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We obtain the static-linear-density-response function of the conduction electrons in a metal slab in
a self-consistent-field approximation derived from density-functional theory. Exchange and correla-
tion effects are included within the local-density-functional (LDF) approximation. The jellium
model is used for the periodic ionic background. The response function is obtained by solving a ma-
trix equation for the coefficients of a double-cosine Fourier-series representation for the response.
Our solution holds for all values of the two-dimensional wave-vector transfer parallel to the surface

q~~. The entire surface-screening problem is basically reduced to carrying out matrix algebra on the
computer. Our method provides a good approximation for the response function of a semi-infinite
medium. We test the method by computing the electron density induced by an impurity placed in
the surface region. The singularity of the response function for q~~ =2kF (k~ being the Fermi wave
vector) gives rise to long-range lateral oscillations in the induced density. The amplitude of these os-
cillations becomes vanishingly small when the impurity is placed'outside the jellium. The oscilla-
tions in the induced density along the surface normal are also studied. We quantify the importance
of exchange and correlation effects in the response function by comparing the results obtained in the
LDF and random-phase approximations.

I. INTRODUCTION

An accurate description of screening at a metal surface
is essential for the quantitative study of, e.g., pair poten-
tials between ions belonging to the outer atomic layers, '
lateral interactions between adsorbed atoms ' (which
determine the geometry of an adsorbed layer of atoms),
and for the microscopic theory of lattice dynamics of
clean and adsorbate-covered metal surfaces. ' A basic
element of the physics of these problems is the screening
response of the conduction electrons to a local charge im-
balance. It is this question to which the present paper is
devoted.

Surface screening of an impurity including the effects
of electron-electron interactions through the use of the
random-phase-approximation (RPA) linear-density-re-
sponse function of the electron gas has been considered by
several authors. ' ' However, in all of this work the
rather drastic step is taken of assuming that in the ground
state the electrons are noninteracting, being confined sole-
ly by an infinite potential wall placed at a distance
zp = 377/8kF from the jellium edge. This is the infinite-
barrier model (IBM), first considered by Bardeen many
years ago. ' Sometimes the additional simplifying as-
sumption is made of neglecting the "quantum-interference
terms" in the response function. "' This is the classi-
cal infinite-barrier model, in which the electron-density
profile at the surface has a step discontinuity.

Now, the importance of self-consistency in the electron
density profile and effective potential used in the study of
surface electronic properties is well- established. ' '
Furthermore, in the present context of surface-impurity
screening, recent results of Rasolt and Perrot, ' obtained
using the IBM for the electron wave functions, suggest

the importance of including exchange and correlation ef-
fects in the surface response function. For example, they
give rise to a sizable shift in the position of the effective
image plane relative to the value obtained in the RPA. '

It is clear that further progress in the quantitative study
of surface screening requires the use of a surface-response
function that incorporates the electron-electron interac-
tion self-consistently. By this we mean that the same
treatment of the electron-electron interaction that goes in
the computation of the response should go in the compu-
tation of the ground-state electron-density profile and sur-
face potential. This is done in the present paper. We ob-
tain the static-linear-density-response function for a jelli-
um surface in a self-consistent-field approximation de-
rived from density functional theory. ' Exchange and
correlation effects are included within the local-density-
functional (LDF) approximation for the exchange and
correlation functional. ' The Lang-Kohn electron density
profile at the surface is used. '

In the case of bulk screening it has been known for
many years' that the electron density induced by an iso-
lated impurity embedded in an otherwise uniform electron
gas has the asymptotic form

n;„d(r)~r cos(2kzr),

for kyar &&1, where r is the radial distance from the im-
purity. Equation (1.1) is a direct consequence of the loga-
rithmic singularity of the bulk density response function
at 2k+. ' Experimental evidence for the long-range
Friedel oscillations (1.1) is found in studies of the Knight
shift and quadrupolar broadening of the nuclear magnetic
resonance line of the solvent atoms in dilute alloys.

A conceptually important paper on the subject of sur-
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face screening is Lau and Kohn's paper on the indirect
long-range interaction between a pair of adsorbed atoms.
Lau and Kohn effectively proved that the surface
response function for noninteracting electrons has a weak
singularity for

q~~
——2k~ (the leading singular term is of

the form
~ q~~

—2kF
~

~ ). From this result these authors
proved the existence of a long-range oscillatory contribu-
tion to the indirect lateral interaction between the two
atoms (the oscillation has period mlkF and it decays
asymptotically like the fifth power of the lateral distance
between the charges). From the structure of the integral
equation that we solve in Sec. II it follows that the full-
response function (i.e., the response function in the pres-
ence of electron-electron interactions) has a similar singu-
lar behavior for q~~

