
PHYSICAL REVIEW B VOLUME 31, NUMBER 6 15 MARCH 1985
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and density-functional eigenvalues
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We derive asymptotically exact results for the charge and spin densities far away from finite sys-
tems (atoms and molecules) and far outside solid surfaces. These results are then used to obtain the
correct asymptotic form of the exchange-correlation potential of density-functional (DF) theory and
to prove that, for all systems, the eigenvalue of the uppermost occupied DF orbital equals the exact
ionization potential. For spin-polarized finite systems we show that the uppermost DF eigenvalue
in each spin channel is also given by exact excitation energies.

I. INTRODUCTION

Density-functional (DF) theory as formulated by
Hohenberg, Kohn, and Sham' is, in principle, an exact
scheme of the ground-state properties of electronic sys-
tems. The main problem within this theory lies in finding
adequate approximations for that functional of the parti-
cle density that describes the effects of exchange and
correlation. Fortunately, even the simplest possible, but
widely used, local-density (LD) approximation produces
very useful and quantitatively accurate results for the
ground-state properties of solids. The great appeal of DF
theory lies in the fact that it leads to an effective one-
particle scheme, which makes it computationally feasible
to treat exchange and correlation effects in quite compli-
cated systems. It has often been stressed in the literature
that the resulting one-particle energy eigenvalues are not
be identified with excitation energies. Nevertheless, the
majority of all photoemission spectra are interpreted in
terms of these eigenvalues, as they are obtained by the use
of the LD approximation. Therefore, it would clearly be
interesting to investigate the limitations of such interpre-
tations. Unfortunately, very little theoretical work has
been done towards this end. Only recently, in two review
articles, ' has the importance of such research been em-
phasized. In this context we can clearly identify two is-
sues: (i) the relations between the exact excitation energies
and the one-particle eigenvalues of the exact DF theory,
and (ii) the effect of the LD approximation on the DF
eigenvalues. In the present paper we will address the first
issue and will limit ourselves to finite systems, except for
an analysis of the effective one-electron potential far out-
side a solid surface.

We will show here, for the first time, that, for any sys-
tem, the uppermost occupied DF eigenvalue is identical to
the exact ionization potential. Our proof makes use of the
fact that the effective one-particle scheme of DF theory
gives the exact ground-state charge density, whose
behavior far away from the system is, therefore, deter-
mined by the highest occupied DF eigenvalue. Quite in-
dependently of DF theory, we then derive the same
asymptotic form of the density directly from the many-
electron Hamiltonian and find an exponential decay with
an exponent simply related to the ionization potential.

This allows us to identify the latter with the uppermost
occupied DF eigenvalue. The correct exponential decay
of the density has been known for some time, ' but the
connection to the one-particle eigenvalues has not been
made earlier. Our method actually gives the exact asymp-
totic form of the density matrix. We find this result quite
interesting per se. For instance, a slight modification of
our technique allows us to conclude that most ground-
state properties such as the natural orbitals or the density
response function have a characteristic decay length far
away from the system which is given by the ionization po-
tential.

The asymptotic expansion of the density can be carried
out further in order to include terms of higher order in re-
ciprocal distance. This enables us to show for the first
time that the exact exchange-correlation potential U„has
the asymptotic form that one would expect from classical
arguments. We use a similar technique to show that U„,
far outside a solid surface is given by the classical image
potential. This result has independently been obtained by
Langreth using an entirely different method based on an
exact expression for u„, in terms of the pair-correlation
function, and by Sham using yet another technique.

In Sec. II we demonstrate the basic ideas by deriving
the exact asymptotic form of the density profile, and of
v„„for a finite system with a nondegenerate ground state.
In Sec. III we generalize to spin-polarized systems, and
show that for systems having a single electron outside
closed shells (such as Na), the uppermost DF eigenvalue
of the majority-spin channel gives the ionization potential,
whereas the uppermost DF eigenvalue of the minority-
spin channel gives an excitation energy corresponding to
the lowest possible final (X—1)-electron state of triplet
symmetry. Once the basic ideas have been understood, it
is relatively easy to apply them to more complicated cases,
such as systems with higher spin and orbital degeneracies.
Solid surfaces are considered in Sec. IV, and in Sec. V, fi-
nally, we give some concluding remarks.

