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Electronic structure of interstitial impurities near surfaces
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We report calculations of the band contribution to the dissolution and segregation energy for in-
terstitial impurities near a surface, from adsorbate to bulk position, within the tight-binding model,
for different classes of environment. The application to the nickel (001) surface —hydrogen system
contains the following ingredients: (1) the description of the host by a charge-conserving procedure,
with a fivefold-degenerate d band; (2) the description of the substitutional impurity, by a localized
perturbation restricted to its own site, adjusted by the Friedel sum rule. The recursion method has
been used for computing the self-energies. Extensions of the phase shift in the interstitial case to the
complex-energy plane are given.

I. INTRODUCTION

The subject of the electronic structure of dilute intersti-
tial impurities in bulk or near surfaces and interfaces is
central in many actual technological fields: energetics
(hydrogen storage), metallurgy (segregation, temper em-
brittlement, heat treatment), chemisorption, catalysis, and
semiconductor and device physics. Let us recall (without
claim of completeness) some recent results in these fields.

Rasolt and Perrot' analyzed, within the "spherical solid
model, " the relaxation of a hydrogen atom, and its heat of
dissolution in bulk aluminum, for different diffusion
equilibrium positions and migration paths. Interstitial H
in metals has also been studied as a molecular, finite clus-
ter. ' A more satisfactory approach is to embed such a
cluster into the host. ' These concepts have also been
used in chemisorption.

Pseudopotential and jellium models have been applied
to the dissolution of H in normal metals, ' and even in
transition metals. " The tight-binding method is also
widely used, in all fields; its credibility is reinforced by the
linear muffin-tin orbital —atomic-spheres-approximation
method (LMTO-ASA) band-structure models, which may
provide first-principles tight-binding band parameters,
and has even been extended to the one-impurity bulk
model ' the related linearized —augmented-plane-wave
(LAPW) method is used for surfaces. '

In semiconductor physics, tight-binding methods are
also useful for defects. ' Progress has been made in inter-
stitial cases by introducing the extraorbital atom, ' or lat-
tice, ' concepts, and different bases in the state before and
after the coupling of adatoms. '

In surface physics and catalysis, much work on chem-
isorption, experimental as well as theoretical, is available.
If the theories of impurities in the bulk were adapted to
chemisorption (the Anderson model by Newns, ' and
tight-binding model by Allan, Grimley, ' and Ein-
stein ), considerable progress would have been made in
this field beyond the Hartree-Fock model, multielectronic
effects being necessary for the interpretation of experi-
mental data such as photoemission. One may refer to

Ref. 23 for a recent review of the status of work in this
field.

This paper 1s the extension of our previous work" 2' on
the electronic structure of substitutional impurities near
surfaces in the tight-binding model, for the interstitial
case. The general framework, and even our use of the
substrate Ni, will be the same (a tight-binding degenerate
d band). In the initial state (semi-infinite medium
without impurity adatom), the atomic-d-level shifts near
the surface are determined "self-consistently" within the
empirical tight-binding model. Moreover, global neu-
trality must be achieved. In fact, a simplified version,
where only the atomic levels of the surface plane are shift-
ed, is used. ' In the final state, with the coupled impur-
ity, global change neutrality will again be ensured by ad-
justing the impurity adatom level. This rather naive
model, which may be considered as a paramagnetic
Hartree-Fock model, has the virtue that it is quite param-
eter free, and that it allows a systematic study, versus the
adatom position and environment, of the band contribu-
tion to dissolution and segregation energy, with the
structural effects induced by the surface. The specific
features associated with d-band degeneracy are (i) nondi-
agonal intrasite interorbital contributions to the phase
shift, and (ii) the possible presence of surface states (reso-
nances) within the spectral range of the host.

At first, the choice of the nickel substrate does not seem
to be very adequate for studying dissolution and segrega-
tion energies within a d-band model only, since it is
known that conduction s electrons contribute appreciably
to the adsorption and dissolution energies;" however, the
segregation energies, which are differences of the dissolu-
tion energies at different sites [cf. (2.16)], may still be sig-
nificant owing to the smooth behavior of the s contribu-
tion reported in Ref. 11.