——2kF as the response function for
noninteracting electrons. One virtue of our formulation is
that this weak singularity of the response function is easi-

ly handled numerically.
The outline of this paper is as follows. In Sec. II we ob-

tain and solve the integral equation for the static density
response function of a jellium slab in the LDF approxima-
tion. Although our method makes essential use of the as-
sumption of a finite slab thickness, in practice it turns out
to give a good approximation to the response of a semi-
infinite medium for rather small thicknesses. Our solu-
tion comes in the form of a matrix of coefficients of a
double-cosine Fourier series representation for the
response function. That matrix is obtained solving a ma-
trix equation numerically. The entire surface-response
problem is reduced to carrying out matrix algebra on the
computer by using a simple (sine-) series representation
for the self-consistent electron wave functions. Our solu-
tion for the response holds for all values of the two-
dimensional wave-vector transfer parallel to the surface.
This is an important point, since in the screening of a sur-
face impurity, small-wave-vector expansions are inade-
quate. We note that Dobson and Harris ' have recently
given an entirely numerical solution to the same integral
equation considered in Sec. II. Their approach to the
study of surface response would require the tabulation of
the response function over a double mesh of values of the
coordinate normal to the surface. The method put forth
in the present paper appears to be easier to implement.
As an illustration, in Sec. III we address a basic screening
property: We compute the electron density induced by a
point-charged impurity located near the surface. We
place emphasis on the long-range oscillations in the in-

duced density both in directions parallel and normal to
the surface. We examine the effect of the proximity of
the surface on the long-range behavior. The Appendix is
dedicated to the study of the density response function for
noninteracting electrons. This response function enters
the kernel of the integral equation solved in Sec. II. In
this Appendix we find it convenient to consider the
dynamical response first, and obtain the required static
response as the zero-frequency limit of the former. We
thus take the opportunity to provide the derivation of the
result for the dynamical response function for nonin-
teracting electrons used in a recent paper.

There are three main approximations used in this paper.
(i) We use the jellium model for the periodic ionic back-

ground. This assumption is introduced in the computa-
tion of the response function. Thus our results apply only
to simple (s-p-bonded) metals such as aluminum and the
alkalis. However, more complicated metal surfaces also
contain a large contribution to the response from the s-p
electrons. (ii) Exchange and correlation effects are includ-
ed within the local-density approximation. ' Gunnarsson
and Lundqvist have given an appealing qualitative justifi-
cation for this approximation, which has been shown to
give good results for the electron-density profile and total
energies in the metal-surface problem. (iii) Our formu-
lation is based on the use of the linear density response
function of the conduction electrons. Now, this response
function is currently being used in the study of lattice-
dynamical properties of simple metal surfaces in the har-
monic approximation. In that case, the linear electronic
response is all that is needed. On the other hand, if what
is required is an accurate value of, say, the charge build-

up at the position of a point impurity, then one should
probably resort to other formulations that do not require
the assumption of linearity in the response. We would
like to note that a paper by Appelbaum and Hamann
gives support to the use of a linear theory in some surface
calculations. Using a variational method, these authors
found that the interaction energy between a point charge
of magnitude Q and a jellium surface, scales as Q for
values of Q up to 2e ( e being the magnitude of the elec-
tron charge) and for impurity-jellium separations down to
1 a.u. Lang and Williams and Gunnarsson and Hjelm-
berg have criticized the linear approximation in the con-
text of the theory of chemisorption, as have Almblath
et al. in the case of a proton in a bulk metal. However,
it would be straightforward to use a pseudo-ion instead of
a point impurity (i.e., an impurity with an appropriate
finite core size). It is expected that the error due to the
linear approximation should decrease with the size of the
core.

II. DENSITY-RESPONSE FUNCTION IN THE LDF
APPROXIMATION

U„(x)= U,„,(x)+ U;„d(x) . (2.3)

In Eq. (2.3) we have introduced the potential U;„d(x) giv-
ing the average field acting on an electron as a conse-

A. Integral equation for the response function

The static-density-response function X(x,x ) is defined
by the equation

n;„d(x) =J d x'X(x, x')U,„,(x') . (2.1)

where n;„d is the electron number density induced by an
external potential U,„,. The integral in Eq. (2.1) runs over
the metal interior.

In a self-consistent-field theory one also introduces a
response function for noninteracting electrons, X' '(x,x'),
defined by the equation

n;„d(x) = 1 d x'X' '(x, x')U„(x'), (2.2)

where
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quence of the screening response of the electron system to
the external field [which gives rise to the induced-charge
density —en;„d(x)]. In density-functional theory, '

U;„d(x) is obtained by linearizing the change of the effec-
tive potential V,rr(x) in which the electrons move [the ef-
fective potential of the Kohn-Sham equation (A2)]. In the
local-density-functional (LDF) approximation for the ex-
change and correlation potential V„,(x) [cf. Eq. (A3)], we

ave28, 29

n;„d(x') d V„,(x)
U;„d(x)=e f d x', + n;„d(x),x—x dno x

(2.4)

d V„,(x)
V(x],xz)= + 5(x) —x2) . (2.6)

The integral equation (2.5) has the simple diagrammatic
interpretation shown in Fig. 1. The noninteracting
electron-response function X' '(x, x') is given by the
electron-hole bubble (or the RPA approximation for the
irreducible response). For convenience in the presentation
X' '(x,x') is analyzed in detail in the Appendix. The
dashed lines represent the full interaction V(x~, x2). Itera-
tion of Eq. (2.5) yields the geometric series represented in
Fig. 1, whose (n + 1)th term is of 0( V").