II. SYSTEMS WITH A NONDEGENERATE
N-ELECTRON GROUND STATE

We first introduce a general theoretical and notational
framework, and then specialize to finite systems with a
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nondegenerate ground state. Throughout this paper we
consider nonrelativistic systems without spin-orbit in-
teractions. We write the many-electron Hamiltonian in
second-quantized form:

H= f dx hatt(x)[ ——,
'

V +w(x)]g(x)

+ —,
' f dx f dx'gt(x)gt(x')v(r r')P—(x')P(x) . (1)

In Eq. (1), x is shorthand for a space variable r and a spin
index 0 (o =+1), f dx =g f d r, g(x) is the
electron-field operator which annihilates an electron of
spin o. at the point r, v(r) =1/r is the Coulomb interac-
tion, and w(x) is the "external" potential which, in our
case, is the spin-independent potential from the nuclei.
We use atomic units, i.e., we choose 5=m =e /
(4~&o)= 1.

We also write the' spin-density matrix y(x, x') in
second-quantized form,

We now specialize to finite systems with a nondegen-
erate N-electron ground state. Since this ground state
(

~
N)) is a singlet, the (N —1)-electron state P(r, o)

~

N)
has spin S = —,', Ms ———o/2. Consequently, we only need
to consider states of this spin in our analysis of the quasi-
particle amplitudes [Eq. (6)]. We first consider the case
when the (N —1)-electron ground level only has the obvi-
ous twofold spin degeneracy.

For later applications it will prove convenient to
subtract the ( N —1)-electron ground-state average

(N —1
~

VIr
~

N —1) from the Hartree potential operator
VH in Eq. (6) and write the last term as

(N —l, s
~

VH(r)y(r, cr)
~

N)

= (N —1
~

VH(r)
~

N —1)f, (r,~)+R,
where R involves

y(x, x') = (N
i
Pt(x')P(x)

~

N ), (2)
5VH(r)= V~(r) —(N —1

~
V~(r)

~

N —1) .

~
N) being an N-electron ground state. When

~
N) is an

eigenstate of the spin operators S and S„y(x,x') is diag-
onal in spin indices:

The explicit form of R is

R =f d r'v(r —r')(N —l, s ~5p(r')P(r, o)~ N.),
where

(10)

y(x, x') =g f,(x)f,*(x'), (4)

where

f, (x)= (N —1, s
i g(x) i

N ) .

The matrix elements f, (x) are usually termed quasipar-
ticle amplitudes. These amplitudes are the counterparts
for an interacting system of the one-electron orbitals in
the case of a noninteracting system. They satisfy a
Schrodinger-like equation which we now derive. We form
the commutator [g(x),H] and take matrix elements be-
tween the states

~
N) and

~

N —1, s). This gives

[——,
'

V +w(x)]f, (x)+&N —I»
I

VH(rW'(» IN)

y(x, x') =y (r, r')5

We let s enumerate the set of (N —1)-electron eigenstates

I ~

N —1, s) I, and insert these states in Eq. (2) to obtain

5P(r) =p(r) —(N —1
~
p(r)

~

N —1) .

The probability of finding an electron far away from a
finite system decays exponentially with distance. Thus,
we can confine the r integration in Eq. (10) to a finite re-
gion, which allows us to make a multipole expansion of
the Coulomb interaction v(r —r'). The monopole term
vanishes since the state P(r, o)

~
N) contains N —1 elec-

trons. The leading-order term is thus the dipole term, and
we have

R —,(N 1, s g.dg(r—,~)
~
N)1

=, g(N —l, s ~r d~N l, s')f, (r, ~), —1

r

where

d= f r5p(r)d r

where

eg E(N) E(N —1,s)— —

fe, ( )x, (6) is the dipole-moment operator, and V=r/r is a unit vec-
tor. [The leading-order term will prove sufficient in order
to obtain the density to a relative accuracy O(r ).] We
insert this into Eq. (6) and find

is an exact one-particle excitation energy. In particular,
—Eo is the ionization potential. The operator

VH(r)= f d r'v(r —r')p(r')

[——,
'

V +w(r)+ (N —1
~

VH(r)
~

N —1) e, ]f(x)—
QD„f, (x)=0 .1

s'
(12)

gives the electrostatic Hartree potential, and

p (r) =g g~(x)g(x)—:g 5(r—r; )

is the electron-density operator.
For noninteracting systems, v (r) =0, and Eq. (6) prop-

erly reduces to an independent-electron orbital equation.
If

~
N) and

~
N —l,s) are approximated by Slater deter-

minants, Eq. (6) becomes a Hartree-Fock orbital equation.