A formal account of tight-binding theory of chemisorp-
tion that may be adapted to our interstitial problem in the
neighborhood of a surface can be found in Ref. 30. We
use a simplified version of it, with unit overlap.

In Sec. II we briefly recall the definition and results for
the Green functions. Then we define the corresponding
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phase shifts adapted to the complex-energy plane, a very
efficient method for fast and precise calculations of occu-
pation numbers and band energies. ' Attempts to prop-
erly define such a phase shift well defined at Imz —+0, or

~

z
~

—+ oo, have failed, up to now, ' in the interstitial case.
We establish the charge-conservation relation in terms

of this phase shift, and the band contribution to the disso-
lution and segregation energy, essential ingredients of our.
calculation.

In Sec. III the calculation is performed on a minimal
model, i.e., hydrogen in paramagnetic nickel bounded by a
(001) surface. The H adatom is described by a single ls
orbital; the substrate nicke1 has already been described
above. ' The hopping between H and its Ni neighbors
is determined by a unique parameter, the (sdcr) molecular
integral.

The adatom self-energy is computed by the recursion
method generalized to the group-orbital concept. This
function, the local density of states of hydrogen, its occu-
pation number, and the associated band energies, are
presented and discussed, versus the position of the surface
and the environment. In conclusion, we discuss the posi-
tive points of this calculation, and its limitations.

We recall that our work differs from that of Refs. 30
and 34 in the implementation of two-step charge
conservation one step for the semi-infinite host and
one for the localized impurity level —in the systematic
study from adsorbate to bulk interstitial position, and in
the precision of the calculation.

II. ELECTRONIC STRUCTURE
OF AN INTERSTITIAL IMPURITY

NEAR A SURFACE

The generalized tight-binding model we use can be con-
sidered a particular realization of Anderson's model used
in alloy theory and chemisorption. It has the advantage
of being able to incorporate easily level shifts of the ad-
atom on its neighbors, induced by Coulomb interactions,
for instance. We present briefly, for the sake of definite-
ness, the main results of Ref. 30 in the case of unit over
lap (for simplicity), valid from adsorbate up to bulk atom.
We couple two separate systems: (a) an adatom of Hamil-
tonian Hz, with the basis functions being a finite set of
localized orbitals

~
a), of energy s, . We denote this set

A = j ~

a ) I; (b) a semi-infinite or infinite host, defined by
a self-consistent Hamiltonian HI and an infinite set of
states I, the set of atomic orbitals localized on lattice site
R; the degeneracy index is assumed to be included in 8:

The initial unperturbed Hamiltonian

H=H .+ V,
V= ~HA +~HI +VAI+ ~IA .

(2.3)

(2.4)

It may be shown that the Green-function, 6=(z H)—
matrix in the final state can be written as

G AI
G= GI (2.6)

in the set A U I, with

6 q (z) = [z1—H q —h(z)]

6 I(z)=[zl —H „' —Y(z)]

(2.7a)

(2.7b)

The chemisorption matrix (adatom self-energy) is

b(z)= V»(zl —HI) 'Vip .

The dual quantity in subspace I is

Y(z) = V lw (zj Ha )
' V»—

(2.7c)

(2.7d)

(2.7e)

These two quantities, as far as separate subspaces are con-
cerned (as in charge or energy properties), can be con-
sidered to be complex energy-dependent optical potentials.
We refer to the literature for the off-diagonal matrix ele-
ments. The determination of the (z H~) ' in their—
respective subspaces is a well-known problem.

The density of states is given by

n(E)= —— lim Tr 6(z) .1

& z~E+i0 A UI
(2.8)

In fact, for the total charge and the variations of the band
energy, the relevant quantity is the phase shift. It may be
shown that the complex phase shift Z (Refs. 24 and 25)
verifies

Tr (6—60)= Z,p

AUI dZ
(2.9a)

The first two terms act on their respective subspaces only;
they correspond to the atomic-level shifts induced by the
crystal field and occupations of the adatom and by the oc-
cupation variations on the host neighboring levels.