The conceptual simplicity of the LDF integral equation
(2.5) stems from the fact that exchange and correlation
are included in the interaction V(x&, xz) [and only through
a simple function of no(x)], while the irreducible response
X' ' is that for noninteracting electrons. This is due to the
self-consistent-field nature of the Kohn-Sham equation
(A2). In a more general formulation (i.e., beyond a
Hartree-type response theory) the inclusion of exchange
and correlation effects results in more complicated dia-
grams for the irreducible response. '

We note that Eq. (2.5) has the same form as the RPA
integral equation for X. ' In the RPA, however,
V(x&,xz) is just the Coulomb potential [the first term on

C3 = + + ~ ~ ~

FIG. 1. Diagrammatic interpretation of the LDF integral
equation for the density response function Xix, x') [Eq. (2.5)].
The electron-hole bubble P' '(x, x') is given by Eq. (A1), and the
full electron-electron interaction V(x]x2) is given by Eq. (2.6).

where no(x) denotes the electron number density in the
ground state of the unperturbed system (i.e., in the ab-
sence of the impurity).

From Eqs. (2.1)—(2.4) it is a simple exercise to establish
an integral equation for X(x,x'). We have2' s

X(x,x') =X' '(x, x')

+f d x& f d xzX' )(x,xi)v(xi, x2)X(xq, x'),

(2.5)

where V(x~, x2), the full electron-electron interaction in
the LDF approximation, is given by the equation

the right hand side of Eq. (2.6)]. A comparison of both
approximations for X in the case of surface screening will
be presented in Sec. III.

B. Solution of the integral equation for a jellium slab

As indicated in the Introduction, in this paper we use
the jellium model for the ionic background. This allows
us to introduce the reduced density response function
X(qII ~

z,z') defined by the equation

X(x,x') =f 2
e II '"ll II X(qII ~

z,z'), (2.7)
(2m )

where qII is a two-dimensional wave vector in the plane of
the surface [the plane (x,y)], and z denotes the coordinate
normal to the surface. Note that in the jellium model the
ground state is isotropic in the plane (x,y) [in particular,
no(x) =no(z)]; thus X(qII I

z,z') depends on qII through its
magnitude q)( only.

Taking the two-dimensional Fourier transform of Eq.
(2.5), according to Eq. (2.7), we are led to an integral
equation for X(qII

~

z,z'), namely

X(qII f
z,z')=X (qII /

z,z')

+ f dz, f dz, X"'(q„~z,z, )

X V(qII I
zi z2)X(qII I

zz z

(2.8)

where the integrals run over the metal interior, and

2~e' -&„I..-., I
dv„, (z)

V(qII ~z&,z2)= e " ' ' + 5(z) —z2) .
dltp z

(2.9)

The reduced response function for noninteracting elec-
trons, X' 'fqII ~z,z'), is obtained in the Appendix We.
have

EM E

z,z') = g g Fig (qII )yt(z)4'1"(z)@l(z')A'(z'),
E =1 E'=1

(2.10)

where the wave functions P~(z) are the self-consistent
solutions of the one-dimensional Kohn-Sham equation
(A7), and the static electron-hole kernel F~~ (qII) ts given
explicitly by Eqs. (A16). The first sum in Eq. (2.10) runs
over occupied energy levels only, the highest occupied lev-
el being denoted by l~. The second sum in Eq. (2.10)
runs over both occupied and unoccupied levels. Thus
lM & l~; in principle, l~ = ac, cf. Eq. (AS). In the numer-
ical calculations the value of lM must be large enough that
the physical results are insensitive to the value chosen for
it.

The result for X' '(qII
~
z,z') given by Eq. (2.10) is espe-

cially suited for the case of a jellium slab of finite width,
in which case the spectrum of occupied one-dimensional
levels for motion along the z axis is discrete. For exam-
ple, for a jellium slab with the bulk density of aluminum
and a thickness equal to fifteen atomic layers in the [100]
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direction one has I~ ——17. Now, while the levels lying be-
tween the Fermi level and the vacuum level are also
discrete, the states above the vacuum level form a contin-
uum. However, the method of solution of Eq. (2.8) to be
described below effectively replaces this continuum of
states by a discrete set.

Equation (2.8) is solved as follows. We note that out-
side the jellium the electron density profile no(z) decays
by several orders of magnitude within a distance of the or-
der of 2m /k' from the jellium edge (kz ——1.75 A ' for
aluminum). It is then convenient to render the electronic
system strictly finite in the z direction by assuming that
no(z) actually vanishes at a finite distance (denoted by zo)
from each edge of the jellium. (In reality the tail of the
electron density profile is exponential. ) We can then in-
troduce the following double-cosine Fourier-series repre-
sentation for the response function:

r

, PZ VT' n&
&(q(( Iz»')= X X + ~ qadi

m=O n=O

(2.1 1)

which has the inverse transformation

PmPn
„(q(~ ) = 2 I dz dz'X(q((

I
z,z')

where the coefficients (M~ (the Neumann numbers) are de-
fined by the equation

r)1 for m =0,
(2.13)

2 for m &1.
The length d introduced in Eq. (2.11) is given by the

equation

g =a +2zO (2.14)

~-«(( =~-«i( + X ~- «tl V-' q(i ~ ' qll
(O) (O)

m', n'

where we have made the definition

(2.15)

a being the width of the jellium slab. Thus d is the width
of the electronic system in the z direction. Note that in
Eq. (2.11) we have set the origin of coordinates on the
left-hand edge of the film.