In Eq. (12) we have used D„as shorthand for the dipole-
moment matrix elements,

D (r)=r (N —l, s idiN —l, s') .

Without the inhomogeneous term in Eq. (12), the quasi-
particle amplitudes f, (x) would decay as exp( —a; r),
where

a; =(—2e, )'~
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We notice that K, & Kp when s &0, and that
Kp/2=E(N —1)—E(N). Thus, without the inhomogene-
ous term all amplitudes except the ground-state amplitude
(fp) would decay exponentially faster than exp( Kpr—)
when r~ oo. For an excited-state amplitude f„the inho-
mogeneous term in Eq. (12) contains fp, and the decay of
f, is instead determined by fo. Thus, all terms decay as
exP( —Kpr).

In order to obtain an asymptotically correct equation
involving only the ground-state amplitude fp, we need a
leading-order estimate of the excited-state amplitudes f, .
Since these amplitudes decay exponentially as exp( Kpr—),
we have, to leading order,

( ——,&'—e, )f, (x) -(ep —e, )f,(x) .

Furthermore, for large r the external potential w from the

nuclei and the Hartree potential (N —1
i V~ i

N —1) can
be dropped in comparison with e0—e, . This gives

1 D.of,(x)- —
z fp(x),

r Q)s

where

(15)

co, =E(N —1, s) E(N——1)

is an excitation energy of the (N —1)-electron system. In-
serting this into Eq. (12) for the ground-state amplitude
gives

(e, —ep)f, (x)- QD„f, (x)1

s'

1
Dso fo(x), r~oo

r 2

where the terms coming from excited-state amplitudes in
the inhomogeneous part can be dropped since we see that
these amplitudes are down by a factor r relative to the
ground-state amplitude fp. Thus,

——,
' V' +w(x)+(N —1

i
V&(r) i

N —1)——

4 gr;rza~ fp(x)=epfp(x)
1&J

(16)

to order r ". We have here expressed the term

1 g Dp,f,(x)-—
r s)0

ID,oi'
fp(x)

s

(17)
In the expression above, i and j denote Cartesian com-
ponents and r; is a component of the unit vector r.

For spherically symmetric systems (atoms),

(N —1
i VH(r) i

N —1) is, to exponential accuracy, equal
to (N —1)lr, and a,&. is diagonal, a;J =a5;J. Equation
(16) then simplifies to

—Z+% —1——V+ r
fp(x)=eo fo(x) .

2r4

The asymptotic density matrix may now be written. It
follows from Eqs. (4) and (15) that

y( ,xx)=f ( o)fxp( x)[1+O(r r' )] . (l8)

It is not difficult to see from Eq. (16) that

fp(x) Cr~e —( 1+A ir +Azr

+A3r +Agr + ), (19)

where p=(ZN N1+)! Kol and —Z& is the total charge
of all nuclei. The coefficients A i

—Aq are uniquely deter-
mined by the nuclear and Hartree potentials, and by the
ground-state polarizability a,j of the ( N —1)-electron sys-

tem. (In general, A; depends on the angular coordinate V.)

in the static ground-state polarizability of the (N —1)-
electron system,

(N —1 id; i
N —l, s)(N —l, s

i dj i
N —1)

Agj. =2

+E„,[n]+f dx n (x)w (x), (20)

with respect to n while keeping the external potential m

and the particle number N fixed. Here, the functionals

Tp and E„,give, respectively, the kinetic energy of nonin-

teracting electrons and the exchange-correlation energy,
and p(r)=g n(r, cr) is the electron density. The varia-

tions of E„, with spin-dependent density defines the
exchange-correlation potential U„, according to

5E„,=f dx v„,(x)5n (x) . (21)

As is well known, the minimum of E [n, w] is found from
the orbital equations

[——,
' V' +w(x)+ VH(r)+ „u, ( x)]y;( x)=e;q&(x), (22)

where VH is the electrostatic Hartree potential from the
ground-state electron density p,

In the derivation above we assumed that the asymptotic
behavior of the right-hand side (rhs) of Eq. (12) is deter-
mined by the term which has the slowest decay, i.e., by
the term which involves fp. This involves some con-
siderations concerning mathematical rigor, which will be
discussed in more detail in Sec. IV.