The coupling terms V» and Viz (=V~1) describe the
hopping between adatom states and neighboring host orbi-
tals

( R),
(2.5)

H =H„+H (2.1)
ZA +ZI ~ (2.9b)

as well as the corresponding Green function 6 (z)
=(z —H ) ', may be represented in matrix form: Zq(z) =Tr lnI [zI Hq —b, (z)](zI —H—~ ) (2.9c)

HA 0
IIO=

0 H,' (2.2)

ZI(z) =Tr»(I &H 16I) . —
I (2.9d)

In the final state, after coupling, both subspaces are per-
turbed and coupled:

We also recall the identity used to evaluate (2.9c)—(2.9d) if
the dimension of the space over which the trace is per-
formed is greater than 1,
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TrlnA =lndetA . (2.9e)

%"e now establish the charge-conservation relation with
the nonstandard definition of the phase shift, in a metallic
system: (i) The Fermi energy E~ is conserved before and
after coupling, for the infinite system. However, for the
isolated atom in the initial state, an "atomic Fermi ener-
gy" Ez, consistent with the highest occupied state and its
occupancy, exists. (ii) The total variation of charge be-
tween the initial and final states vanishes; in the
complex-energy-plane formulation,

N —No —— . f Tr (G —Go)dz
1

2%i ci A UI

. f Tr [G q (z)]dz =0,
2/i l

(2.10)

where C is the path turning counterclockwise around the
real energy axis from E~ to —ao, and backwards (EF and
Ez, respectively, for Ci and C~). The last integral in
(2.10) is the valence of atom A relative to the matrix:

bZ= . f Tr [G z(z)]dz= '
(a, Eo &EF)

X
(a, E (EF)

if Eg )Ep.,

(1 N, ) —if Eg (Eb-, (2.11)

a donor or an acceptor, respectively, according to the ine-
qualities

E~ &EF E~ EF .

N, is the occupation number of state a, of energy E,
with (2.9), and the charge-conservation relation becomes

The optimum contour CI is used in the numerical
evaluations of E, and Eb in Sec. III, the advantage being
avoidance of the ambiguities of determination which arise
in the conventional integral of the phase shift on the real
axis, since only the well-defined ReZ is required on the
Bromwitch path

b.Z= [Z(EF+iO) Z(EF iO)—j . —1

27Tl
(2.12)

Er+iy, 3 &[0,+ ao] .

f z Tr f G g (z) —I]dz .
2&i w I A

(2.13)

After some manipulations we obtain

Eb =Eg AZ — . f Z(z)dz+E~,
1

2~i Cr

with the promotion energy [the last term of (2.13)]

(2.14)

The band contribution to the dissolution energy can be
written similarly as

Eb —— f z Tr (G —G )dz
1

WUI

III. APPLICATION TO AN INTERSTITIAL
HYDROGEN IMPURITY NEAR A Ni(OI)

SURFACE

We perform the simplified calculations outlined in the
Introduction for different families of environment (octa-
hedral, tetrahedral, and saddle-point positions, which are
known to be, respectively, the stable-, metastable-, and
unstable-equilibrium positions in the bulk). The last
class is usually invoked in determining the barrier height
in a diffusion process. Owing to the symmetry breaking
by the surface, this last class is subdivided into two subc-
lasses. Shown in Table I are the considered positions and

E~N~ if Eq )EF,
(a Eo)E )

E~(1—N, ) if Eg (Ep .
(a, EO(E )

(2.15)

TABLE I. The four studied geometries of an interstitial atom
in fcc crystals. The label n indexes the position of the intersti-
tial atom (in units a/2 of the lattice parameter), for the (001}
surface. Usually, n = —1 refers to an adsorption position, but
does not exist for saddle-point site 1, which is not coupled to the
system, in our model. (x,y, 0) is the surface plane.

