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Method to determine absolute amplitudes in the de Haas—van Alphen effect
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A new method to determine absolute amplitudes in the de Haas—van Alphen effect is presented.
The method is based on magnetic interaction effects and the field-modulation technique. It is ap-
plied to the a orbit on the open hole sheet and the closed I'g sheet for B||[100] in platinum. The re-

sults are found to agree well with calculated values.

I. INTRODUCTION

Several physical quantities can be determined using the
de Haas—van Alphen (dHvA) effect without knowledge of
the absolute values of the detected oscillatory magnetiza-
tion amplitudes.! For some applications it is, however,
advantageous to also determine the absolute amplitudes.
Shoenberg and Vanderkooy? performed absolute-
amplitude measurements of the neck oscillations in the
noble metals to confirm the theoretical results of
Engelsberg and Simpson® that many-body effects do not
influence the dHvA amplitude predicted by the Lifshitz
and Kosevich (LK) independent-quasiparticle model.*
Absolute-amplitude measurements can also be useful to
determine the spin-splitting factor (see Sec. II) and from
that the orbital g factor. This can be done by comparing
the measured amplitude with the calculated amplitude
and thereby obtaining the spin-splitting factor. Often the
detection system must be calibrated in order to measure
the absolute amplitude. This is easily done when using a
torque magnetometer.” However, the field-modulation
technique is the most frequently used method for detect-
ing the dHvA effect. When calibrating the detection sys-
tem for this technique several methods were developed
(see, e.g., Refs. 5—9) demanding, for example, a measur-
able harmonic content or making use of the modulation
coil as a pick-up coil. It is obvious that when absolute
amplitudes are to be determined it is advantageous to use
a method that does not depend on the gain of the detec-
tion system nor on the coupling between the sample and
the pick-up coil.

Alles and Lowndes'® have discussed how one dHvA
frequency through magnetic interaction will modulate the
amplitude of another higher dHvA frequency that is
simultaneously present. They demonstrate how the low-
frequency modulates the Bessel-function argument for the
high frequency when the large-amplitude field-
modulation technique is employed. In view of the works
of Crabtree,!! Phillips and Gold,” and Shoenberg12 this
modulation of the Bessel-function argument is discussed
in this paper and how it can be used to determine the ab-
solute amplitude of the lower frequency, and from that,
also the absolute amplitude of the higher frequency. The
method described is used to determine the absolute ampli-
tudes of the oscillations from the a orbit and I'¢ orbit in
platinum for B|| [100]. For these orbits, all of the quanti-
ties necessary for making a direct comparison between
theory and experiment possible are known.

II. THEORETICAL CONSIDERATIONS

We consider a case in which two dHvA frequencies are
simultaneously present. We assume for simplicity the fol-
lowing.

(i) We have one high frequency Fy and one low fre-
quency F; with a ratio between the frequencies of at least
five.

(ii) The magnetic field is orientated along a direction of
symmetry both for the crystal and for the orbits. This
means that the magnetization is parallel to the applied
field and the problem can be treated in one dimension.

(iii) The shape of the sample is such that a demagnetiz-
ing factor (N) is obtainable.

From the LK theory, the oscillating magnetization
from the fundamentals of the two frequencies can be writ-
ten as

. 27TF,
M,' =A,~Sln

, (1a)

where F is the dHvVA frequency, i is either of the two fre-
quencies H and L, B is the applied magnetic field, and

ATF exp(—am Ty /B) | cos(mg,m. /2) |
B'/2| 328 /dk}| /*sinh(am, T /B)

’

(1b)

where a=14.69 (TK~!) and  A=0.6523
(Am~!'K~!T~12), m, is the cyclotron effective mass ex-
pressed in units of the free-electron mass, T is the tem-
perature, T}, is the Dingle temperature, |32S/9k? | is the
curvature factor, and |cos(wmg.m./2)| is the spin-
splitting factor including the cyclotron orbit g factor.

The magnetizations from the two frequencies should,
however, be added to the applied magnetic field B in the
arguments of Eq. (1a) and thus the oscillations will be af-
fected by their own presence. This is often referred to as
magnetic interaction (MI). Crabtree!! has derived an ex-
plicit solution to second-order terms of this field problem
under the restrictions listed above by applying a total
magnetic field B, =B +uoM +uoMp, where M is the
LK sum of the two frequencies and M represents the
demagnetizing field in the crystal. His result for the mag-
netization is
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where the labels Ay, and A;, refer to second harmonics of the LK signal. The demagnetizing field is contained in K,
where

21 F;
B 2

K;=up (1—N) (3)
and N is the demagnetizing factor.