The correct exponential decay [i.e., the exponential pre-
factor in Eq. (19)], was obtained in 1975 by Levy, and
later, and independently, by Katriel and Davidson. An
approximate result has also been found by Morrell et al. 'o

We now discuss the implications of the above results to
DF theory. According to this theory the ground-state en-

ergy and spin-dependent density n(r, cr) [=y(ro, rcr)] of
the interacting many-electron system are obtained by
minimizing the functional

E[n,w]= Tp[n]+ —,
' f d r f d r'p(r)p(r')u(r —r')
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yx(x)=fp(x)[1+0(r )] . (24)

By comparing the orbital equations for y; [Eq. (22)] and
for fp [Eq. (16)], we further find that

e~ =ep=E(N) E(N —1)— (25)

and I e; I are the DF eigenvalues. We label the orbitals y;
such that e; (e;+ t. The spin density is obtained from the
self-consistent solution of Eq. (22) by summing the contri-
bution from the N lowest DF orbitals,

n(x)=g
~
q&;(x)

~
(23)

1

We now focus our attention on the density-functional
eigenvalues [e; I in Eq. (22). Obviously, a discussion of
these eigenvalues would be meaningless unless the zero of
potential energy is defined. From Eq. (21) it follows that
variations in the density that keep the particle number
fixed only defines v„, to within a constant. Here we fol-
low the normal convention and fix this constant by choos-
ing u„, to be zero at infinity.

In contrast to the quasiparticle amplitudes, the decay of
the DF orbitals is governed by their respective eigen-
values. Thus, for large r, we may, to exponential accura-
cy, keep only the contribution from the uppermost orbital,
y~(x), to the density n(x). From the two different ex-
pressions for the density in Eqs. (23) and (18), we con-
clude that

to order r when I ~ oo. This concludes our proof for
the case when the (N —1)-electron ground states form a
spin doublet without orbital degeneracies. The polariza-
bility term in U„ is the same as that one would anticipate
on the basis of simple classical arguments (see, e.g., Refs.
4 and 5). The first term in Eq. (26) describes the Fermi
hole and gives, to leading order,

v„,——1/r, r~no .

For the special case of an atom with orbitally nondegen-
erate (and thus spherical) N and (N —1)-electron ground
states, such as Mg and Mg+, U„assumes the simple form

(27)

We conclude this section by sketching the theory for
the case of orbitally degenerate (N —1)-electron ground
states. We assume a g-fold orbital degeneracy in addition
to the twofold spin degeneracy and write the (N —1)-
electron ground states with Ms —— o/2 as—

~

N —1, 0, a)
and the corresponding quasiparticle amplitudes as fp~.
The analysis can be carried out along rather similar lines
as before. We find that, to leading order in 1/r, the
excited-state amplitudes are given by

S
f, (x)—— QD, p~fp (x) .

~ ~s

Inserting this expression in the orbital equation for the
ground-state amplitudes [cf. Eq. (12)] gives the following
g&g matrix equation for these amplitudes (fp~) in place
of Eq. (16):

v„,(r)= (N —1
~

VH(r)
~

N —.1)—(N
~

VH(r) ~N)

1

4 ~ I"g T~CXg~
2p ij

(26)

[—,' V + w (r) —ep]fp (x) +—g U p(r)fpp(x) 0,
P

where

(28)

1 1 —I',U(rr)=( V —)1,0, a Vrr)r) — d r d r N —), O, P}2r4 H E(N —1)—

y(x, x')=g fp, (x)fp, (x')[1+0(r ~r' 2)] .
1

(30)

Upon comparison with the DF orbital equations, we find
that e& ——eo. %'e also obtain an asymptotic expression for
u„, correct to order r . To leading order, u„,= —1/r, as
in the orbitally nondegenerate case. In Appendix A we
give further details on the construction of U„, in this case.

