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Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be ex-
pressed in a topologically invariant form showing the quantization explicitly. The new formulation
generalizes the earlier result by Thouless, Kohmoto, Nightingale, and den Nijs to the situation
where many-body interaction and substrate disorder are also present. When applying to the frac-
tional quantized Hall effect, we draw the conclusion that there must be a symmetry breaking in the
many-body ground state. The possibility of writing the fractionally quantized Hall conductance as a

topological invariant is also discussed.

1. INTRODUCTION

In the experiments on both integral' and fractional®
quantized Hall effect it is found that the appearance of a
plateau in the Hall conductance is always accompanied by
a dip in the longitudinal conductance. This well-observed
fact suggests that the existence of the Fermi gap (the ener-
gy gap or mobility gap in which the Fermi energy of the
system lies) is a necessary condition for the quantization
of the Hall conductors. On the other hand, since the
phenomenon is quite independent of the details of the de-
vices used in the experiments, this condition must also be
sufficient (of course, at zero temperature and in weak
electric field).

By now, in the integral case, this relationship has been
quite established by perturbation theory>* or by gauge-
invariance argument.’ The latter is more profound for it
only uses global properties of the electron system in the
external fields. But the solenoid device typically em-
ployed in this theory seem to be artificial to most of the
known experiments.

Another nonperturbative approach was proposed by
Thouless et al.® (henceforth referred to as TKNJN), who
considered an infinite two-dimensional electron gas in a
periodic substrate potential commensurate to the perpen-
dicular magnetic field. The Hall conductance calculated

~from the Kubo formula was rewritten into an integral
which shows quantization explicitly. This expression has
the advantage that it is independent of the detailed struc-
ture of the periodic potential. Later this integral was
recognized as the first Chern class of a U(1) principal
fiber bundle on a torus.”® The fibers are the magnetic
Bloch waves and the torus corresponds to the magnetic
Brillouin zone.

Unfortunately, this theory cannot allow either impurity
disorder or many-body interactions, because the use of
Bloch waves is quite essential to their derivations. In this
paper we generalize TKNdN’s idea so that an invariant
expression can still be constructed in the general case.

The method we are going to use is quite parallel to the
generalized formulation of Niu and Thouless’ for the
quantization of particle transport induced by a potential
varying slowly and periodically. We use the same
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geometry as used by TKNdN, consequently we share with
them the same deficiency of ignoring the edge effect.!”
The many-body wave functions are required to satisfy a
particular  boundary condition described by two fixed
phase parameters. We then prove that the Hall conduc-
tance becomes independent of the phase parameters in the
thermodynamic limit, so that it can be averaged over all
the phases that prescribe different boundary conditions.
The averaged quantity which equals the Hall conductance
possesses an expression whose value is quantized explicit-
ly. This expression is of the same form as TKNdN’s in-
tegral, except that the roles played by the Bloch wave
numbers are now played by the phase parameters in the
boundary conditions. Thus the same topological identifi-
cation can be made in the new theory.

In our generalized formulation it is found that the Hall
conductance is quantized in an integer times e2/A as long
as the Fermi gap is finite and the many-body ground-state
energy is nondegenerate. This quantized value is topologi-
cal in the sense that it is unchanged under a variation of
the potentials so long as the Fermi gap is kept open.
Also, the result does not depend on how this gap is gen-
erated. It could be generated by the action of the magnet-
ic field alone (Landau gap), together with a periodic sub-
strate potential (gaps between the subbands), or with the
many-body interactions.

To obtain a fractional quantization, we have to require,
in addition to a finite Fermi gap, that the ground-state en-
ergy is degenerate and the ground states have a discrete
symmetry breaking. In this case, the Fermi gap must be
generated by the many-body interactions, since otherwise
the degeneracy cannot be obtained, nor can the symmetry
breaking. Recently, Tao and Wu!! generalized Laughlin’s
gauge-invariance argument; our result agrees with theirs.

The degeneracy in the ground-state energy at fractional
fillings has been clearly demonstrated by the numerical
calculation of Su'? for a few small systems with torus
geometry. On the other hand, such degeneracy was not
found in Haldane’s'3 numerical calculations with spheri-
cal geometry. At the present time we cannot conclude (al-
though we suspect) whether the Haldane system will even-
tually present a degeneracy in the thermodynamic limit,
because it is not clear how the spherical geometry could
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be fitted into our formulation.

