found by combining the
transverse Maxwell equations, which imply

which cannot be satisfied. For the same reason Coulomb
waves do not appear in EPEE or g'EE. In the nonretarded lim-

it, (42) becomes VIE=0, so (44b) no longer applies. In
this limit the transverse waves. of (41) become Coulomb

waves, which are then valid solutions.
Now we use (40) and (41)—plus the latter's vacuum

analog —to write the linear-response solution to V,„,(x)
=5(x —x') as

0, x~0
g'~(x)+a(Q, iQT, O)e +a(QL, iQ, O)e, x &0

(4&)

QO

z . A, ( Q,iQT,—O)e, x &0
CO +ECO

a(Q,iQT, O)e + [g( EE)x+a'(QL, iQ, O)e ", x &0 .
co +Eco/r

(46)

We have included only partial waves that propagate and/or decay away from the surface. In (46), QT is given by (43)
with co& ——0 and I/~=0. Using (10), the induced charge density is

5p,„d(x)=5pEE(x) po a(QL Q—)e—
2

COp Q XE—aQ+aQ~ 2
e 5(x)

8mpoeP
(47)

To complete the solution, we need to apply three boundary conditions to determine the three matching parameters a,
a, and A, . The need for transverse waves (and the appearance of c) arises from this surface-matching process. In effect,
the longitudinal waves generated by V,„,in the bulk are scattered into both longitudinal and transverse waves by the sur-

face. The boundary conditions we use were discussed in Sec. II. They require at x =0 the continuity of Q E and of
x D=x DT, and the vanishing of either 5p;„dor x j. We obtain, for the S case,

2 2 2
L —QL i

X —X'
i Q&(X +X') QLX'

5p;„d/e = —5(x —x')+ (e —e -)+5(x)e
4me p 2QE.

and, for the C case,

2
COp

5p;„d/e =
4me p

2 2
I p

(
E—5(x —x')+ [e +e (1~y)]

2QE.
(49)

where

y=2coE'Q'/IQE[(co'+E'co/~)(Q&+QT) co~QT] co&Q ] ~2co—&Q/[Qz —(2co co&)—co&Q—] when c = oo =z . (&0)
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Before comparing the C case with the results of oth-
ers, let us note that the S case is incorrect, or rather,
incomplete. The scheme developed in this section unam-
biguously gives 5p;„d,except when x'=0. At this particu-
lar point we cannot justify (37), so the method has no pre-
diction. For the S case 5p;„d is singular when x'=0, as
we will derive in the next section —see also (29), so this
point of ambiguity is crucial and (48) only determines
Xz(x,x') in x'&0. For the C case 5p;„d is not singular
when x'=0, so (49) should represent the correct answer
for Xc (x,x ') when x ' (0.

If we let c~ oo and 1/r ~0+, we find that
fi/rr—Im(5p;„d/e) from (49) reduces to the Rc of (30). In

this process the pole of y in (50) determines the surface-
mode frequency, co(Q) of (20). This agreement again cor-
roborates the results of Eguiluz. However, when we
compare our (49) with the analogous equations in Refs. 5
and 7, which also are for the current ABC, there is no
agreement. The source of the discrepancy is not readily
found since they, like us, omitted most of the intermediate
algebra. For one last qualitative comparison we stress
that the pole in y—even in the retarded case—does
describe the appropriate dispersion of the surface

plasmon. This particular singularity in g& is consistent
with the approximate random-phase-approximation
(RPA) results of Garik and Ashcroft. One may also
quickly check that there is no singularity in our X's when

QL ——0, for either ABC. The singularity in Xz at the ap-
propriate retarded surface plasmon only appears in the
5(x') term missed by (48); see Eq. (70).

IV. INDIRECT DERIVATION

In this section we develop an approach similar to that
in Sec. III. It has the advantage of determining X(x,x')
for all x', even x'=0, but the disadvantage of being less
direct. The scheme was proposed earlier in the nonretard-
ed limit ' and is easier to explain there. One subjects the
system to 5p,„,(x)=5(x —x') and calculates, from the hy-
drodynamic model, 5p;„d(x). This determines the function
D(x,x', Q, co), where

5p;„d(x)=I dx'D(x, x')5p,„,(x') . (51)

Then one uses Poisson's equation to replace 5p,„,(x') with
—1/(4me)(V') V,„,(x'), and after integrating by parts,
finds

—4me5p;„d(x)= dx'[(V") D(x,x')] V,„,(x') 6[D(x,x'—)], +b, , D(x,x') V,„,(0),
00 Bx Bx

(52)

where, allowing for possible discontinuities at x =0,

6[D(x,x')]=D(x,O+) D(x, O ), —

, (x,x') =,D (x,x') —,D (x,x')aD, a, a

(53a)

(53b)

where the vector notation is explained below (38). To-
gether, (55) and (56) satisfy (2) and, further, j,„,is a strict-
ly longitudinal field since V&&j,„,=O everywhere. Conse-
quently, A,„„whichis driven by the transverse external
current density, may be set to zero.