only involves (N —1)-electron ground-state matrix ele-
ments of the Hartree potential and the static polarizabili-
ty. [In Eq. (29), I' is the projector on the g (N —1)-
electron ground states with spin M~ ———cr/2. ] As before,
Eq. (28) determines the ground-state amplitudes to within
a relative accuracy r (inclusive). To leading order,
fp (x)=r~exp( ~pr) Th—e asym. ptotic spin-density ma-
trix is, in this case,

III. FINITE SPIN-POLARIZED SYSTEMS

We now indicate how our results may be generalized to
the case of spin-polarized ground states. As an example
we consider the case when the X-electron ground states
form a spin doublet without any orbital degeneracy. The
systems we have in mind have one electron outside closed
shells. More general cases, such as systems with higher
spin and orbital degeneracies, are readily analyzed along
similar lines as the prototypical case considered here.

%"e quantize the spin along the z direction and study
the ground state

~
N) with Ms ———,'. From the commuta-

tion relations between the electron-field operator and the
spin, one finds that the state g(r, —1)

~
N ) is a triplet,

whereas the state g(r, 1)
~

N) is a mixture of singlet and
triplet states with Mq ——0. Since the Hartree potential
operator VH(r) conserves spin, only triplet states with
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Ms ——1 are involved in the analysis of Eq. (6) for the
quasiparticle amplitudes f, (r, —1) for down spin, while
both triplet and singlet states enter in the equations for
the amplitudes f, (r, +1) for up spin. Since we assume
that the ¹ lectron ground state has one electron outside
closed shells, the (N —1)-electron ground state has S =0.
Equation (6) for the majority-spin channel o =1 generally
involves the (N —1)-electron ground state and can be
analyzed by the same methods as used above. Since the
(N —1)-electron ground state is nondegenerate in this
case, the asymptotic spin-density matrix y+(r, r ) in the
majority-spin channel is given by Eqs. (16) and (18). We
also find that the uppermost DF eigenvalue e+ in the'

majority-spin channel equals the ionization potential,

we now discuss the special case of the Na atom and give
some numerical results taken from experiment. " Let us,
e.g., consider the Ms ———, ground state. The uppermost
occupied DF eigenvalue in the majority-spin channel is

e + ——E (11)—E (10)= —S.14 eV .

Furthermore,

v„+,(r) ——1/r a/—2r, r~ &n

a being the ground-state polarizability of the Na+ ion.
The lowest triplet state of this ion is the state

~
(2p 3s) P). Consequently, the highest occupied DF

eigenvalue in the minority-spin channel is given by

e+ E(N)——E(N ——1), (31) ez E(11——) —E [10, (2p 3s) P] = —38. 11 eV .

y (r, r') - (rr')~ exp[ K(r +r')], —
where

K = [2[E(N —1, S =1)—E(N)] j'i

(32)

is given by the lowest triplet energy, and P =(Z„,
N+ I)/ K——1.
Upon comparing with the DF orbital equations [cf.

Eqs. (22) and (23)], we find that the highest occupied DF
eigenvalue e in the minority-spin channel is

e =E(N) E(N —1,S=1) .— (33)

When the lowest triplet states have no orbital degenera-
cies, u„,(r):—u„,(r, —1) is given by the counterpart to Eq.
(26),

r}IN

~ P'g P~ Ag~ ~ T~ 00
2r lJ

(34)

where
~

4} is an (N —1)-electron triplet state correspond-
ing to the lowest possible energy, and e,z is the corre-
sponding static polarizability. When the lowest triplet
states involve orbital degeneracies, U„, may be deduced to
order r 4 from the counterparts to Eqs. (28)—(30).

In order to illustrate the formal results presented above,

and that v„+,(r)=v„,(r, 1) is given asymptotically by Eq.
(26).

The quasiparticle amplitudes f, (r, —1) in the
minority-spin channel can also be worked out by essential-
ly the same methods as before. Since in this case only
( N —1 }-electron states with S =Ms ——1 enter in the
analysis, the lowest (N —1}-electron triplet state plays the
same role as the (N —1)-electron ground state did in the
previous cases. The result of the analysis can just be read
off our earlier results in Sec. II [Eqs. (16)—(30)] by replac-
ing the (N —1)-electron ground state(s) by the lowest trip-
let state(s) with Mq ——1, and the (N —1)-electron ground-
state energy E (N) by the lowest triplet energy,
E(N —1, S =1). We thus find that the asymptotic spin-
density matrix y (r, r') is given by the counterparts to
Eqs. (28)—(30) or Eqs. (16)—(18) depending on whether
the lowest triplet states have orbital degeneracies or not.
En particular, we have, to leading order,

Since, in this case, the lowest triplet states involve orbital
degeneracies, u„, may be found from an analysis analo-
gous to that in Appendix A. The result is

CX

4) ~~oo
2f'

Q and a being the quadrupole moment and static polar-
izability, respectively, of the Na+ ion in its lowest triplet
state,

~
(2p 3s) P}.