Recently, the topological nature of the quantized Hall
effect has been revealed in a different approach by Levine,
Libby, and Pruisken.!* They showed that the effective
Lagrangian in a replica treatment of a two-dimensional
(2D) disordered electron system in a transverse magnetic
field contains a nonperturbative topological term which
gives rise to the quantization of the Hall conductance.
Unfortunately, this theory seems unable to deal with the
many-body interaction and therefore the fractionally
quantized Hall effect.

In Sec. II we present the formulation generalizing
TKNAN’s theory in the integral quantized Hall effect. In
Sec. III we illustrate the idea of how the fractional quan-
tized Hall conductance could be expressed as a topological
invariant. Finally, in Sec. IV we give a brief discussion of
the relation between our formulation and Laughlin’s
gauge-invariance argument.

II. THE INTEGER CASE

The method we will use relies on the fact that for an
energy in the Fermi gap the Green function falls off ex-
ponentially with distance, and so the current induced by
an electric field is a local function of the field. Therefore
the response to a field in the interior (away from the edge)
of a two-dimensional system can be calculated with only

exponentially small errors by replacing the realistic "

boundary conditions with convenient artificial ones.

Edge currents are a separate problem and cannot be cal-
culated in this way, since they depend on a delicate bal-
ance between the diamagnetic currents at the two edges.
However, it is possible to devise geometrical conditions
under which there are no edge currents. For example, we
could consider a Corbino disc or a cylinder with the emf
applied in the azimuthal direction.

We now consider a two-dimensional interacting electron
system in both a magnetic field BZ perpendicular to the
plane and an electric field EX in the plane. The substrate
potential may or may not be periodic in space. The Hall
current which flows in the y direction can be calculated
by the Kubo formula'® derived from a linear-response
theory as
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where A =L L, is the area of the system; the subscripts O
and n label the ground state and the excited states of the
N-body Hamiltonian in the absence of the external elec-
tric field:
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Correspondingly, E, and E, are the eigenenergies. The
velocity operators appearing in the Kubo formula are
given by
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A realistic boundary condition is
PY(x;=L,)=9(x;=0)=0, (2.4a)
Yi+Ly)=eP 2y, (2.4b)

i=12...,N

where the phase parameter S is independent of the particle
indices, as is required by the total antisymmetry. But we
are only interested in the bulk contribution to the Hall
conductance; the condition (2.4a) can then be relaxed to
the following form:

Wix;+L,)=e i),

where the y-dependent phase factor is necessary for the
Hamiltonian to be Hermitian. At this moment one should
note that the boundary conditions (2.4b) and (2.4c) are ap-
propriate only when the particular Landau gauge (2.2) is
chosen, but in general we can use instead the gauge-
covariant boundary conditions of the form

iaL, i(eB/#)y;
P (2.4¢)

T UL, Rx) = P y(x;) (2.4d)
T Ly =eP290,) (2.4¢)
i=1,2...,N

where .77;(L,%) and 7;(L,,y) are the single-particle
magnetic translation operators in the x and y directions.!®
With this generalization the argument will follow the
same line, so we would rather stay with the special case
(2.4b) and (2.4c¢).

Now we make the unitary transformation

$n=exp[—ialx;+ - xy)]

i s (4o
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Then (2.1) becomes
H d9H
¢n><¢n B ¢o>
’ (2.6)
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where H is the transformed Hamiltonian. Equivalently,
H can be obtained from H by the following replacement:

. 0 . . d )

i ox, — laxi +a, i o, — ’ay,- +B. @7
It is clear that (1/#)3H /da and (1/%)0H /9 are just the
transformed velocity operators. By a simple manipulation
we can express (2.6) in terms of the partial derivatives of
the transformed wave function for the ground state of the
many-body system:
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where 6=aL, and ¢=pL,.

So far the derivatives are formal and we still cannot see
why the Hall conductance should be quantized. To
proceed further, we need to assume that there is always a
finite energy gap between the ground state and the excita-
tions under any given boundary conditions of the form in
(2.4b) and (2.4c). Also, it is plausible to say that the bulk
conductance as given by the Kubo formula should be in-
sensitive to the boundary conditions if the particles do not
have long-range correlations in the ground state. We
leave the justification of this point to the Appendix. In
fact, in the special case of zero interaction and flat sub-
strate potential, one can explicitly show that the above ex-
pression is indeed independent of the parameters, even
without taking the thermodynamic limit.