Substituting Eq. (2.11) and a similarly defined represen-
tation for X' '(q~~ I

z,z') into Eq. (2.8), we obtain the fol-
lowing matrix equation for the coefficients X „(q(() of the
response:

fPl & n~
Q cos z cos

V „(q(()—= V'„'(q(()+ V'"„', (2.16)

(2.12)
I

where the matrix elements V~„'(q(~) of the Coulomb in-
teraction are given explicitly by the equation

2 e 2d

q((+(..id) (. , )
- + +(n~ld)

(2.17)

and the matrix elements V~"„' of the exchange and corre-
lation interaction are defined by the equation

( )
d dV„,(z) m~ no.

V~"„' = dz cos z cos z . (2.18)
o

p p I M

~ma(q(( ) 2 g g +ll'(q(( )Gll'Gll'
I =1 I'=1

where

(2.19)

From Eqs. (2.10) and (2.12) we have that the matrix of
the coefficients X~„'(q~() of the noninteracting electron
response is given by the equation

1/2
2 . $7T

pl(z) = — g bl, sin z (2.21)

C. Numerical procedure

In this section we comment on the procedure that we
have used in the computation of the ingredients of Eq.
(2.15), namely the matrices X~„(q

~(
) and V „(q

~ ~

).
The assumption made in the derivation of Eq. (2.15)

that no(z) vanishes at a distance zo from the jellium edge
implies, from the point of view of the differential equa-
tion (A7), the introduction of infinite potential walls at a
distance zo from each edge of the jellium. We then intro-
duce the following representation for the wave functions
Pl(z):

cf Pl 7T
Gll = dzcos z pl(z)pl(z) .

0
(2.20)

We solve Eq. (2.15) numerically using standard rou-
tines. We have not encountered the numerical problems
that led Rasolt and Perrot' and Maniv and Metiu ' to car-
ry out rather lengthy reformulations of response equations
of the form of Eq. (2.15) before solving them numerically
(in the case of Ref. 1, this was done by iteration).

which automatically satisfies the boundary conditions that
pl(z) =0 at z =0 and z =d.

A procedure has recently been given for computing the
coefficients bI, self-consistently. ' It consists in
transforming Eq. (A7) into a matrix equation through the
use of Eq. (2.21). Since V,lf(z) is a functional of no(z),
which itself is a quadratic function of the I bl, j, one is led
to a nonlinear self-consistent matrix eigenvalue problem.
Its solution is discussed in Ref. 17.
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With the representation (2.21) for the wave functions
PI(z) the integral required in Eq. (2.20) is elementary. We
have

Gll' g g g bl sbl' s(~ m, s—s'+'8m, s' —s ~m, s+s')
s =1 s'=1

Eq. (2.18) is given by the equation

d Vxc(z) 2 z z/3= ——,e no (z)F„,(z),
dna z

(2.24)

Equation (2.22) together with Eqs. (A16) and Eq. (2.19)
give an explicit result for the Fourier coefficients X'm„'(q~~ )

of the response function for noninteracting electrons. We
emphasize that this result is in a form particularly suited
for its numerical computation since it only involves ma-
trix algebra [to be carried out on the basis of the
knowledge of the coefficients bI, defined by Eq. (2.21)].

Of course, in practice one approximates Eq. (2.21) by a
finite series. Let us call s» the number of terms (sines)
in that series. From Eq. (2.22) it immediately follows that
Gg=O for m &2s,„. Thus the rank of the matrix
X~~„'(q~~ ) [and that of the matrix X „(q~~ )] equals

Now the density profile no(z) is symmetric about the
midplane of the slab, and thus so are any other properties
of the ground state. In the case of the response function
X' '(q~~

~
z,z') the reflection symmetry about the midplane

is stated as

X' '(q(~
~

d —z,d —z') =X' '(q()
I
z,z') . (2.23)

From Eqs. (2.12) and (2.23) we have that X' „'(q~~) =0 if m
and n are of opposite parity (m even and n odd, or vice
versa). In fact all the matrices that enter Eq. (2.15) share
this property. Thus, Eq. (2.15) decouples into two sets of
equations for the even and odd parts of X „(q~~), respec-
tively. This is very convenient from a numerical stand-
point, since then we only have to work with matrices
whose rank is half that of the full matrix X „(q~~ ).

The above formulation introduced three numerical pa-
rameters whose values must be sufficiently large that the
physical results are independent of them. They are the
distance zo, the number of sines s,„kept in Eq. (2.21),
and the upper limit lM in Eqs. (2.19). Examples are given
in Sec. III. A type of problem that demands high accura-
cy in the computation of the electron response is one in-
volving the subtraction of two quantities of nearly equal
magnitude. An example of this situation is encountered
in Sec. III. Dynamical response problems are also numer-
ically demanding whenever levels lying substantially
above the vacuum level contribute to the response.
Those levels depend sensitively on zo, that is, on the posi-
tion of the fictitious infinite barriers relative to the jellium
edges.