IV. SOLID SURFACES

A. General considerations

We now focus our attention on systems of macroscopic
size. For such systems it has been known for a long time
that the uppermost occupied DF eigenvalue equals the
chemical potential, denoted, in this section, by p
[p=E(N) E(N —1)].—We shall derive here the asymp-
totic form of the density and the exchange-correlation po-
tential u„, far outside a solid surface. The method used
above on finite systems, however, cannot be straightfor-
wardly applied to macroscopic systems. In the previous
case we could assume that there was a finite difference in
energy between the ground level and the lowest excited
state. Owing to this property the contribution to the den-
sity from excited-state quasiparticle amplitudes is down
by a factor r " relative to the contribution from the
ground-level amplitudes at large distances r. This is not
the case for systems of macroscopic size.

In order to get a feeling for the behavior of the quasi-
particle amplitudes in such systems, we first briefly dis-
cuss a noninteracting case. The quasiparticle amplitudes
are then the usual one-electron orbitals (y, ), which (for a
short-range surface potential) have an exponential falloff
-A exp( —K,z) determined by their eigenvalues e, [z is
the distance from the surface, A is a constant, and
K, =( 2e, )'~ ].—For a finite system only the highest oc-
cupied orbital(s) with eigenvalue p contributes to the den-
sity at far distances and the density' falls off as
exp( —2Kpz) [Ko= ( —2p )' ]. For macroscopic (metallic)
systems, on the other hand, one readily finds that all
states within a thin shell,

(35)
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at the Fermi surface, contribute at far distances, and that
the density instead falls off as z ' exp( —2scpz).

Our analysis below will show that, for an interacting
system as well, the leading long-range contribution to the
density is given by the quasiparticle amplitudes within the
same thin shell. However, since all quasiparticle ampli-
tudes are coupled by the long-range Coulomb interaction,
quasiparticle amplitudes of lower energies e, are down
only by a power in z ' relative to the Fermi-surface am-
plitudes.

We now turn to the detailed analysis and assume the
system to be semi-infinite and confined to z & 0. First, we
consider (nonmagnetic) metals and discuss the modifica-
tion needed to treat semiconductors and insulators at the
end of our analysis (Sec. IVE). We introduce the total
electrostatic or Coulomb potential of the (N —1)-electron
system:

f, (r, o)-g, e ' +h, e

where the functions g, and h, have a slower than ex-
ponential variation with distance. For,states with energies
away from the Fermi energy, the first term in Eq. (38) can
be neglected, as was the case for finite systems. For states
with energies close to the Fermi energy, however, a more
complicated behavior is to be expected. We handle this
situation by introducing a number a &&1 which can be
chosen arbitrarily large, but which then is held fixed in
the discussion to follow. We divide the (N —1)-electron
states into two subspaces, P and 1 —P, with wave numbers
smaller and larger than a.p+a/z, respectively. Thus, the
subspace P corresponds to energies e, close to the Fermi
energy, p —co0(e, (p, where

up ——amp/z = —2ap/(Kpz) .

Vc(r) = &N —1I VH«) IN —1&+to(r) (36)
The projection operators on the two subspaces defined
above are also labeled P and 1 —P, respectively.

and rewrite the basic Eq. (6) for the quasiparticle ampli-
tudes as

[——,
' V + Vc(r) —e, ]f,(r,s)+(s

~
5VH(r)g(r, cr)

~
N) =0 .

