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Domain-wall renormalization-group study of the three-dimensional random Ising model
at finite temperature
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The .three-dimensional random Ising model with a Gaussian distribution of nearest-neighbor in-

teractions is studied for the pure spin-glass case where the average interaction vanishes. The distri-
bution of domain-wall free energies at finite temperature is calculated with the use of the Metropolis
Monte Carlo algorithm for finite lattices. A renormalization-group transformation is set up which
preserves the domain-wall free-energy distribution when the lattice parameter is changed. The
spin-glass transition temperature is found to be T~={1.0+0.2)J where J, is the variance of the
Gaussian interaction distribution. The thermal exponent is v=1.8+0.5 and the heat-capacity ex-

ponent is a= —3.4+1.5. The heat capacity exhibits a rounded peak at higher temperatures.

I. INTRODUCTION

In a previous paper' the domain-wall renormalization-
group (DWRG) method has been applied to the three-
dimensional random Ising model in the strong-coupling
regime. A Monte Carlo —quench algorithm was used to
calculate the variance of the distribution of domain-wall
energies at zero temperature. It was found that the model
iterates toward strong coupling and therefore exhibits a
spin-glass phase transition at nonzero temperature. Bray
and Moore, using similar methods, have independently
reached the same conclusion. In this paper we study the
model at finite temperature using the same DWRG
method but with the Metropolis Monte Carlo algorithm
to calculate the variance of the domain-wall free-energy
distribution.

II. NUMERICAL METHODS

The model is the cubic, nearest-neighbor Ising model
with a Gaussian distribution of interactions with zero
mean and variance J. The DWRG method requires that
one be able to calculate the variance of the distribution of
domain-wall free energies for finite lattices. A cubic lat-
tice of n sites with periodic boundary conditions is used;
introduction of antiperiodic boundary conditions in one
direction inserts a domain wall. The energy of the
domain wall for a particular configuration of interactions
1S

Monte Carlo average over M updates per spin and there
are thermal fluctuations of the energies due to the finite
averaging time. The variance E„(T)squared converges as
1/M and we fit this form to the variance squared for fin-
ite M and extrapolate M to infinity. In this way we find
the variance of the domain-wall energy distribution for
temperatures T)0.7J; we use 1000 interaction configura-
tions for n =3—5 and 100 configurations for n =6. We
then use the thermodynamic relationship between energy
and free energy to find the variance of the domain-wall
free-energy distribution versus temperature. We also use
the Monte Carlo —quench algorithm' to find E„(0)for the
same set of interaction configurations. This establishes
the temperature dependence of the free-energy variance
with sufficient accuracy; a larger number of interaction
configurations was used in the earlier work at zero tem-
perature and we use that data to scale the present data to
provide a more accurate absolute magnitude for the free-
energy variance.

III. RESULTS

The DWRG method compares two systems, the first
with n sites, lattice parameter a, length L =na and
Hamiltonian parameter J, and the second with (n') sites,
lattice parameter a' ~ a, length L =n'a', and Hamiltonian
parameter J'. The variances of the domain-wall free en-
ergies are required to be equal,

E„(T)=E„'(T) Eg(T), — W„(J',T)= W„(J,T), (2)

where E„'(T) and Eg(T) are the thermodynamic energy of
the finite lattice with periodic (p) or antiperiodic (a)
boundary conditions. We calculate the thermodynamic
energies using the Metropolis Monte Carlo method with-
Glauber dynamics. The calculation is repeated for X
configurations of interactions; this yields X samples of
the domain-wall energy from which we estimate the vari-
ance E„(T) of the energy distribution. We perform the

at the same temperature T and (2) is the implicit recursion
relation relating J' to J for a lattice-parameter change
from a to a'.

We now use standard renormalization-group arguments
together with (2) to find the fixed point and the thermal
exponent. We find the critical temperature to be
Tz ——( 1.0+0.2)J and the thermal exponent to be
v= 1.8+0.5. The uncertainties arise primarily from the
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long. We estimate the heat capacity for 0& T &J in the
following way. We fit the energy difference between zero
temperature and T=J as well as the heat capacity at
T=J using the expression Cy A——T+BT; we find
A -=0.1/J and B=0.15/J . This region is shown as the
dashed line in Fig. 1. The random Ising-model heat capa-
city is qualitatively similar to the heat capacity of
Cul ~Mn„measured by Fogle, Ho, and Phillips. How-
ever, the random Ising-model heat-capacity peak is
sharper than that for Cu~ „Mn„and falls off more rapid-
ly at high temperature. The ratio of the glass temperature
to the temperature of the heat-capacity peak is 0.6 for the
random Ising model with six nearest neighbors and 0.7 for
Cui ~Mn„.

IV. CONCLUSIONS

FIG. 1. The heat capacity versus temperature for the random
Ising model with 5 sites as obtained from the Monte Carlo
simulation. The dashed portion of the curve at low temperature
is obtained by interpolation as described in the text.

uncertainties in the zero-temperature data rather than
from the finite-temperature corrections. The heat-
capacity exponent is cx =2—3, v= —3.4+ 1.5.

The heat capacity C~ from the Monte Carlo simulation
is shown in Fig. 1 for the 5 lattice. For T&J the heat
capacity is found by differentiating the thermodynamic
energy. The accuracy of the Monte Carlo data
deteriorates below T=J as the relaxation times become

We conclude that the three-dimensional random Ising
model exhibits a spin-glass phase transition at a tempera-
ture somewhat below the temperature of the heat-capacity
peak with a very weak thermodynamic singularity. From
the arguments presented in the scaling theory and the
very small zero-temperature eigenvalue, we conclude,
however, that the de Almeida —Thouless transition is a
glass transition, not a phase transition.

ACKNOWLEDGMENTS

This research was supported in part by the National
Science Foundation Grant No. NSF-DMR-80-20250 in
the Materials Research Laboratory, University of Illinois
at Urbana-Champaign. Computations were carried out on
the Urbana Monte Carlo computer.

*Deceased.
W. L. McMillan, Phys. Rev. B 30, 476 (1984).
W. L. McMillan (unpublished).
A. J. Bray and M. A. Moore (unpublished).

4N. Metropolis, A. W. Rosenbluth, M. N. Metropolis, A. H.
Teller, and E. Teller, J. Phys. Chem. 21, 1087 (1953).

5R. J. Glauber, J. Math. Phys. 4, 294 (1963).

W. H. Fogle, J. C. Ho, and N. E. Phillips, J. Phys. (Paris) Col-
loq. 39, C6-901 (1978).

7D. L. Martin, Phys. Rev. B 21, 1902 (1980).
~W. L. McMillan, J. Phys. C (to be published).
J. R. L. de Almeida and D. J. Thouless, J. Phys. A 11, 983

(1978).