We recall that the quantities 6, 6, and Eo depend on the
position relative to the'surface, R. This quantity Eb con-
tributes to the heat of dissolution in the bulk ( oo ).

Within our severe approximation, ' the band contri-
bution to the segregation energy E, is simply the differ-
ence between the dissolution energy at position R and the
bulk one ( ao ):

E,(R)=Eb(R) Eb( ao)—
Octahedral (n even)

Octahedral (n odd)

Tetrahedral

Saddle point 1

Saddle point 2

Surface plane

(1,0,2p)'
(1,1,2p+ 1)"

(———+n)1 1 1

( ——n)1 1

(2,0,n+ 2 )
1 1

. f [Z(R;z)—Z( ce',z)]dz .
—I
2&l I

(2.16)
'n =2p.

n =2p+1.
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how they are labeled. We neglect any distortion around
the impurity or geometrical relaxation of the host near the
surface in this approach, as well as the renormalization of
the neighboring atomic levels.

We solved this problem in the same spirit as the calcu-
lation of the local Green function, namely by the general-
ized recursion method:

(2.7d')

may be considered the matrix element of Gl between
( Vl~

~

a ) ) states, and then solved accordingly. This
scheme was given by Kelly in the case of chemisorption.
The normalized Vl~

~

a ) function is known as the group
orbital

~ g ). We incorporated the programmed evaluation
of the group orbital, in any environment, into the recur-
sion method, in order to evaluate b. for all the distances
and geometries. By the recursion method, we build 5 as a
continued fraction. About 10 levels are necessary to
develop the structure. We go up to 25 levels in order to
have a resolution of —,', th of the bandwidth. We terminat-
ed these continued fractions using the prescription of Pet-
tifor and Beer. This method of calculation is even valid
for self-energies, with renormalized neighboring atomic

h(z)= ] (a
~
V„I

~
g) ) G~(z),

~(z)= g (a
I V~I IR &Gag (z)&R'

I Vlg I
a & .

(2.7d")

(2.7d"')

The self-energy has been often approximated in alloy
theory by (2.6c) with the sum R,R' restricted to R =R',
or R,R' up to first-nearest neighbors, by evaluation of the

levels (2.5). We recall that 6 is scaled by the molecular
integral (sda) . We use a unique (sdcr) value, that of
Switendick proposed for stoichiometric NiH, i.e.,
(sdo )= —0.074 Ry, in presenting the self-energies
versus the position of the surface and environment in Fig.
1. This allows to compare directly the coordination ef-
fects on the structure.

The following features may be noted:
(i) The amplitudes are roughly proportional to the coor-

dination. This is mainly true for adsorption and surface
positions.

(ii) Fast convergence toward the bulk shape after the
adsorbate first interstitial position.

(iii) The self-energy is proportional to the group-orbital
Green function g; indeed,

0.
baulk

0.5

0.0,
baal. k

0.4. 0.2
baal. k

0.2.

0.0
bulk

0.0.

FICx. 1. Chemisorption function (—Imh) vs energy (E) and position of the impurity {with the same definition for the labels n as in
Table I), for the four geometries of interstitial H in Ni(001): {a) octahedral site; (b) tetrahedral site; {c)saddle-point site 1; (d) saddle-
point site 2. The value of (sdo) is —0.074 Ry {Ref. 38). The real part of 6, not represented here, may be obtained by the Hilbert
transformation of Imh.



3402 R. RIEDINGER AND H. DREYSSE 31

corresponding Green-function matrix elements. These ap-
proximations are not really satisfied, except in exceptional
cases, where the coordination is sufficiently low that the
approximations become exact, and are even computation-
ally heavier than the procedure (2.5c) adopted here. See,
for instance, saddle point 2 of Fig. 1(d), which is propor-
tional to the 3z —r orbital density of states

We briefly recall the remaining steps of our calculation,
for a given family of sites:

(1) Choose the value of the (sd o) hopping parameter be-
tween the adatom H and its Ni neighbors. In the calcula-
tions presented here, we adopted an unique value.
Another point of view is to vary (sdo.) with the distance
H-Ni; Boudeville et al. proposed an exponential law:

(sdo. ) = (sdo )oexp I q[(R /—Ra ) —1]I,

where (sdo)a and Ro are reference values, and q-3. The
range of validity of this law, however, is limited; its appli-
cation to the unrelaxed saddle-point positions, which are
very close to their neighbors, leads to unphysical binding
energies (of the order of a rydberg).