Consequently we can equate o with its average over all
the phases (0<0 <27, 0<@<2m) that specify different
boundary conditions, i.e.,
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This is of the same form as the integral that appeared in
TKNdAN’s original theory, except that positions of the
Bloch wave numbers are now taken by the phase parame-
ters 6 and @. Because of the energy gap, the ground state
must go back to itself (up to an overall phase factor) as 8
or @ changes by 27, unless the ground state is not unique-
ly determined by the boundary condition. Thus the Hall
conductance is quantized into an integer times e2/h
whenever the ground state is nondegenerate and is
separated from the excited states by a finite energy gap.
The integral in (2.9) is actually a topological invariant.
It is the first Chern class of a U(1) principal fiber bundle
of the ground-state wave functions on the base manifold
of a torus T? parametrized by the phases € and @. Origi-
nally such a recognition was made by Avron, Seiler, and
Simon’ in the context of TKNdAN’s original theory. The
base manifold was the magnetic Brillouin zone, and the
fibers were the single-particle Bloch waves. Recently,
Kohmoto® finished a detailed analysis showing how the

QIAN NIU, D. J. THOULESS, AND YONG-SHI WU 31

abstract topological idea is applied to their expression for
the quantized Hall conductance. But since the use of
single-particle Bloch waves is essential in TKNdN’s
theory, this topological idea loses sense as soon as the
many-body interaction and the substrate disorder are tak-
en into account.

Fortunately, all these can be recovered by manipulating
the phases describing the boundary conditions. Apparent-
ly, the Hall conductance should be calculated under a
fixed boundary condition as given in (2.8). But the insen-
sitivity of the physical quantity to the boundary condi-
tions allows us to make an average over the phases. In
this way an expression for the Hall conductance similar to
that of TKNdN’s is obtained, so the same topological
words can apply to the problem in the rather general situ-
ation.

In fact, the recognition of the Hall conductance as a to-
pological invariant is not only of mathematical formality,
but also of physical content, because we can explain the
stability of the quantization of the Hall conductance
against various kinds of perturbations. The reason lies in
the fact that the existence of a finite Fermi gap above the
ground state is a discrete property which does not depend
upon the potentials continuously. Also, in the presence of
slight disorder in the substrate, the Fermi level can be
locked into the impurity spectra and allows the mobility
gap to open in a finite range of the magnetic field. This
explains the plateaus of the Hall conductance at the quan-
tized values.

III. THE FRACTIONAL CASE

As mentioned in the introduction, the observation of
fractional quantized Hall effect’? (FQHE) is also accom-
panied with a vanishing of the longitudinal conductance
in the zero-temperature limit. This suggests that a Fermi
gap must also exist at the fractional fillings near which
FQHE is observed. Several theoretical calculations!’—1°
have already justified this point. Furthermore, the ground
state is shown to be liquidlike, so correlation between elec-
trons decays rapidly as their separation becomes large.
Thus we can continue to use the method employed in the
preceding section to equate the Hall conductance to its
average over all different boundary conditions as in (2.9).
Since a nondegenerate ground state always leads to an in-
tegral quantization, we must require a degeneracy in order
to explain the fractional quantization. In this case, Eq.
(2.9) should be written as

=0
e? & 1 ddx | g
=72=ffd9dzm<a¢ ae>
LA
06 | o

) (3.1)

where d is the degree of the degeneracy, and {¢x} is an
orthogonal basis spanning the ground-state Hilbert space.
In the above expression we have also used the fact that
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there is no coupling between different ground states, be-
cause they are macroscopically separated in the sense that
they cannot be obtained from one another by a few num-
ber of single-particle excitations.

Unlike the nondegenerate case, the integral over 6 and
@ is no longer a topological invariant, since the variation
of 6 or ¢ by 27 does not necessarily lead each ground
state back to itself. But the summation over the integrals
may still be a topological invariant. We consider this pos-
sibility in the following.

Consider the 1/p fillings first. We start from the
parent states similar to those proposed by Tao and Thou-
less.'” The single-particle states in the ground Landau
level are

My (x —Ab?), bP=— .

e'u(x ), B
In order to satisfy the boundary conditions (2.4b) and
(2.4c), we make the following linear combinations:

(3.2)

0 : 2 .
Wola,B)= 3 e ™% e™y(x 2,02, (3.3
n=-—o
where
21 21
7\"=3+L—2pn, 8n=a+27-m (3.4)

and the linear dimensions of the system is chosen to give
1/p filling of the ground Landau level:
N 1
L\L, 27upb? )
Then one can show that these satisfy the following boun-
dary conditions:

(3.5)

iaL, iLy/b?
e

Walx), (3.6)

(3.7

W,(x+L)=e
Wiy +Ly)=e" 2 W, (y) .

