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Local-environment model for percolation in amorphous Mo-Si alloys
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A local-environment model is employed to determine whether the chemical short-range ordering,
observed in some amorphous materials, can influence the metal-nonmetal transition that occurs as a
function of composition when a metal is alloyed with an insulator or semiconductor. The model
uses as its basic structural unit clusters with different short-range order. Both the case of random
occupancy of sites within the cluster and of chemically driven diffusion of atoms between the clus-
ters are considered. Though the threshold for the transition is different in the two cases, the concen-
tration dependence of the conductivity above the threshold is similar. The model provides a rela-
tionship between the volume fraction of the material that is conducting, f„,and the concentration of
conducting atoms, 1 —x. With the use of this relationship, the result from percolation theory that
the conductivity is proportional to (f, f„,)'s wh—ere f„ is the percolation threshold can be ex-

8'
pressed as (x,—x) ' where t,ff, which is less than 1.8, is an effective percolation exponent. With
the use of a cluster size n =40, the predicted concentration dependence of the conductivity is very
different from the predictions of classical percolation theory and is in agreement with experimental
results on amorphous Mo-Si alloys. For n =40, t,f~ is approximately equal to 0.5.

I. INTRODUCTION AND MOTIVATION o =~ro(p pc) ~ p &pc

The atomic arrangement of amorphous films of pure
elements prepared by vacuum deposition on low-
temperature substrates' and of some metal-metal amor-
phous materials can be fairly well described by the dense
random-packing model. The atomic arrangement is less
random in metal-metalloid (Si, Ge, As, 8, and P) amor-
phous alloys because of the charge transfer between the
metal and metalloid atoms which results in strong metal-
metalloid bonds that tend to inhibit the metalloids from
being nearest neighbors of one another. Further evidence
of the importance of local environment effects is provided
by the fact that theoretical models of the probability dis-
tribution of the number of near neighbors in Fe-8 glass
alloys sharpens near the middle of the known composition
range. This composition is close to the eutectic composi-
tion of 17 at. % B. This narrowing of the probability dis-
tribution suggests that a more stable structure is favored
by more uniform short-range order. Thus, these metal-
metalloid glasses exhibit clear evidence of chemical
short-range ordering effects. Such effects are even more
important in amorphous insulators and semiconductors
where coordination number, covalent bonding angle, and
bond-length requirements are approximately satisfied.
For example, the results of Raman scattering measure-
ments on amorphous SiS2 and SiSe2 have been used to
suggest that these materials possess not just short-range
order, but also medium-range order.

Here we shall consider how these chemical effects alter
the metal-nonmetal transition that occurs in an alloy of a
metal and a nonmetal when the concentration of the me-
tallic species is reduced below a critical value called the
percolation threshold. Above this threshold the electrical
conductivity o. at T=0 K is predicted to be given by

where p is the occupation probability of conducting sites
and p, is the value of p at the percolation threshold. This
equation has been applied with different values for p, and
t to very different physical situations. For example, it has
been used to describe the conductivity of a three-
dimensional mixture of conducting and insulating spheres.
In this case classical percolation theory applies ' and t
is approximately equal to 1.8. In classical percolation
theory the value of t depends on the dimension of the sys-
tem. This paper treats three-dimensional systems. On the
other hand t should not depend upon such details as the
lattice symmetry or even whether the material is crystal-
line or amorphous. This insensitivity to the details of the
system near the percolation threshold is called universality
and arises, as in the case of a thermodynamic phase tran-
sition, because there is a characteristic length which
diverges at the transition.