(2) Determine the H ls level EI by the sum rule (2.12).
This simulates, in a global way, some crystal-shift effects
and Coulomb and exchange corrections to H.

z —ei(R) —b(R;z)
dz .

z —EI( co ) —b.( (g),z)
(3.1)

The corresponding results are reported in Table II.
Let us now discuss the different results.
In Fig. 2, due to sum rule (2.12), the ls local densities

of states (LDOS's) are pinned at the Fermi level at the
topmost peak. The H 1s LDOS is very structured: for
octahedral [Fig. 2(a)] and tetrahedral [Fig. 2(b)] sites, a
bonding resonance occurs for the adsorption, which turns
into a molecular bound state deeper in the metal. Owing
to the shapes of 5, with our parameters, no antibonding
molecular states occur above the band. We recall that
very structured LDOS's may also be obtained by introduc-
ing multielectronic corrections, at least for the adatom. '

(3) Compute the local Green function of the H ls state,
(1s

~

G(z)
~

ls) =[z—EI —b,(z)] ' [Eq. (2.7a)]. Its imagi-
nary part (local density of states) is represented in Fig. 2,
versus position. The corresponding occupations of the H
1s state (ionicities) are obtained integrating by (2.7a) along
the path CI.

(4) The dissolution energies (2.14)—(2.16) for the bulk
interstitial positions, and the segregation energies (2.17)
versus position, are computed along the same path using
Gaussian quadrature on the Bromwitch line. In our
model, the expression of E, is very simple:

(a)
(b)

20&

20.

10-

0

bul. k

10.

0.
bul. k

40

20.

0.
bul. k

20.

0 .
bul. k

E

FIG. 2. Local density of states of the hydrogen interstitial site in Ni(001), vs energy and position of the impurity (same conventions

as in Fig. 1).
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TABLE II. Band contributions to the segregation energy of a
hydrogen interstitial in Ni(001) vs its position (with the same
conventions as in Fig. 1 and Table I). Last line denotes values
for absolute dissolution energy in the bulk (in Ry), with the ori-
gin of energies at E~ (Ref. 46) and the vacuum level at 0.4327
Ry.

Octahedral Tetrahedral
site site

Saddle-point Saddle-point
site I site 2

—1

0
1

2
3

0.3606
—0.0376
—0.0130

0.0037
—0.0106

0.4266
—0.0026

0.0045
—0.0052
—0.0043

0.0019
—0.0248
—0.0024

0.0094

0.0054
—0.0092
—0.0188
—0.0024

0.0071

Bulk 0.1246 0.2925 0.4509

It is therefore important to be able to discriminate the ori-
gin of the structures observed experimentally, many-body
and/or band-structure effects. We note also that the
structures obtained for saddle-point positions at fixed
(sdcr) are weaker, without a molecular bound state, due to
the low coordination. The ionicity of the H adatom is
negative and rather high in this model: 0.5, 0.7, and 0.8
for saddle-point, tetrahedral, and octahedral positions in
bulk, respectively. This high ionicity is a general flaw of
Hartree-Fock models; models with strong corre1ations on
H favor the neutrality of H.

It is possible to adopt this approximation of local neu-
trality in step 2 instead of (2.12). However, the relations
(2.17) for band segregation would lose their simplicity
since global neutrality is then usually violated.

The band contribution to segregation energy presented
in Table II shows the following trends:

(1) For the octahedral family, there is a low bonding en-
ergy in adsorption positions, but strong subsurface bond-
ing on the following planes (0 and 1), and a barrier on
plane 2. These results agree with the model used for the
kinetics of H adsorption.