Next note that (56) may be written as

If D (x,x') is continuous in x', we may identify, from (4),

X(x,x') = — (V") D(x,x')
4m.e

+5(x')b, , D(x,x') (54)

The term proportional to 5(x') is what the method of Sec.
III could not produce. We stress that the present method
only gives a useful X if b,D of (53a) is zero. This happens
for both of the ABC's we use, but is not a priori obvious.
Note that the result of Ref. 5 has AD&0.

In our above outline of the method in the nonretarded
limit, we made no mention of j„,or A„,. With full retar-
dation this is no longer possible, yet a suitable choice ofj„,allows us to suppress A,„,. To this end, we work in
the Coulomb gauge and apply

j,„,(x)= i V —dx e ~ '" " '5p,„,(x),
2Q

(56')

l67
jext+ jind, B EB

4m
(57)

. so the formal definition (51) remains a valid representa-
tion of the linear response to the external sources (55) and
(56). As a further consequence of the Coulomb gauge,
Poisson's equation may still be used to relate 5p,„tand
V,

„„

leading again from (51) to (54). Thus the prescrip-
tion (51) and (54) remains valid in the retarded limit when
coupled with (55) and (56).

Let us now consider the hydrodynamic evaluation of D.
As in Sec. III, the calculation is done in two stages. Begin
with the response of a bulk homogeneous medium to the
applied sources. We focus on finding the total electric
field EB, which, in the absence of surfaces, must be a
strictly longitudinal field. This implies, from Maxwell s
equations, that

5p,„,(x ) =5(x —x '),

j,„,(x)=—a)(sgn(x —x'), —i,O)e
2

(55)

(56)

In vacuum, j;„dB is zero, so

4m .
Ez —— j,„,(in vacuum) .

LCO

(58)
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In the metal we need to solve (1), whose j should be writ-
ten here as J;„dg. First, consider the effect of j,„,away
from x =x'. For j,„,~V@+— , we expect both E~ and
j;„dz to also be proportional to Ve+—Q". With this ansatz,
(1) yields

metal, but with surface scattering neglected in both cases.
There remains the case of a bulk metal's response when

x' is inside it. From (1)—(3) we find

~'+E~« —~~ O'—Q'+P' &p;.d, a =~&&:~
Bx

2
COp

( i co—+1/ r)j;„d~ = Eg,4~

which, combined with (57), implies

(59)
which, for (55), has the solution

2
~p —QL {x—x {

~Pi d8 2
e [metal ( with x ') ] .

2P'QL
(62)

Ez —— j,„,[metal (no x')],4m .
E Ci7E

with

e = 1 —co&/(co +leo/r) .

(60)

(61)

To find E~ we guess the following form:.
I

Ez ——aVe " +bVe ~ ~" "
~ [metal (with x')] .

(63)

The remark about x' in (60) means that this equation ap-
plies in the (presently) artificial case of x outside the met-
al, but with surface scattering ignored in finding E~.
Similarly, (58) applies with x' either in vacuum or in the

We have chosen only partial waves that decay away from
the source point x', and have included Coulomb ~aves be-
cause of (56). The parameters a and b are found by re-
quiring that (62) and (63) be consistent with (2). This
yields

2

e +6(x —x') =a(QL —g )e —25(x —x')(agL+bg),2O'QL

from which we solve for a and b to reexpress (63) as

4m . 2m 1 —e -Q„{x-x
{&a= . j-t+ Ve [metal (with x')] .

l cue' QL e'

Now combine the results of (58), (60), and (63') into

(64)

(63')

4' . 4a . 4n . 2~E (x)=6(x) . j,„,(x) +—6( —x) 6(x') . j,„,(x) +6( —x') . j,„,(x)+ (1—e)Ve
EM lQP ECO L

(65)

Using (65) and (62) with (1), we can determine the induced g' fields

r

4~PO 1,4m . —Q] {x—x'{
g;„d,g =—6( —x) 6(x') . j,„,(x) +6(—x') . j,„,(x)+ e

1 —e "' e (66)