We would like to emphasize that for the values of zo
and s,„ for which the response function is known with
sufficient accuracy the electron density profile obtained
from Eq. (2.21) agrees extremely well with the Lang-
Kohn profile' throughout the surface region about each
jellium edge. '7

A technical difficulty in the evaluation of the matrix
V'"„' [defined by Eq. (2.18)) must be noted Using th.e lo-
cal Slater approximation for exchange reduced by a factor
of —', , and the local Wigner interpolation for correlation, '

we have that the density derivative of V„,(z) required in

where

1/3
=3 3F„,(z) =—

2 7T

0. 158+anno (z)+0.056 ~0.079
[0 079++Bn 0"(»]'

(2.25)

a~ being the Bohr radius. Now, the electron density pro-
file no(z) has been assumed to vanish at z =0 and z =d.
With the representation of the wave functions t}t~(z) given
by Eq. (2.21) we have that no(z)-z as z —+0. (Because of
reflection symmetry the present argument need only be
made for z =0.) Thus dV„,(z)/dno(z) behaves like z
as z —+0 and Eq. (2.18) has an end-point singularity. It is
easy to see that the root of this problem is the cosine rep-
resentation for the response function introduced in Eq.
(2.11). In effect, from Eqs. (2.10) and (2.21) we have that
X' '(q~~ ~z,z, )-z, as z, ~O. From the structure of Eq.
(2.8) it follows that also X(q~~ ~

z„z')-zf as z~ —+0. Thus,
the contribution to the integrand in Eq. (2.8) from the
exchange-correlation potential behaves like z1 as z1~0.
The integral equation for X(q~~ ~

z,z') is then well defined.
Had we used a sine representation instead of Eq. (2.11),
the present problem with Eq. (2.18) would not arise.
Since we do use Eq. (2.11) [basically because it leads to the
simple result given by Eq. (2.22), which fixes the rank of
the matrix X „ to be 2s,„+1],we proceed as follows.
We introduce a finite lower limit in the integral (2.18) and
carry out the computations keeping this lower limit as a
parameter. Since, as noted above, the original integral
equation (2.8) is well behaved, we are sure to obtain con-
vergent results for sufficiently small values of this param-
eter.

We close this section with a comment on the philoso-
phy of the above formulation. It is obvious that our
method is suitable for the study of intrinsic thin-film ef-
fects. However, our main interest is in the study of the
response of a semi-infinite medium. That our method
does give a good representation of the static response of a
semi-infinite medium (while involving matrices of
moderate rank) is because of two basic reasons. First we
have that the static electron screening length 2m. /kF is, at
metallic densities, of the order of a few angstroms. This
is why for films thicker than 5—10 atomic layers (the
"threshold" thickness depends on the bulk electron densi-
ty, i.e., on kF) the electron density profile is, in the sur-
face region about each jellium edge, the same as that for a
semi-infinite slab. ' In this sense, in the ground state the
two slab surfaces are decoupled. Second, in screening pro-
cesses involving a surface impurity typical two-
dimensional wave-vector transfers are large [of O(kF)].
Thus, for fairly thin films (films not much thicker than
about 10 atomic layers) we have that q~~d &&1, and the
external source effectively "sees" only one of the slab sur-
faces.
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III. ELECTRON DENSITY INDUCED
BY AN IMPURITY PLACED NEAR THE SURFACE

As noted in the Introduction, a basic feature of metallic
behavior is the screening response of the conduction elec-
trons to a local charge imbalance. This can arise because
of the presence of an embedded impurity, of an adsorbed
atom or molecule, or of the ion cores of the metal itself.
The latter case brings the screening process into the con-
text of the lattice dynamics of metal surfaces. The screen-
ing of the ions by the electrons gives rise to an indirect in-
teraction between the ions which added to their bare in-
teraction gives the total ion-ion interaction, from which
quantities such as lattice relaxation and surface-phonon
dispersion relations can be obtained. ' This application
of the response function obtained in Sec. II is in progress
and it will be reported elsewhere. Here we will consider
what is, in essence, the "building block" of the surface
screening process, namely the electron density induced by
an impurity placed near the surface. This is given by Eq.
(2.1), with

U,„,(x)=—
/x —xg/

(3.1)

where Q denotes the charge of the impurity and x~ its po-
sition vector. Without loss of generality in what follows
we set x& ——(0,0,z& ), i.e., we place the impurity on the z
axis. Unless otherwise specified we measure the coordi-
nate z from the left edge of the film.

The usual relation between n;„d(x) and its two-
dimensional Fourier transform n;„d(qii ~z) [cf. Eq. (2.7)]
can be rewritten as

oo

~d(x) = dqii qii Jp(qiiR ii )n;„d(qii f
z), (3.2)

(3.3)
where the argument of the exponential brings in the
dependence of n;„d(qii

~

z) on the position of the impurity.
This dependence has been omitted in the above notation.

Substituting Eq. (2.11) in Eq. (3.3) we obtain, for
0(z(d,

n;„d(qii ~z)= —2neQ QX~„(qii)cos z
m, n

a„(qii ~z, )
X

qll + (nm /d)
(3.4)

For z & d or z & 0 (i.e., outside the electron system)

n;„d(qii
~

z)=0. The function A„(qii ~
z&) introduced in

Eq. (3.4) is defined as follows:

where Jp(x) is the Bessel function of order 0, and
Rii =

~ xii ~

. Taking the Fourier transform of Eq. (2.1) ac-
cording to Eq. (2.7) we have that

2~eQ ", —
vi) I

' —
g I

ni d(qii I»=- dz'e X(q„]z,z'),

—[(—1)"e il" 1]e II'& z & () (3.5a)

A„(qii ~z&)= 2cos z& —[e i' '+( —1)"e '
' ], 0&z& &d (3.5b)

[(—1)"—e 'ii )e "i" ', z, )d . (3.5c)

Equations (3.5a) and (3.5c) correspond to the case in
which the impurity is outside the electron system (to the
left or to the right of the film, respectively), and Eq. (3.5b)
corresponds to the case in which the impurity is inside it.