The situation in which one must include quantum ef-
fects as well as disorder is described as Anderson localiza-
tion. In this case, if interaction effects can be neglected, t
is predicted" to be approximately equal to 1.0. The
percolation-localization crossover near the percolation
threshold has been treated using scaling by Gefen et al. '

and Shapiro. '

Experimentally one finds that different values for the
parameter p, and the exponent r are observed in different
systems. For example, in experiments on quenched films
of Ar-La mixtures' it was observed that p, =0.15 and
t=1.6. These values are in approximate agreement with
the predictions of classical percolation theory. Higher
values for p, of approximately 0.5 have been observed' "'

when a metal is codeposited with an insulator and phase
separation occurs. The exponent t was measured' at very

31 3296 1985 The American Physical Society



LOCAL-ENVIRONMENT MODEL FOR PERCOLATION IN. . . 3297

4. 0

I

E
0

I

C 3.0

0.5
0.6

0.8

2. 0
0.2

1—X

0.8

FIG. 1. Comparison of the 1og~p of the experimental conduc-
tivity of a-Mo-Si at 294 K (0) and at 25 K ( + ) with curves cal-
culated using Eq. (1) with t=0.5, 0.6, 0.8, 1.0, 1.2, 1.6, and 1.8.
The curves have been normalized to agree with experiment at
1 —x=0.7. Classical percolation predicts that t=1.8.

low temperatures to be 0.5 in phosphorous-doped Si and
to be 1.0 in amorphous Nb-Si alloys" and Gd3 «v~S4
(Ref. 19) where v stands for vacancies. Further t is larger
than predicted by classical percolation theory in some sys-
tems, such as quenched films of certain alkali-metal al-
loys, where values as large as 3 have been observed.
Note, however, that some of the differences in the values
for t discussed above may be due to the fact that t was
determined in different temperature ranges.

In amorphous Mo-Si alloys ' (a-Mo-Si), the metal-
nonmetal transition may be altered by chemical effects.
Figure 1 shows a comparison of the 295 and 25 K con-
ductivity of amorphous Mo& „Si~ with the prediction of
Eq. (1) for t=0 5, 0..6, 0.8, 1.0, 1.2, 1.6, and 1.8. The
theoretical curves have been normalized to agree with ex-
periment at 1 —x=0.7. One sees that the transition is
more abrupt than predicted by classical percolation
theory, i.e., with t=1.8. The data is much better fitted
using a value of 0.5. It is unlikely that this small value is
due to Anderson localization. Normally Anderson locali-
zation is only observed at very low temperatures where
the inelastic scattering length becomes very long. An al-
ternative possibility is that local chemical environment ef-
fects are responsible for reducing the effective value of t.

In examining this possibility it is useful to consider the
Mo-Si phase diagram. Since this diagram shows a rela-
tively deep eutectic and a very stable congruently melting
compound, MoSi2, it is clear that chemical effects are
very important in this system. In a-Mo-Si the bonding
and the number of electrons that the Si atoms contribute
to the conduction band probably depend upon the local
environment. Information about the Si contribution to
the conduction band can be obtained from superconduct-
ing transition-temperature measurements ' by using the
results of Collver and Hammond. They found that the
superconducting transition temperature T, of many
amorphous superconductors could be fitted by the same
function of the electron per atom ratio, e/a. Figure 2
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FIG. 2. Comparison of the experimental superconducting
transition temperatures T, of a-Mo-Si with the electron per
atom e/a dependence (solid curve) that is satisfied by many
amorphous superconductors. (See Ref. 23.) The e/a values
were obtained by assuming that Mo and Si contribute 6 and 4
electrons, respectively, to the conduction band.

compares the measured T, of a-Mo-Si for x ~ —, with
their function. The e/a values for a-Mo-Si were comput-
ed by assuming that the Mo and Si atoms contribute 6
and 4 electrons, respectively, to the conduction band. One
sees that with this assumption, the measured T, of a-
Mo-Si agrees with their function. For x ~ —', , the mea-
sured T, drops abruptly to zero. Thus, for x & —', most Si
atoms probably contribute several electrons to the conduc-
tion band.