When using the field-modulation technique the detected amplitude depends upon the modulation-field amplitude ac-
cording to a Bessel function J,(X), where n is the specific harmonic of the modulation frequency on which the detection
is based. The Bessel-function argument X =27F;b/B? and b is the modulation-field amplitude. When detecting the
dHVA signal with the Bessel-function argument not much larger than that for the first Bessel-function zero, the Bessel-
function values for the lower frequencies will be close to zero. The second-harmonic amplitudes Ay, and A4; , are con-
siderably smaller than the amplitudes for the fundamentals. Thus, the terms 2, 3, 4, and 6 in Eq. (2) can be disregarded
in future considerations and we obtain

Fyb | . Fy 2Fyb | . 2Fy
M« 244J, |27 32 sin 2#7 —Ky(Ap)T, |27 I sin ZTTT
(Fyg+F;)b Fy+Fy | (Fy —Fp)b Fy—F,
—(Ky+Kp)AgALJ, 27TLB2—L— sin [27—1—5 +(Ky—K;)AyALJ, 217——”;2-5— in |27 HB L
4)
When close to a Bessel-function zero, the Bessel function may be written in a linear approximation:
2
Fib F; B;
J, (2 =C— |1— | , (5)
n T Bz Biz B
where B; is the magnetic field for which
F;b
Ju |20—5 | =0. (6)
i
Then,
FH FH+FL FH—FL
22 = pr = 3 ™
By  Bg.r By 1
and from Eqgs. (4), (5), and (7) we obtain
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In the next step we will especially study what will happen
when cos(27F; /B)~ +1, which means that sin(27F; /
B)~0. Keeping in mind that K; is much smaller than
K, we can further simplify the expression. The detected
amplitude of the fundamental for the high-frequency sig-
nal, incorporating K g =2mu(1—N)Fy /B? and multiply-
ing by 1/A4yB%, may then be written as

1 1 Fp A, F;
MHOC E—p—{—ZW/LQ(I—N) B4 cos 27?
F
X sin 277—31 ] . ©)

By observing the locations of the magnetic field for which
the amplitude vanishes it is possible to identify the fields
B, and B_ for which the following relation holds:

1 (1—N)2wF Ay
BT
(1—N)2mwFL A
="lz‘= 12 — 1o - LAr (10)
By BY B7

If uo(1—N)27F  A; /B*<<1, By will be close to the
mean value of B and B_ and Eq. (10) can be reduced to

B> —B%
dmuoFy

The effect of the lower frequency on the higher fre-
quency can in a simplified manner be interpreted accord-
ing to Alles and Lowndes.!® The presence of the lower
frequency magnetization H; will give an effective
Bessel-function J,,(X) argument for the higher frequency:

(1—N)A = 11

27TFH

oM,
Iy 1+p(1—N)

3B (12)

X=

b

Compared with My, dM; /9B is slowly varying with B
and can easily be found in the experiment through an ef-
fective modulation of the high-frequency oscillation. By
selecting b such that the Bessel function is close to a zero,
the effect from 0M; /0B will dominate the detected sig-
nal. In the experiment, b can be kept constant while B is
slowly increased. In the detected signal, the positions in
B, where dM; /0B =0 or has its extreme values, are easily
recognized (see Fig. 1). By plotting the amplitude of the
high-frequency oscillations at these field positions versus
the magnetic field positions, three Bessel-function zeros
will result. The amplitudes for which aM; /0B =0 will
give By, the position in B of the Bessel-function zero
caused by b in the absence of M, /3B. Plotting the ex-
tremes of dM; /0B will give two satellites to By which
we then label B_ and B . These satellite magnetic field
values correspond to the same Bessel-function argument
as for By but where the maximum and minimum values
of OM; /3B must be included in Eq. (12). This gives a re-
lationship identical to Eq. (10) for determining dM, /9B.
Since this amplitude measurement determines the sign of
Ay (see Fig. 1), a measurement of the low-frequency sig-
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FIG. 1. With increasing field, the argument X of the Bessel
function is decreasing. To the left of the zero crossing in (a) the
amplitude is therefore increasing. In absence of a low frequen-
cy, the detected signal will appear as in (b). In the presence of
an M; oscillation, X will oscillate between two extreme values
depending on OM, /0B [see Eq. (12)] and will give an
amplitude-modulated signal (c). From this [and the knowledge
of the sign of J,(X)] the sign of both dM; /0B and M, can be
obtained (c), and the detection system sign calibrated.

nal in the same field interval will reveal if the detected
amplitude signal is phase shifted 180° or not, thus giving a
sign calibration for the detection system.