For a check, one can use (65) and (66) to verify (57). The above results complete the first stage of the solution. They
solve the inhomogeneous hydrodynamic equations but ignore the surface. Note that they do not involve c. As discussed
in Sec. HI, strictly transverse waves only enter when we consider scattering from the surface. Mathematically, they
(along with strictly longitudinal waves) appear as partial waves that propagate and/or decay away from the surface and
add to the fields of (65) and (66). The complete response solution may thus be written as

S +ES/'TE—Eg ——4mpo
COp

0, x&0

A, ( Q,igr, O)e— , x ~ 0

a(g, iQT, O)e + a(QL, iQ, O)e ", x &0
CO +EGO/'T

(67)

C

a(g, ig&, 0)e +a(QL, ig, O)e, x &0

where the form is analogous to (45) and (46), but, of course, the matching parameters will take on different values. These
are determined as before by invoking three boundary conditions at x =0.

The quantity we need is 6p;„d,which, from (10), (66), and (62), is determined by
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5p;„d(x)=5p;„dg(x)+po[a(QL —Q )e " —(aQ+aQL+x g;„de ~
o)5(x)] . (69)

The algebraic reduction to find a, a, and A, , then 5p;„d(and hence D), and finally X, is not very enlightening so we omit
it. For the S case the final result is

2
COp

X,(x,x') = 4' p' 2QL

2

+ 2
5(x)5(x') QL+ Q

COp 6 eQT+Qr
(70)

while, for the C case,
2

Ct)p

Xc(x,x') =
4m.e p

2 2
I I

—5(x —x')+ — [e " +e ' (I+y)]
2QL

(71)

2

e(q, co)=l-
eo'+i ro/r p'

~ q ~

'—
Eguiluz found an analogous result for the 7 of a thin
film. Whether our gs corresponds to a well-defined ap-
proximation of an RPA theory is not presently clear.

(72)
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APPENDIX A: f SUM RULE-
In this appendix we examine the physical content of the

f-sum rule in order to see if it can be used to select an op-
timum ABC in hydrodynamic models. We begin with the

where y is defined in (50).
The C-case answer is identical to that found in Sec. III;

see Eq. (49). There is no singular contribution at x'=0
since b, BDC/Bx' is zero. On the other hand, the singular
5(x ) in (54) does contribute in the 5 case, with its contri-
bution being the sole difference between (70) and (48). We
feel that Xs is now completely (and correctly) determined.
Note that both 7's are invariant under x~x'.

In future work we shall use the 7's determined here to
calculate various experimental quantities, beginning with
an estimate of x-ray scattering from surface plasmons.
[Note added in proof. See W. L. Schaich, Phys. Rev. B
31, 1881 (1985).] Such studies will clarify how different
the two ABC cases are. We also hope to compare the hy-
drodynamic 7's with those found via more microscopic
approaches. '2 This will, in general, require numerical
work. However, we note here that is is easy to show that
our X~ in the nonretarded limit is equivalent to that
predicted by the semiclassical infinite-barrier model, 2 ' if
the latter is evaluated with the hydrodynamic bulk dielec-
tric function,

assumption that the density-response function is causal.
This implies that P(x,x;Q, co) of (1) is analytic in the
upper half complex ~ plane. Assuming that g vanishes as

~

co
~

~ oo, one easily finds

den ImX(x, x', Q, co)

co —ct)+l 0
(A 1)

As co~ ~, the right-hand side of (Al) tends to

1 ~ dB
co Imp x,x ~ ~67—00

I d(to )R(x,x';Q, io),

2
Ct)p—l M)IIId = ECXt
4m

(A3)

Writing as in Sec. III, eE,„,= —V V,„,(even in the retard-
ed limit) with V,„,(x) =5(x —x'), we find

2
COp

co~5p;„d—— icoV j;„—d= —V VV,„t/e . (A4)

This implies from (4) that
2

COp

y(x, x', Q,ro)~, V, V5(x —x') .
4me

(AS)

Combining (A2) and (A5), we deduce the f-sum rule 18, 19

d(co )R(x,x', Q,co)= —V' V5(x —x )
0 4me

(A6)

which is equivalent to (32).
The above result is for the exact P and requires only the

assumptions of a causal response and local, independent
electron behavior as co~ oo. These properties should also
hold for a hydrodynamic model, independent of an ABC.
The response should obey causality and, as long as x' is

where we have used (5) and the fact that Imp is an odd
function of to.