(ii) The other families behave similarly.
It is not possible to attach significance to the absolute

values between the different families of sites, since the pa-
rameter (sdo) should be varied, and the lattice distortions
are different for the various environments.

A better evaluation of the dissolution energies would
also require proper treatment of 4s electrons, which are

known to contribute significantly to the binding energy in
the case of Ni. The introduction of repulsive ion-ion in-
teractions within a Born-Mayer —type expression, and
geometrical lattice distortion, may also be considered.

IV. CONCLUSION

This paper is the extension of our previous work on
substitutional impurities near surfaces, in the interstitial
case'. ' We performed here precise and systematic calcu-
lations of the band contribution to dissolution and segre-
gation energy within the tight-binding model.

The main ingredients of the calculation are the recur-
sion method extended to self-energies, complex-energy-
plane integration of the Green function and of the proper
extension of the phase shift in the interstitial case, and the
Friedel sum rule. The effects of the geometrical struc-
ture and of the degeneracy of the bands, from adsorption
up to bulk interstitial position, are well demonstrated,
mainly on the band contribution to the segregation energy.
We recall that the degeneracy introduces off-diagonal con-
tributions to the Green functions and the phase shifts for
a general surface orientation. It allows also sharp reso-
nances within the band.

It is, in principle, possible to improve the model via the
following:

(i) By performing self-consistent calculations within the
Hartree-Pock approximation, with intra-atomic and in-
teratomic Coulomb and exchange contributions ' to the
impurity and the host. Such self-consistent calculations
are unstable and the results sometimes deceptive.

(ii) By introducing 4s conduction electrons, which are
known to contribute in the case of H in Ni. "

(iii) By introducing correlations on the adatoms and,
eventually, on the host.

It is also necessary to estimate the repulsive contributions,
i.e., lattice distortions, in order to obtain absolute values
of segregation energy and to estimate the barrier heights
involved in diffusion.

ACKNOW'LED GMENTS

The authors wish to thank the Institut de Recherche
Polytechniques (Mulhouse) and the Centre de Calcul Vec-
toriel Recherche (Ecole Polytechnique) for use of their
computing facilities.

*Equipe No. 034070 du Centre National de la Recherche Scien-
tifique.

F. Perrot and M. Rasolt, Solid State Commun. 36, 579 (1980);
Phys. Rev. B 23, 6534 (1981).

R. P. Messmer, D. R. Salahub, K. H. Johnson, and C. Y.
Yang, Chem. Phys. Lett. 51, 84 (1977).

P. G. Rudolf and R. C. Chancy, Phys. Rev. 8 26, 4378 {1982).
4J. P. Muscat, J. Phys. C 15, 5551 (1982).
5J. E. Inglesfield, J. Phys. F 11, L287 (1981).

M. W. Ribarsky, Solid State Commun. 38, 935 (1981);H. Ada-
chi, M. Tsukada, I. Yasumori, and M. Qnchi, Surf. Sci. 119,
10 (1982); G. Blyholder, J. Head, and F. Ruette, Surf. Sci.
131,403 (1983).

7J. P. Muscat, Surf. Sci. 110, 284 (1981).
J. P. Muscat and D. M. Newns, Surf. Sci. 99, 609 (1980).
P. Jena and K. S. Singwi, Phys. Rev. 8 17, 1592 (1978).

IoD. S. Larsen and J. K. N@rskov, J. Phys. F 9, 1975 (1979).
J. K. N@rskov, Phys. Rev. B 26, 2875 (1982); P. Nordlander,



3404 R. RIEDINGER AND H. DREYSSE

S. Holloway, and J. K. N@rskov, Surf. Sci. 136, 59 (1984).
~2C. Koenig and E. Daniel, J. Phys. (Paris) Lett. 42, L193

(1981);C. Koenig, P. Leonard, and E. Daniel, J. Phys. (Paris}
42, 1015 (1981); P. Leonard and N. Stefanou, ibid. 43, 1497
(1982); N. Stefanou, these de troisieme cycle, Universite Louis
Pasteur, Strasbourg, 1984.
O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B
27, 7144 (1983).