Once the low-frequency amplitude is known, absolute
amplitudes of other frequencies may also be determined.
The detected amplitude of the low-frequency signal can be
written as DJ,(X; )(1—N)A; where D is the detection
constant of the system and J,(X) is the Bessel-function
value for the low-frequency signal. Since (1—N)A4; is
measured and J,(X.) can be calculated, it is possible to
determine the constant D. The absolute amplitude may
be determined for any other frequency by detecting the
signal and calculating its Bessel-function value J,(X).
However, the experimental “Bessel function” might differ
from thé mathematical'® and therefore it is preferable to
determine the absolute amplitude of the higher frequency
in the following way. Choose a sufficiently high modula-
tion field so that the amplitude of the low-frequency sig-
nal is easily detected. This will then give DJ,(X;). The
low-frequency signal has a Bessel argument F; /Fy times
lower than the higher frequency. If the modulation field
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is reduced by this ratio, the Bessel-function value will
remain the same when detecting the high-frequency sig-
nal. (1—N)Ay is then easily obtained from the detected
signal.

IIT. EXPERIMENTAL TECHNIQUE

Single crystals of pure platinum were prepared by con-
ventional electron-beam zone refining. The starting ma-
terial of 99.999% purity (supplied from Johnson and
Matthey Co.) in the form of a 1-mm-thick wire was zone
refined for 20 zone passages. A final zone passage down-
wards was made to obtain a single crystal sample about 6
mm long. The single crystal samples were spark cut into
1-mm pieces and etched in hot aqua regia to remove sur-
face damages caused by the spark cutting.

Ordinary field-modulation technique was employed to
observe the dHvVA signals. The experiment was per-
formed at a temperature of 0.55 K. The platinum sample
was mounted in a rotator, so that the magnetic field could
be rotated in a symmetry plane. The magnet is installed
in such a way that it can be tilted +3.5° when energized.
By performing field rotation using the rotator and subse-
quently tilting the magnet, the field could be aligned
parallel with the [100] axis to within two-tenths of a de-
gree. The dHVA signals were recorded by making use of
the fourth and eighth harmonic of the modulation fre-
quency (210 Hz).

IV. RESULTS

The method was used to determine the absolute ampli-
tudes of two orbits in platinum. The low-frequency signal
is the a orbit existing at the W point on the open hole
sheet and the high-frequency signal is the orbit on the
closed I's sheet. The modulation amplitude was selected
such that the Bessel argument fell outside the first zero of
Jg. Then, a magnetic field sweep was performed towards
larger fields and the dHvA signals were recorded. The
Bessel-function argument will decrease with increasing
magnetic field and the dHvA signal will exhibit the
Bessel-function zero and the two satellites caused by the
magnetization modulation from the a orbit as described
in Sec. Il and Fig. 1. The result is presented in Fig. 2.
The values of B, and B_ were determined by graphic in-
terpolation as shown in Fig. 2(b) and are presented in
Table I. From Eq. (11), (1—N)A,=—48 A/m was ob-
tained. The demagnetizing factor for the cylindrically
shaped sample was estimated to be N =0.33, after Crab-
tree,!! and thus 4,=—72 A/m.

TABLE 1. Amplitudes for the I's and a orbits. Quantities
used from Refs. 13 and 14 are as follows. a: F,=2770 T,
| cos(mg.m./2)| =0.80, m,=1.53; TI: Fr=28800 T,
| cos(mgem./2)| =0.94, m,=2.44.

Experiment LK theory
B, (T) 6.604 Tpla) (K) 0.31
B_ (D) 6.442 Tp(T) (K) 0.25
A, (A/m) —72 —66
Ar (A/m) —45 —42
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FIG. 2. (a) Amplitude of the detected signal as a function of
B, showing how the three Bessel-function zeros appear in a field
sweep. (b) Close up of (a) showing the graphic interpolation
procedure (weak solid lines) to determine B_ and B .
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FIG. 3. (a) Amplitude of the detected signal as a function of
B, showing the two signals DJ4(X,)M, and the amplitude-
modulated DJ4(Xr)Mr. (b) Detected signal when the modula-
tion field is reduced by a factor F,/Fr showing the remaining
signal DJ4(X,)Myr with a considerable second-harmonic con-
tent.