Now, since charge is conserved in the screening process,
the integral of Eq. (3.2) over the volume occupied by the
film must equal Q/e. This condition translates into the
(exact) result that

f dzn;„d(qll 0
~

z) =—. (3.6)

Substituting either Eq. (3.5a) or Eq. (3.5c) into Eq. (3.4),
Eq. (3.6) leads us to the result that

Xpp(qii )
lim

q —+0
q~~ 2~e d

(3.7)

Performing the same calculation but using Eq. (3.5b)
we obtain, in addition to Eq. (3.7), the condition that, for
n)0,

lim Xp„(qii)=0 . (3.8)
q)

~

—+0

Equations (3.7) and (3.8) are direct consequences of

charge conservation. They are satisfied by our numerical
results. Equation (3.7), in particular, is typically verified
to six significant figures.

It is interesting to note (and not difficult to prove) that
the charge-conservation condition given by Eq. (3.7) en-
sures that the static image potential experienced by an
electron has the asymptotic form —e /4z (independent of
the film thickness).

In Figs. 2—5 we present numerical results for the in-
duced density (we have set Q =e) for the case of a jellium
slab with the bulk density of aluminum and a thickness
equal to 11 atomic layers of Al in the [100) direction
(a=22.2 A). It was verified that our results do not
change, on the scale of the figure, if thicker films are
used. Thus the results of Figs. 2—5 can be thought of as .

pertaining to a semi-infinite medium. The physical
reasons behind this conclusion were given at the end of
Sec. II.

In Fig. 2 we show n;„d(x) for points in the plane paral-
lel to the surface that contains the impurity (i.e., for
z =z&), as a function of the lateral distance Rii from the
impurity, for several values of the position z& of the im-
purity relative to the right-hand edge of the jellium (z, is
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z& ———2 A, inside the jeHium [cf. Fig 2(b).].

diffraction (I.EED) patterns. It is important to note the
rapid decrease of the amplitude of the oscillations in Fig.
2(a) as the impurity is moved outward through the surface
region. %'e also note that the oscillations in the lower
panel are out of phase by nearly half a wavelength relative
to those in the upper panel. The latter result gives rise to
a substantial cancellation in the additi. on of both contribu-
tions to n;„d(x) [Not.e the change in the vertical scale in
Fig. 2(b).]

The main feature of the result for the total induced
density n;„d(x) shown in Fig. 2(b) is the disappearance of
the long-range oscillatory behavior when the impurity is
placed outside the jellium (z& ~0). The monotonic decay
of the curve for z ~

——1 A is determined by the behavior of
the integrand of Eq. (3.2) for q~~~0. We also note that
the effect of the surface on the magnitude of the charge
buildup near the impurity [shown in dashes in Fig. 2(b)] is
short ranged: It is the same (on the scale of the figure) for

z& deeper than one angstrom into the metal. On the other
hand, the effect of the surface on the long-range lateral
oscillations is felt rather deeper into the metal. The impli-
cations of the above results for the lateral interaction be-
tween two charges placed in the surface region have been
given recently. '

In Fig. 3 we show results for the density induced along
the z axis for six different positions of the impurity, rang-
ing from "deep inside" the jellium (z~ ———7 A) to
z&

——1 A outside it. (In each case the location of the im-
purity is denoted by an arrow. ) For the sake of simplicity
we only consider the induced density averaged over the
x-y plane, n;„q(z), given by the equation

n;„d(z):—f d x~~ n;„d(x) =n;„d(q~~ ——0
~

z) . (3.9)

According to Eq. (3.6) the area under all the curves in
Fig. 3 must be the same. This is verified by our results to
high accuracy.

We would like to comment upon two features of the re-
sults shown in Fig. 3. First we note that, as found before
by other authors, ' the density buildup near the impuri-
ty becomes asymmetric, and the centroid of the induced
density lags behind the impurity, as this is moved out-
wards through the jeHium edge. We find that the centroid
of the induced charge is already within l%%uo of its
asymptotic value (corresponding to z, ~ oo ) for z, —3 A.
Second, we note the left-right asymmetry in the long-
range oscillations in n;„d(z). We remark that their ampli-
tude is largest when the impurity is at the jellium edge or
outside it. (Note the change in the scales used in the vari-
ous panels in Fig. 3.) Now the lateral oscillations shown
in Fig. 2 had their origin in the singularity of the response
function for

q~~
——2k+. In the present case we have set

q~I
——0. Since the long-range oscillations shown in Fig.

3(a) [and also in Fig. 3(b) for values of z to the left of the
impurity] have period m./kz, they must have their origin
in a singularity of the response function for q, =2kF,
where q, ( =nrem/d) —is an effective wave vector normal to
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the surface. It is very satisfying that we are able to bring
up this feature of the long-range screening density with
our thin-film calculation, in which we carry out a sum
(not an integral) over the discrete sequence of wave vec-
tors n~ld [cf. Eq. (3.4)].