~4E. Wimmer, A. J. Freeman, J. R. Hiskes, and A. M. Karo,
Phys. Rev. B 28, 3074 (1983).

~50. F. Sankey and J. D. Dow, Phys. Rev. B 27, 7641 (1983);A.
Kobayashi, O. F. Sankey, and J. D. Dow, ibid. 28, 946
(1983); M. S. Daw and D. L. Smith, ibid. 20, 5150 (1979); R.
E. Allen and J. D. Dow, ibid. 25, 1423 (1982).
G. A. Baraff, M. Schliiter, and G. Allan, Phys. Rev. B 27,
1010 (1983).

U. Lindefelt and A. Zunger, Phys. Rev. B 24, 5913 (1981).
A. R. Williams, P. J. Feibelman, and N. D. Lang, Phys. Rev.
B 26, 5433 (1982}.
D. M. Newns, Phys. Rev. 178, 1123 (1969).

2 G. Allan, Ann. Phys. {Paris) 5, 169 (1970).
~~T. B.Grimley, Proc. Phys. Soc. London 92, 776 (1967).
2 T. L. Einstein, Phys. Rev. B 12, 1262 (1975).
23T. L. Einstein, J. A. Hertz, and J. R. Schrieffer, Theory of

Chemisorption, Vol. 19 of Topics in Current Physics, edited by
J. R. Smith (Springer, Berlin, 1980), Chap. 7.

4R. Riedinger and H. Dreysse, Phys. Rev. 8 27, 2073 (1983).
25H. Dreysse and R. Riedinger, Phys. Rev. B 28, 5669 (1983).

H. Dreysse and R. Riedinger, J. Phys. {Paris) 42, 437 (1980).
G. Allan and P. Lenglart, Surf. Sci. 30, 641 (1972).

28M. C. Desjonqueres and F. Cyrot-Lackmann, J. Phys. F 5,

1368 (1975).
9J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).

3 T. B. Grimley and C. Pisani, J. Phys. C 7, 2831 (1974).
M. A. Khan and C. Demangeat, Phys. Lett. 95A, 449 (1983).

2J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
M. J. Kelly, Surf. Sci. 43, 587 (1974).
G. Cubiotti and B.Ginatempo, Surf. Sci. 91, 327 (1980).

35%'. Mueller, J. P. Blackledge, and G. G. Libowitz, Metal Hy-
drides (Academic, New York, 1968); G. Alfeld and J. Volkl,
Hydrogen in Metals (Springer, Berlin, 1978).
R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 5, 2845
(1972); 8, 2591 (1975); in Solid State Physics, edited by H.
Ehrenreich, F, Seitz, and D. Turnbull (Academic, New York,
1980), Vol. 35.

D. G. Pettifor and N. Beer, in Electronic Structure of Complex
Systems, NATO Advanced Study Institute Series (Plenum,
New York, in press).
A. C. Switendick, Ber. Bunsenges. Phys. Chem. 76, 535 (1972).
C. Demangeat, M. A. Khan, G. Moraitis, and J. C. Parlebas,
J. Phys. (Paris) 41, 1001 (1980).
Y. Boudeville, J. Rousseau-Violet, F. Cyrot-Lackmann, and S.
S. Khanna, Solid State Commun. 39, 253 (1981); J. Phys.
(Paris) 44, 433 (1983).

4~P. Schuck, Phys. Rev. B 13, 5225 (1976).
R. H. Paulson and J. R. Schrieffer, Surf. Sci. 48, 329 (1975).

43M. Lagos, G. Martinez, and I. K. Schuller. , Phys. Rev. B 29,
5979 (1984).

~C. Thuault-Cytermann, M. C. Desjonqueres, and D. Span-
jaard, J. Phys. C 16, 5689 (1983).

~ J. Tersoff and L. M. Falicov, Phys. Rev. B 26, 6186 (1982).
46J. P. Muscat and D. M. Newns, Prog. Surf. Sci. 9, 1 (1978).