The model uses a more specific assumption about local
environment effects. It assumes that local regions in
which —,

' or more of the atoms are Mo atoms are metallic.
Further evidence for the assumptions made concerning lo-
cal environment effects is provided by x-ray measure-
ments ' in the metallic regime of amorphous Mo& „Si„.
These measurements show that the local environment
smoothly evolves with increasing x until x=0.63. Since
this is nearly the Si concentration in the metallic com-
pound MoSiz, it is possible that the local environment
evolves in the metallic regime with increasing x until it
resembles crystalline MoSiz. If this occurs, it is relevant
that photoemission spectroscopy on crystalline MoSi2
shows that Si p states are deep in the conduction band and
the Fermi level lies on the high-energy side of a Mo d-
band peak. Band-structure calculations on refractory
metal silicides show that Mo d states hybridize with
lower-lying Si p states to form bonding complexes.

Here we include chemical effects in a model treating
the metal-nonmetal transition in a-Mo-Si to test whether
these effects can give rise to the small effective value of

ff discussed above. The model incorporates local envi-
ronment effects into classical percolation theory by as-
surning that the basic structural units in the material are
clusters of atoms. The basic entities entering into the con-
duction process are the clusters. and not the individual
atoms. Hence the percolation threshold is reached when a
sufficient fraction of clusters are conducting. %'hether a
given cluster is conducting or not is assumed to depend



3298 A. S. EDELSTEIN 31

upon its composition and thus the local environment. Us-
ing such clusters is very reasonable if phase separation
occurs. There is evidence, ' based upon transmission elec-
tron micrographs, that a-Mo-Si does phase separate for
x ) 3 into two amorphous phases, one metal lic and the
other resembling amorphous Si. In the absence of phase
separation the clusters can be viewed as a way of
representing regions with different local environment. It
should be noted that cluster models have been used previ-
ously ' to describe amorphous materials.

The three main conclusions of this study are as follows.
(1) The metal-nonmetal transition that occurs as a func-
tion of composition can become more abrupt, as discussed
above in the case of a-Mo-Si, when chemical effects are
important. (2) The abruptness of the transition increases
as the range of the short-range order increases. (3) For
the cluster size which best fits the data, the model's re-
sults are equivalent to a small value of approximately 0.5
for the effective exponent t,fr. To test whether these con-
clusions are sensitive to the specific form of the model,
two versions are presented. In one the composition of the
clusters is assumed to be completely random. In the other
chemically driven diffusion of atoms between the clusters
is included. Since the composition dependence of the con-
ductivity above the percolation threshold is approximately
the same for both forms of the model, all three main con-
clusions hold for either form of the model.

II. LOCAL ENVIRONMENT MODEL
WITHOUT DIFFUSION

The present model is, in part, based upon the ideas of
Gaskell and Gilman. Instead of using the dense
random-packing model mentioned above in which the
basic constituents are spherical atoms, they independently
suggested that the way to incorporate chemical short-
range order in transition-element —metalloid glasses was
to consider them composed of new structural units, which
are polyhedron with definite short-range order and bond-
ing arrangements. Here clusters of atoms, which are
analogous to their polyhedron, are used as the basic build-
ing blocks in a model for treating a-Mo-Si. The motiva-
tions for the model's assumptions incorporating local en-
vironment effects were discussed above. The assumptions
of the first form of the model are as follows.

(1) The amorphous material is composed of clusters of
atoms in which each cluster contains the same number of
atoms, denoted by N.

(2) Individual clusters are either primarily metallically
bonded and are treated as metallic, or primarily covalently
bonded and treated as insulators.

(3) A cluster is metallically bonded if and only if
m /N) —,, where m is the number of Mo atoms in a clus-
ter. If m/N& —,

' a cluster is covalently bonded. This as-
sumption is based on the idea that if (N —m)/N= —, is
the highest local Si concentration which supports metallic
bonding, then the replacement of a single Mo atom by a Si
atom in such a cluster will remove most of its metallic
character.

(4) Random occupancy is assumed, i.e., the probability
P(m, N, x ) that a cluster of size N has m Mo atoms is

P(m N x)= x' '(1 —x)~
m!(N —m )!