We recall that the solution for the response function
given in Sec. II includes three numerical parameters (zo,s,„, and l~) which must be adjusted in such a way that
the computed observables are independent of the values
chosen for them. The results of Figs. 2—5 have con-
verged, on the scale of each figure, for zo ——1.5ao (where
ao is the lattice constant: ao ——4.05 A for aluminum),s,„=80 and l~ -—80. The most demanding part of the
computation is the long-range oscillatory regime. In the
case of the lateral oscillations shown in Fig. 2, there are
two complicating features: the above-mentioned cancella-
tion that obtains on adding the two panels of Fig. 2(a),
and the fact that the integrand in Eq. (3.2) decays rather
slowly for large values of q~~ (the upper limit of the in-
tegral has to be & ilk+ for convergence). For large q~~

(q~~ &&kF) electron "subbands" with l'&lM give a rela-
tively larger contribution to Eq. (2.19) than they do for
small q~~. If we require convergence of the long-range la-
teral oscillations to 1—S%%uo everywhere, larger values of
I~ than given above are required ( lM & 100).

Finally, in Figs. 4 and 5 we illustrate the effect ex-
change and correlation have on the screening density (and
thus indirectly on X) by comparing results obtained in the
LDF and RPA approximations. To be precise, what we
compare is the effect of using in Eq. (2.8) either the full
electron-electron interaction given by Eq. (2.9) (LDF) or
just the Coulomb interaction (RPA). In both cases we use
the same single-particle wave functions P&(z) in the com-
putation of X' ' [the solutions to Eq. (A7) with V,ff(z)
given by the Lang-Kohn surface potential]. Figure 4 cor-
responds to Fig. 2(b) for the case that z&

———2 A. Figure
5 corresponds to Fig. 3(a) for the case that z, =1 A. The
qualitative agreement between the results obtained in both
approximations is apparent. There are, however, quanti-
tative differences. For example, the position of the cen-
troid of the induced charge (which we denote by z„and
measure from the jellium edge) in Fig. 5 differs markedly
in both approximations: z, =0.61 A in LDF and z,
=0.45 A in RPA. For the case that z~ ——ao we find that
z, =0.84 A in LDF and z, =0.65 A in RPA. (Our LDF
result is in excellent agreement with the result obtained by
Lang and Kohn' for semi-infinite jellium with r, =2.)

Note that in the latter case z, coincides with the position
of the effective image plane, ' ' a quantity of importance
in physisorption studies and in the analysis of large-
angle, high-resolution electron-energy-loss spectroscopy
(EELS)

The above result illustrates the sensitivity of surface
screening to the physical model used in the evaluation of
the response function. Clearly, for quantitative purposes
a self-consistent response calculation (such as the one re-
ported here) is required.

IV. CONCLUDING REMARKS

We have obtained the static density response function
of a jellium slab in the LDF approximation. Our formu-

lation is straightforward to implement. The calculation of
physical observables is reduced to carrying out matrix
algebra on the computer on the basis of the knowledge of
the matrix X „(q~~) (which itself is obtained by matrix
methods). The overall accuracy of a given computation is
controllable, and any residual thin-film effects can be es-
timated. The accuracy (and the computer time) increases
as the values of the three numerical parameters intro-
duced by our formulation (zo, s,„,and lM ) are increased.
An example of the use of the. method was given in Sec.
III. Our method is currently being applied in a first-
principles computation of quantities that can be compared
directly with experiment, such as lattice relaxation at a
(simple) metal surface and surface-phonon dispersion rela-
tions. '4

We would like to note that the present paper has been
restricted to the study of the static electronic response by
our use of density-functional theory in obtaining the ex-
change and correlation contribution to the kernel of Eq.
(2.8) [and by our use of the wave functions P~(z) of
density-functional theory]. Recently several authors
have invoked an adiabatic ansatz that involves using static
response functions in the study of low-frequency interac-
tions near a surface, such as low-energy EELS and
damping of adsorbate vibrations. In a similar spirit
we plan to consider the use of Eq. (2.8) with X' ' given by
the full finite-frequency result obtained in the Appendix.
Since our method of solution of Eq. (2.8) proceeds in the
same way for co&0, we would then have a quasistatic
self-consistent density response function that could be of
use in the study of low-frequency dynamical surface pro-
cesses. In fact, very recently Liebsch has calculated the
lifetime of a vibrational mode of an adsorbate using simi-
lar ideas.
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APPENDIX: NONINTERACTING ELECTRON
RESPONSE FUNCTION FOR A METAL SLAB

Although the subject rnatter of the present paper is stat-
ic surface screening, in this appendix it is convenient to
begin by consider the dynamica/ response function for
noninteracting electrons, g' '(x, x'

~

co), defined at T =0 K
by the equation

X' '(x, x'
i
co)

V V

with f =2B(EF E„), where EF is the —Fermi energy,
B(x) is the unit step function, co is the frequency, and q is
a positive infinitesimal. The static response function
X'o'(x, x ) defined by Eq. (2.2) is given by the co=0 limit
of Eq. (Al), i.e.,
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(A2)

The single-particle wave functions g (x) and energy
eigenvalues E are assumed to be the solutions of the
Kohn-Sham equation'

r

g2
V + V,rr(x) =E,g„(x),

2m
(A3)

where the effective potential V,rf(x) is given by
I

V ff(x) =v(x)+e f d x', + V„,(x) . (A4)
fx —x'

In Eq. (A4) v (x) is the potential for the interaction with
the ionic background (in the present work modeled by a
jellium), the second term is the electrostatic energy, and
V„,(x) denotes the exchange and correlation potential. In
the present work the local-density approximation for
V„(x) is adopted. ' For the exchange potential we use
the local Slater approximation reduced by a factor of 3,
and for the correlation potential we use the local Wigner
interpolation. '