Also one should notice that there are N different states of
the form (3.3) (for fixed a and f3), since W,y differs
from W,, by only an overall phase factor. This is not
surprising because we only used those states in (3.2) whose
centers (in the x direction) are separated by a multiple of
(27r/L,)pb* to construct the linear combinations. The
parent state of the many-body system is then made by
taking the determinant of these single-particle states. We
claim that this parent state is equivalent to that proposed
by Tao and Thouless,!” because different linear combina-
tions of the single-particle states give the same deter-
minantal wave function. One can check explicitly that
the same boundary conditions as in (3.6) and (3.7) are sa-
tisfied by the parent state just constructed, i.e.,

; i 2

PO +L)=e "1 yix)) (3.8)

4Ly =2y (3.9)
I1=1,2,...,N .

Now we come to the interesting point. Clearly the
above boundary condition is specified by 6O=al;
(mod 27) and ¢ =L, (mod27). But the parent state can-
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not be uniquely determined in the same way, since a varia-
tion of aL; by 27 does not lead the parent state back to
itself. In other words, under a given boundary condition
we can construct many different parent states from which
the true ground states would be generated by the adiabatic
turning on of the many-body interactions. Since a varia-
tion of BL, by 27 and/or of aL by p 2w do lead the state
back to itself, p different parent states are obtained:

YO,9), Y(0+2m, ), . .., Y(O+(p —1)2m,p) .

These states are orthogonal since they are constructed
from different sets of single-particle states. In fact, the
true ground states generated from them are also orthogo-
nal to one another. The reason is that these parent states
belong to different eigenstates (with different eigenvalues)
of the magnetic translation operator .7 ((27/L;)b27)
which translates all the particles by (27/L,)b? along the
y direction, while the operator commutes with the total
Hamiltonian and its interaction part from which the S
matrix is constructed.!® In other words the true ground
states obtained by acting the S matrix on the parent states
must also belong to the eigenstates of 7 ((27/L{)b%3)
with different eigenvalues, therefore they must be orthog-
onal to one another. '

On the other hand, different parent states are connected
by the total magnetic translation .7 ((27/L,)b 2.%) and its
powers. Since this operator also commutes with the S
matrix, the states generated from different parent states
must have the same energy.

Let us now look back to formula (3.1), where ¢ are
just the true ground states transformed by relation (2.5).
If there are no other ground states other than those gen-
erated from our parent states, then (3.1) can be written as

(3.10)

o=0
e? p2mp 2 1 d¢, | ¢
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where we have absorbed the summation into the integra-
tion over the extended range [0 <6 <p2m], because dif-
ferent ground states can be obtained from ¢; by continu-
ous variation of 6 by 2w, 4, etc. We can regard the ex-
tended zone [0< 0 <p2m, 0< @ <27] as a torus, because
¢, is led back to itself (up to an overall factor) as 6 change
by 27p or ¢ by 27. Thus

’ (3.12)

where c¢ is the integer given by the integral. As in the
nondegenerate case we can continue to attach a topologi-
cal meaning to this integer if the extended zone is regard-
ed as the base manifold.

To determine the integer ¢ we may turn off the varying
part of the substrate potential; the integer is unchanged
assuming the Fermi gap is unclosed by this process. We
then transform to the moving frame in which the external
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electric field becomes zero, we will find no electron
current in this frame. Consequently the Hall conductance
is directly related to the filling factor 1/p, so c is unity.

In the above argument we used the concept of parent
states to illustrate the idea how the fractional quantization
can be obtained within our frame. We do not mean to
give a rigorous proof, but we suggest that the following
scenario might correspond to the physical reality:

(1) At a 1/p filling with p odd and small, the ground-
state energy of the system has a p-fold degeneracy. As
the phase parameter 6 changes by 2, 4, etc., the system
goes from one ground state to another, and it comes back
to the original ground state after 6 varies by 2mp.

(2) At a g /p filling, again with p odd and small, the de-
generacy is jp-fold with j <g. But these states fall into j
groups, and the states in each group transform in the
same way as in (1).

(3) As the density of electrons deviates a small but finite
amount from one of the fillings considered above, the
ground states may seek a similar structure as in the neigh-
boring case in order to gain the commensurate energy
(which is negative) achieved at the neighboring small
denominator fillings. If this is right, then the finite pla-
teaus of the Hall conductance observed near the small and
odd denominator fillings can be understood.

(4) Since p is even, conjectures (1) and (2) might still be
true, but (3) may break down by the fractional statistics
recently suggested by a number of people.?’