(37)
When z~ oo the total electrostatic potential V~ tends ex-
ponentially to a constant, which we here choose as our
reference energy. For macroscopic systems the exchange
potential also tends exponentially to zero, ' and, conse-
quently, long-range components in the effective DF po-
tential can only originate from correlation or polarization
effects. Without the inhomogeneous term in Eq. (37), the
decay of the quasiparticle amplitudes would be deter-
mined by their respective eigenvalues, as in the case of
noninteracting particles, and we would have

f, (r, o ) -exp( —a;z). The inhomogeneous term contains
contributions from quasiparticle amplitudes arbitrarily
close to the Fermi surface and will therefore decay as
exp( —Kpz). As a consequence, all quasiparticle ampli-
tudes have the asymptotic large-z behavior,

(p e, )f—, (r,o)= —(s
~

5V. H(r)1t(r, (r)
~
N) . (39)

In this approximation we have dropped terms containing
derivatives which are of order. (Kp/z)f, (r,o) or smaller.
This is permissible since ap/z is small compared to
p e5 )cop =aKp/z. —We have also dropped the exponen-
tially small term Vo(r).

Following the case for finite systems we would like to
reexpress the rhs of Eq. (39) in terms of quasiparticle am-
plitudes corresponding to the subspace P. Inserting a
complete set of states and using Eq. (39) in the subspace
1 —P, we obtain

B. Quasiparticle amplitudes for states
in subspace 1 —I'

For amplitudes corresponding to the space I —P, we
can, for large z, safely approximate ( —V /2)f, (r, o.) by
( —Kp/2)f, (r,o ). This gives

(s (5Vo(r)5(r o) (N) =(s (5Vo(r)P(Mr o) (N)+(s 5Vo(r) 5Vo(r)(Nr o) N),

where Ep E(N —1), the groun—d—-state energy of the (N —1)-electron system. This procedure can be repeated any num-
ber of times. In this way we obtain an expansion of the form

n

(s (5Vo(r)()(r o)(N) = (s (5Vo(r)Ps((r o) (N)+ g s 5Vo(r) 5Vo(r) PtP(r o) N) .
n&1 E0 —H

(40)

When z~ ()o, the projector P approaches the projector on the ground states, and it is not difficult to see that the nth-
order term in Eq. (40) gives the nth-order perturbation of a ground state to an external potential,

V~(r) =f d3r p (r')U (r—r'),
s

describing a unit test charge at r=(v,y, z) outside the metal. When zP ao, the higher-order contributions to the response
become negligible compared to the linear response. Keeping only the first term in Eq. (40), we have the estimate

f,(ro)=(s 5Vo(r)P()(r, o) N),
0

(41)

which is correct to leading order in z for states s in subspace 1 —P.
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C. Quasiparticle amplitudes for states with energies near the Fermi energy

We now turn to the quasiparticle amplitudes for states in subspace P and introduce a spectral decomposition of the
density matrix y(x,x'):

A (x,x,E)=g 5(e—E )f,(x)f,'(x') = (N
~

1() (x')5(H +E E—(N) )f(x)
~

N } (42)

where x and x' are space-spin coordinates. Thus,

x,x, E' =g x,X (43)

For nonmagnetic systems, the spectral function A and the density matrix are diagonal in the spin indices and will be
written

and

A (x,x', e) =A (r, r', e)5

y(x, x') =y(r, r')5

We want to derive an equation for A valid far away from the system and for energies very close to the Fermi energy.
We start from the equation for the quasiparticle amplitudes [Eq. (37)] and use our asymptotic estimate of the inhomo-
geneous term in the subspace 1 —P. For large z, we obtain

s (s, V)f (r o—)+ (s 5Vo(r) 5Vo(r)Pr5(r o) N)+ (s (5Vo(r)P5(r o) (N) =D .
Ep —H

We multiply this expression with f,*(r',o )5(e —e, ), sum over all states s, and obtain

s(K —() )A(r r', s)+(N () (r', o)5(N+s Ns —)s)5Vo(r) —5Vo(r)()(r o) N) —Q(r r', s)=(),
0

(44)

where

g(r, r', 6)= —(N
~

lP (r', cT)5(H+6 Eo p)5—VH(r—)Py(r, cr)
~
N), (45)

and where ~=( —2e)'f .
In order to estimate the second term in Eq. (44), we can

argue as follows. This term is of the form (4 ~M
~

'If),
where

1 —PM =5VH(r) 5V~(r),
0

and where

~
4) =5(H +e Eo p)g(r', cr )—

~

—N }
and

are (unnormalized) (N —1)-electron state vectors with en-
ergies very close to that of the ground state. From general
arguments, it can be shown that such matrix elements of
well-behaved operators M are given by