(2)
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FIG. 3. Conducting vo1ume fraction f„predicted by the first
version of the model, i.e., without diffusion, vs the Mo concen-
tration 1 —x for N=20, 40,80, 160.

(5) The volume V, (m, N) of a conducting cluster is ob-
tained from a linear interpolation between the end points
x =0 and x = —, assuming that their densities are 95%%uo

that of crystalline Mo and MoSi2. The volume of an insu-
lating cluster V~(N) is that of N-Si atoms having a density
95% that of crystalline Si.

(6) Classical percolation theory can be used to calculate
the conductivity o., i.e., o is given by Eq. (1) where we
chose t =1.8 and replace the variable p, the occupation
probability, with the volume fraction of the material that
is conducting f„. These two variables are equivalent in
the case of classical percolation if the metallic and insulat-
ing atoms are the same size and one assumes that they oc-
cupy all of the material. It should be noted that Scher
and Zallen found that the fraction of space occupied by
conducting atoms was the same at the percolation thresh-
old for different lattices and equal to 0.15, whereas the
percolation thresholds, expressed in terms of p, are very
different.

From these assumptions it follows that the conducting
volume fraction is given by

g V, (m, N)P(m, N, x)
f„(N,x)=

g V, (m, N)P(m, N, x)+ V;(N)QP(m', N, x)
m'

(3)

where N/3&m &N and 0&m'&N/3. The conducting
volume fraction f„(N,x) is plotted in Fig. 3 versus the
atomic concentration of Mo, 1 —x, for various values of

There is a large step in f„at x = —, that sharpens with
increasing N which is a consequence of assumption (3)
and the fact that large deviations from the average com-
position x becomes less likely with increasing X. Since
the step in f, occurs near x = —,', it is reasonable to choose
the percolation threshold, x„equal to 0.67. Making this
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choice and using Eqs. (1)—(3), the conductivity cr has been
calculated and plotted in Fig. 4 versus 1 —x for N=20,
40, 80, and 160. The curves have been normalized to
agree with the experimental conductivity of amorphous
Mo~ ~Si~ at 1 —x=0.7, T=295 K. As seen in Fig. 4,
the experimental results for the metal-nonmetal transition
in the high-conductivity region of interest here are only
slightly different at lower temperatures. The calculated
conductivity agrees approximately with the experimental
conductivity ' at T=295 K for 20 &X ~ 80. These
bounds on X correspond to amorphous Si clusters which
are between 9.3 and 15 A in diameter. One can use these
results to obtain a value for an effective exponent r, t,ff.
Suppose one considers using the variable 1 —x instead of
the variable f„ in an equation of the form of Eq. (1) with t
replaced by t' . By comparing the curves presented in
Figs. 1 and 4, one sees that for N=40, t,rf is approxi-
mately equal to 0.5.

III. LOCAL ENVIRONMENT MODEL
WITH DIFFUSION
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FIG. 4. Comparison of the model's predictions for the log&o
of the conductivity without diffusion with %=20,40,80, 160 as a
function of 1 —x with experimental data on a-Mo-Si at T=294
K, denoted by the symbol (o) and at T=25 K, denoted by the
symbol (+ ).

There are two reasons for considering an alternative
form of the model. First, one would like to investigate
the sensitivity of the predicted conductivity to the specific
form of the model. Second, in the first form of the
model, it is assumed that Mo atoms can exist in the insu-
lating phase in which the Si atoms are presumably co-
valently bonded in a tetrahedral arrangement. It is not
clear how one can incorporate Mo atoms in such a struc-
ture. For these reasons an alternative form of the model
is considered in which Mo atoms diffuse from covalently
bonded clusters. In this form the model's assumptions for
the probability distribution are the following.

(1) Before diffusion occurs each cluster contains N
atoms and their occupancy is random, i.e., it is given by
Eq. (2).

(2) Only Mo atoms from covalently bonded clusters dif-
fuse.

(3) Mo atoms diffuse from covalently bonded clusters
containing m Mo atoms and n Si plus Mo atoms if the
probability of finding such a cluster P(m, n, x) is greater
than some allowed probability A.