In the high-frequency limit we may also estimate X
directly by assuming a local, unscreened, free-electron
response, i.e.,
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not on a plane of discontinuity, it should agree with (A5)
as co~oo. This last claim is most easily seen from the
solution method of Sec. III, where the perturbation's in-

ip„)x—x
)fluence moves away from x' as e with pL~oo

as co~oo,' see (14'). One may also examine our X's. As
co~ oo and away from x'=0, they both tend to

yielding

T(x,x') = 2&e
2

f dx f dX'e

X(X x ')e —Q I

' — 'I (84)
2

~P 1 2 &Pg —iPI jx —x'~
Xs(x,x';Q, co) = 2, , V e

4n.e P~p L

2 —V [—5(x —x')], x'(0COp

4me co

x'&0

(A7)

Applied to the homogeneous bulk response,

2

Xs(x,x')=, , V'e
See P QL

(84) gives

(85)

which agrees with the general (A5), if co& is constant.
Hence we believe that the f-sum rule cannot distinguish
between ABC's in hydrodynamic models.

APPENDIX B: POTENTIAL RESPONSE FUNCTIONS

-Q I~-~
I

Q -Qr. i~-~'I
E' L

(86)

5V (x')= f dx' e Q'" "'5p t(X'), (82)

5$;„d(x)= f dx e Q '" " '5p;„d(x), (83)

We consider here the calculation of the potential
response function T(x,x';Q, co), defined by

5$;„d(x)=f dx' T(x,x';Q, rg))5p,„,(x') . (81)

We shall work only in the nonretarded limit because, in
general, a 5p,„,would induce a 5A;„„,too, if c& oo. The
T function is useful in electron-scattering theory since it
gives the potential, fields, and forces that a test charge in-
duces on itself. '

One approach to T would be to combine (81) with the
identities

This answer is also implicit in (63), if one notes that

E~ = V(5$,„,—+5/, „d).

An alternate approach would be to use the second-
quantized form of 4& (nearly) obtained in Sec. II, to
evaluate the formal expression

T(x,x ') = ' f"dr e'"'« [e(x,t), C (x ')]». , (87)
iA

However, one would have to set ~=ao to apply this
scheme.

An easy and still general approach to T is to use
response solutions as in Secs. III and IV to construct
5$;„q(x)due to 5p,„,(x)=5(x —x'). One needs the nonre-
tarded version of (65) and (66), which only amounts to re-
placing Qr, gr~Q. The matching calculation is formal-
ly the same and one evaluates

r

Ae-&, x~O
co +i co/r

54'.d =50s 50-t+ 4~pa —
2 && .

o,'e~ +
CO +LCO/'T

cue, x (0QLx
(BS)

where the Ez of (65) is described by —VPz and 5P„,=(2m/Q)e Q I" " I. By definition, the right-hand side of (BS) is
T(x,x').

Our results are the following: For the S case,

Tz(x,x') = e Q~ I I+ I

'I ~+ (1 e)8( x)6( x')
Q 1+e Qe

—Q ix —x'i Q —QL I
x —x'

I Q~~+~ ~ Q QL~&+x'~
e —e + e

L . QL
(89)

and, for the Cease,

1 —e—(Q/QL)(cop/co ) g I

Z;(x,x') = , e-Q I" I+I'I'+ q[e(x)e( —x')e-Q"(eQ' —e '")
Q 1+e—(Q/QL)(m~/G')

+B(x')0(—x)e Q" (eQ"—e )]
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(1—e)e( —x)e( —x') e Q I» —x'
I

Q -g„Ix—x I, , g(„+„.) Q g„(x+x')
e —(1+y j e + e

+ e
Qx +QLx' Qx'+ QLx,+e

1 —E' (B10)

where oT =to +italo' B. oth T's are symmetric in x~+x'. Although the two results are different, when p—+0 they be-
come the same,

T T —Q( I» I+ Ix I )+ (1 )e( )e( ')( —Q lx —x'I «x+x'))
p o Q 1+e Qe

This last result has appeared before. Clearly, finding (Bl 1) from the limit of a finite-p theory is not a severe constraint.
The results of Ref. 7 also yield (Bl 1}as p~O, although at finite p they disagree with ours.

We remark that we did not discuss in the text the p~O limit of our X s because it is very singular. Only when we in-

tegrate X (or R}over both x and x' [as in (B4)] do we obtain an interpretable p—+0 limit.
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