Before closing this section we would like to add one
more comment. The argument about the degeneracies of
the ground state has been presented in terms of the wave
function proposed by Tao and Thouless,!” but it can also
be presented in terms of Laughlin’s wave function.!”
With the boundary condition (2.4b) (periodicity in the y
direction) a wave function confined to the region
O < x; <hNp /eBL, can be written in the form

1 N 2 N
#1=exp ~p7 2x+BY z

i=1 i=1

N N
< H H (e27rz,-/L2e27TZj/L2)p (3.13)
j=li=1

i<

-

where z;=x;-+iy;. This has the same local properties as
the wave function Laughlin writes in cylindrical geometry
or Haldane?' in spherical geometry. This state can be
modified to satisfy the condition (2.4¢) by expanding it in
terms of the single-particle Landau states (3.2), and re-
placing each of these by its periodic continuation in the x
direction (3.3). This state is also degenerate with the p —1
orthogonal states which can be constructed by the action
of the magnetic translation operator on it.

IV. RELATION TO LAUGHLIN’S
GAUGE ARGUMENT

According to Laughlin’s theory,” the Hall conductance
can be expressed in terms of the number of electrons
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transported from one edge of the sample to the other after
an adiabatic change of the gauge flux by one quantum.
We now try to relate this charge transport to the Kubo
formula we have been using. The Hamiltonian with a
time-dependent gauge parameter is given by (2.2) with the
replacement
d d
—i————i—+4B(1).
y; y;
The current in the x direction induced by the adiabatic
variation of B(¢) can be calculated from the formula®?2?

_i#BQ)
==

(4.1)

(02)0n (V1 )no— (V1 )on (v2)n0
(Eo—E,)

JIx

, (4.2)
n(>0)

where the indices O and n indicate the instantaneous
eigenstates of the Hamiltonian. The charge transport in a
period T during which B(¢) changes by 27 /L, (corre-
sponding to a flux quantum) is thus

T
c= [ dtJ,
_ it (2)or (V1)1 — (V1 )0n (v2)0
0 Ly, (>0) (Eo--E, )?
_h ride
=27 Jo 3,0 4.3)
or
2
e
=2 44
o=7-C, 4.4)

where o(@) is the Hall conductance calculated . from the
Kubo formula under a fixed gauge B=¢L,.

Note that it is the averaged Hall conductance that cor-
responds to the charge transport, so Laughlin’s argument
really involved an approximation. In fact, as he pointed
out in his paper, when he made use of the Faraday’s
theorem, he actually replaced the adiabatic derivative
dU/d® by the fraction AU /Py« C. Here U is the total
energy of the electron system, ® the flux, and @, the flux
quantum. In other words, his approximation is of the
same nature as ours.

One final comment. When Laughlin® tried to establish
the quantization of the Hall conductance, he actually
based his argument upon the belief that as the electronic
states in the bulk go back to themselves, the particle trans-
port from one edge to the other must be an integral num-
ber. Although this idea is physically intuitive, it is still
not obvious because of the wave nature of the electrons.
Our formulation presents a rigorous proof of this idea.
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APPENDIX

The insensitivity of the Hall conductance to the boundary conditions is most easily understood in the noninteracting
case. Then the Kubo formula (2.6) can be written in terms of the single-particle quantities as

L13

2 \gn){on| L

da

(2
_ ie? <’”

on)={o

h
aa

ok
3 |*

ol 2 e
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~ where % is the transformed single-particle Hamiltonian and ¢, are the single-particle wave functions. With some manip-
ulations, this can in turn be written in terms of the Green functions as

Ok dh

ie? £ dz
832538

4% ¥ 2mi g
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where the integral contour surrounds the filled state energies. The derivative of the Hall conductance o with respect to 6

is
o _ie? dz_ dh ok ah
30 A#AL, 27ri

3aoa80p%

ah of O
28 8183,838% 328 T8 32808

27
a h ) (A3)

Now, because of the existence of the Fermi gap the energy parameter z can be chosen away from the spectrum of the

extended states, hence the Green function g(r,r’) is exponentially bounded as | r—r’| becomes large.*

Thus do /36 is of

the order of (1/L,)e?/h, with I being the localization length of the Green function. Similarly we have

8o I e2
a¢ L2 h

(A4)

- When the many-body interactions are taken into account, we can use the method used in Ref. 9 to estimate 30 /36 and
do/3¢. Although the manipulations are complicated, the same result can be obtained under the assumption that the
electrons do not have long-range correlations in the ground state.
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