(4) Mo atoms diffuse first from the most unstable
(lowest value of m /n) clusters with P(m, n, x ) greater
than A to any of the more chemically stable clusters with
an equal probability. Once the process of diffusion from
a given type of cluster begins, it continues to completion
through the sequence m ~(m —1)—+(m —2)~(m —3)~. . . —+Q.

(5) Diffusion occurs from all clusters with a given m
before it begins on the next higher value of m.

To compute the conductivity from the distribution after
diffusion has occured, assumption (6) in the first form of
the model is used and assumption (5) for the volume of
conducting and insulating clusters is generalized to in-
corporate the variable cluster size. Assumption (3) is
made to prevent the matrix P(m, n, x), which is used to
describe the probabilities at fixed x, from becoming too
large. This difficulty does not arise for small values of X.

Physically one can interpret A as allowing Mo to exist in
covalently bonded clusters. This situation, which is a
higher level of metastability, would be important if the
chemical driving energy is less than the diffusion barrier.
In the limit 2 ~1, no diffusion occurs. In calculating all
the results presented below, A was kept equal to 0.04.
Figure 5 shows the region in the m, n plane where dif-
fusion occurs. In this figure the clusters diffuse along
diagonal trajectories. The region that is labeled as the
stable region indicates the region containing the metalli-
cally bonded clusters which never lose Mo atoms. In this
region, the trajectories are only in one direction. A single
step in the diffusion process, which reduces the probabili-
ty of occupancy of the cluster m, n to 0, affects the proba-
bilities as follows:

FICx. 5. Region in the m, n plane where diffusion occurs.
The clusters are distributed along the horizontal line n =N be-
tween the points (0, N) and (N, N) before diffusion occurs. The
clusters in the stable region can only gain Mo atoms. The
cluster's move is along diagonal trajectories.
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FIG. 8. Comparison of the predicted composition depen-
dence of the log~o of the conductivity o. above percolation
threshold with (solid curve) and without (symbol O) including
diffusion for %=15 and 45. For both cases the threshold is
maintained at x =0.67-.

tration dependence above threshold may be insensitive to
the details of the model and may depend primarily on the
size of the clusters. As discussed in the Introduction, it is
natural to use such a cluster model if phase separation
occurs. There is evidence ' that for x &0.67 amorphous
Mo-Si phase separates into an amorphous metallic phase
and a covalently bonded phase. In the absence of phase
separation the clusters can be considered as regions with
different local environment. It should be noted that a re-
lated system, amorphous Mo-Ge exhibits a very different
metal-nonmetal transition from the one described here.
Specifically, in amorphous Mo-Ge alloys the metal-to-
nonmetal transition is more gradual and occurs at low
concentrations Thi.s is consistent with chemical effects
being less important in this system. That these effects are
smaller is not surprising since the Mo-Ge phase diagram
shows only peritectic compounds, none of which are as
stable as MoSiz. Furthermore this system has no eutectic.
Another difference between these two systems is the
theoretical heat of formation of alloys based upon the
Miedema model. Figure 9 shows a plot of this theoreti-

FIG. 9. Theoretical heat of formation vs Mo concentration
1 —x for Mo-Si and Mo-Ge. Also shown is the heat of forma-
tion of' MoSi2.

cal latent heat for the Mo-Si and Mo-Ge systems. One
sees that, as expected, the negative heat of formation for
1 —x near 0.6 is much larger for Mo-Si than it is for Mo-
Ge, but not as large as the heat of formation of MoSiz.
In addition for both systems, the heat of formation is
predicted to be large and positive for dilute Mo concentra-
tions. Thus there is a tendency for phase separation in
this concentration region. Local chemical environment
effects could be important in the quenched films of alkali
metal films discussed in the Introduction, but it is diffi-
cult to see, using the present model, how one can obtain
values for the effective exponent t,fr which are greater
than 1.8.
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