It is to be noted that only for co=0 is the use in Eq.
(Al) of the solutions to the Kohn-Sham equation strictly
legitimate. The static response function is, according to
density-functional theory, a functional of the electron
density n (x) and thus of the wave functions g„(x) ob-
tained solving Eqs. (A3) and (A4) self-consistently. A
rigorous extension of density-functional theory to dynami-
cal response remains an outstanding problem. (A
phenomenological approach was given some time ago by
Ying. ')

In the jellium model for the periodic background the ef-
fective potential depends only on the coordinate normal to
the surface, i.e., V,rf(x) = V,rr(z). Hence, the motion of an
electron in the plane of the surface [the plane (x,y)] com-
pletely decouples from its motion along the z axis, and we
have

and

g 1/2 (A5)

Ak
E = +II

2m
(A6)

where the wave functions P&(z) and energy eigenvalues e~
are the solutions of the one-dimensi. onal equation

d + V ff(z) Pj(z) =el'~(z)
2m

(A7)

~'"(e(( ~ Iz z') =g g +n(e~~, ~)4l(z)Pp(z)pg(z')QI (z'),
1=1 1'=1

where we have made the definition

(A8)

with l =1,2, 3, . . . . We note that the I/I(z)I are real.
In the jellium model we can introduce the reduced

response function J' '(q~~, co
I
z,z'), defined by an equation

of the form of Eq. (2.7). Making use of Eqs. (A5) and
(A6) in Eq. (Al) we are led to the result

1 1 1
FIr(t~~ ~)= — Xf»

(fz«)qual. k~l+az (qI~~ )+~+&& (&«)q~~'k~~+ zz (V~&—
+

~ll

(A9)

with

1
aa(e~~) =

V~~ (el
2m

(A 10)

Three features of the representation of P' '(q~~, co fz,z')
given by Eq. (A8) are noteworthy. First, the dependence
on z and z' is separable. Second, the notation used em-
phasizes the fact that in this paper we work with a slab of
finite (in practice, rather small) thickness, for which the
spectrum of levels for motion normal to the surface is
discrete. Third, whereas the sum over the index / runs
over occupied energy levels only (we have denoted by lM
the highest occupied level), the sum over the index l' runs
over both occupied and unoccupied levels. In practice the
upper limit of the latter sum (denoted by lM in Sec. II) is
increased until the physical results converge to a desired
accuracy.

We note that an alternative representation for
X' '(q~~, co

f
z,z') can be obtained by expressing the infinite

sum over I' in terms of the outgoing and incoming
Green s functions associated with the single-particle Ham-
iltonian of Eq. (A7). ' The advantage of such represen-
tation is that it involves a sum over occupied levels only.
However, for the applications considered in the present

2&l—+
[~2 (p~& )211/2

where a and p are real and we take the branch cut of the
complex square root along the negative real axis. Making
use of Eqs. (Al 1) and (A12) in (A9) we are left with the
evaluation of a one-dimensional integral over k which

Ifturns out to be elementary. We thus obtain the following
explicit result for the electron-hole pair kernel (A9) for
l &l~, l'& ~..

27r

d8
u cos8+ p+i rj

I

work the number of unoccupied levels required is not
exceedingly large. Furthermore, in the representation
(2.19) for the wave functions P~(z) it is straightforward to
obtain any number of unoccupied states once the effective
potential V,rr(z) has been obtained. Thus we adopt Eq.
(A8) on account of its formal simplicity.

We replace the sum over k~~ in Eq. (A9) by an integral
by the usual prescription

2

off

With the change of variables u =e', and carrying out a
contour integral over the unit circle we can show the re-
sult that
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2
2 2

2
22au (q~~ )+t 2 q~~kt

—[aii (q~~ ) c—o i—ri]
q II

1/2
fi2

, q~~kt [—au(q~~)+~+iq] 2

' 1/2

(A13)

where we have made the definition
1/2

2E72
kj = (EF el )

Q2
(A14)

We note that in the derivation of Eq. (A13) we have not
required that g be infinitesimally small, as it indeed is in
the collisionless regime considered in this paper. Now, a
finite value of q cannot by itself be associated with col-
lisional damping. In order to incorporate collisions in a
conserving approximation, one could adapt to the present
problem the relatively simple relaxation-time approxima-
tion recently used by Yi and Quinn in the case of a
quasi-two-dimensional electron system.

u (qll ) +u'(q~~, to =o»

we have «r
I au'(qll)

I
&(fiq~~/m)kl

2'
+u(q(~) = —

u (q(~ )~'q'
and, for

~
au (q(()

~

) (fiq)) lm)kt,

(A15)

(A16a)

Equations (A8) and (A13) give the result for the
electron-hole bubble for a jellium slab used in Ref. 22. In
the present paper what we need is the static hmit of Eq.
(A13). Taking the limits q —+0+, co~0 [recall that the
branch cut of the square roots in Eq. (A13) is taken on the
negative real axis], and introducing the definition

+u (q)() =—
T

2m 2 &' ZZ

qual

au'(q)[) g [ u'(q[( )1 au'(q~~ ) — q ~~kt
m

1/2

(A16b)

where sgnx =+1 for x &0 and —1 for x &0.
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