3382

To determine the absolute amplitude of the M signal
according to the procedure described in Sec. II, the field
sweep shown in Fig. 3(a) was performed. Here, the fourth
harmonic was used to optimize the ratios of the detected
signals. Two different signals can be seen; the low-
frequency signal DJ4(X,)M, and the amplitude-
modulated high-frequency signal DJ,(Xp)Myp. This
modulation is caused by MI and has the same frequency
as M,. The modulation field was then reduced by a fac-
tor F,/Fr giving the signal in Fig. 3(b). Here,
DJ(X,F,/Fr)A,~0 but since a low Bessel-function ar-
gument is used, the signal DJ,(X,)Mr is strongly affect-
ed by the second harmonic and therefore an ordinary
Fourier transform was used to determine the amplitude of

the fundamental. The fraction Ar/A, was found to be

0.63 which gives the absolute amplitude of the Mt signal,
Apr=—45 A/m.

V. DISCUSSION

The experimental results were compared with the LK
theory using Eq. (1). It should be pointed out that even
though this formula is theoretically deduced, some of the
quantities used are experimentally obtained which intro-
duces an uncertainty in the values. Extremal areas and ef-
fective masses were taken from Ref. 13. The Dingle tem-
peratures were determined during the experiment through
standard Dingle plots and the values of the spin-splitting
factor were taken from Ref. 14. To estimate the geome-
trical factor we have used the identity

s _, | 128
ok}

v

(13)

So 36° B

for the a orbit. From a spherical harmonic expansion of
the area,'” an explicit expression for 32S/36* was de-
duced. This gave |3%S /0k}? | equal to 1.0. Since
(1/84)8%8 /36% is close to 1, a small change in 82S/06°
results in a larger relative change of 325 /9k?, which indi-
cates an uncertainty in this value. For the I'g sheet, a nu-
merical interpolation scheme with Fermi radii!® as input
was used giving |9%S/0k? | =5.2. The calculated ampli-
tudes for the I' and a orbit are presented in Table I. The
uncertainty in these values is estimated to be 15% for the
I's orbit and 20% for the a orbit. This higher value for
the o orbit is mainly due to the uncertainty in the curva-
ture factor. It should be observed that there exist 24 W
points in each Brillouin zone and that for a [100] direc-
tion the contribution to one zone by the activated a orbits
summed together are two orbits. Thus, the calculated
value for the absolute amplitude of the a orbit, using Eq.

NORDBORG, GUSTAFSSON, OHLSEN, AND HORNFELDT 31

(1b), has to be doubled.

The error limits for the measured amplitudes only de-
pend on a few parameters. The last term in Eq. (8) will
dominate the total signal at fields close to B, and B_
since the rest of the terms in Eq. (8) summed together are
close to zero in the vicinity of these fields and will thus
introduce an error in the graphic interpolation used to
determine B, and B_. The magnitude of this “second
harmonic” will depend on the order of the Bessel function
in the experiment but this error does not exceed 1%.
Crabtree!'! gives the demagnetization factor N as a func-
tion of the ratio between the length and diameter of the
sample and the angle between the cylindrical axes of the
sample and the direction of the magnetic field. An error
of, for example, 10% in the estimate of the ratio for the
sample used in this experiment will give a change in N of
only 3%. The uncertainty in the angle between the field
and the cylindrical axis of the sample comes from how
well the sample and the sample holder are aligned. A
reasonable estimate is that this is done within a few de-
grees which gives an error of less than 2%. From this we
estimate the error in N to less than 4%. The error in the
dHvVA frequency used is not greater than 0.2% and hence
the error in the measured absolute amplitude of the a or-
bit is less than 6%. For the I'4 sheet there is an additional
error arising from the uncertainty in the Bessel argument
adjustment. This is especially important at low argu-
ments where J,(X)xX* Therefore the uncertainty for
the A value can be 10%.

We find that the experimental and the calculated values
for each orbit tabulated in Table I agree well within the
error limits. The advantages of the method are its simpli-
city and its need of only the few parameters as described
by Egs. (10) and (11). One application for this method of
measuring absolute amplitudes will be to find values for
the spin-splitting factors. The ratio between the measured
absolute amplitude and the LK amplitude with

| cos(mg.m./2)| =1 will give the value of the spin-
splitting factor. An extension of this type of measure-
ment would be studies of diluted materials. A small
amount of magnetic impurity will change g. and hence
also the value of the spin-splitting factor while the ex-
tremal areas and the effective masses remain unaffected.
With knowledge of the Dingle temperature the change in
the absolute amplitude will give the change in g, due to a
specific concentration of impurity.
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