(46)

at most, duo-a/(fez). Thus, to leading order, we find
that the second term in Eq. (44) is given by

N

In the expectation value

we can replace 1 —P by unity. In order to see this, we
note that the rhs of this expression can be written in terms
of the charge response function X(r,r', ru), or rather its
spectral function ImX:

(N —1
~

M
~

N —1)= —f Im( gu)(ur, r, )coco/.
~0 m

In the expression above, ( uXu)(r, r', co) is short for the con-
volution

The conditions for the validity of this equation, as well as
its relative accuracy, are discussed in detail in Appendix
B. Here we just mention that (N —1

~

M
~

N —1}should
be nonzero, and that the corrections are of the order b, /(M,
where b, is an upper estimate of the excitation energies
contained in the states

~
@) and

~

)If}. In our case, the
states

~

@) and
~

5If) have energies which exceed Eo with,

d r, d rz u(r r$)X(r), r—p, co)u(rz —r'} .

Since ImX(r, r', co) is linear in co for small co,
' ' we can

replace toe-pa/(iroz) by 0 in the lower limit of the in-

tegral. The rhs then equals the Kramers-Kronig represen-
tation of the static polarizability. To leading order, we
thus find
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( N —1
~

M
~

X —1)= —,a(r, r) = —,
'

(UXU)(r, r, 0) . (47)

We now turn to the third term, Q(r, r', e), in Eq. (44),
and notice that this term is of the form (@

~

5V~(r)
~

(Ij)
[cf. Eq. (45)]. Since, by definition,

(Q can be considered as a function only of z and z' far
away from the surface. )

In the absence of the inhomogeneous term Q in Eq.
(51), the asymptotically correct solution would be

pI (r, r', e)-(zz') ' e "'+' ', (53)

Q (r, r', e) -z '[aye(r, r)A (r', r', e))'~2 (48)

(X—1
~

5V (r)
~

X —1)=0,
Eq. (46) does not apply and we need a more elaborate
scheme to estimate Q. Such a scheme is given in Appen-
dix B, and we find that Q is of order

giving a contribution
p

y~(r, r') =— PI (r, r', E)de
p —ci)o

Kp
, A (z,z', p)[l+O(z 'lnz)]

Z+Z' (54)

or smaller. Here,

y p(r, r') =(&
~ P (r', O. V'g(r, a)

~

&)

to the density matrix. We can, however, show that the
presence of the term Q does not change this result for yp.
Using Eq. (48) we can, for metals, estimate Q as follows:

is the contribution to the density matrix from states in
subspace I'.

~
Q(z, z')

~

(z '[ayp(z, z)A (z'z', p)]'~

-a' z A(z, z', p) . (55)

D. Density matrix and exchange-correlation potential
far outside a metal surface

The results of the preceding subsection can be summa-
rized in an asymptotic equation for the spectral density A:

—,[—V' +~ +a(r, r)]A(r, r', e)=Q(r, r', e) . (49)

The quantity of Q(r, r', e) is defined in Eq. (45) and is es-
timated in Eq. (48). Equation (49) is valid far outside the
surface and within the energy shell

This follows from the fact that 2 (z,z, e)/A (z,z,p) tends
to zero when z —woo and, thus, yp(z, z) is at most of the
order z 'A(z, z,p). When (~—~o)z(1, Q(z, z') is down
by at least a factor (a/z)' compared to z 'A, and thus
A is given by the homogeneous solution in Eq. (53). The
energy integral over the shell p) e)p —Ko/z now gives
the estimate in Eq. (54). When (a —ao)z) 1 and, thus,

P —Kp/z )6' )P —cop, we can neglect terms of the order
z 'A on the left-hand side (lhs) of Eq. (51) and find

A(z, z', e)- Q(z, z') .
p —6'

a(r, r) ——(2z)

and thus the spectral function A fulfills the equation

(50)

(for definiteness, we will, in the following, take z )z).
We will later show that Eq. (49) is valid also far outside

the surface of an insulator or semiconductor, but for the
moment we shall assume the system to be metallic. The
polarizability a(r, r ), which appears in Eq. (49), gives the
induced electrostatic potential at r due to a unit test
charge at r'. When r and r' are both well outside the sys-
tem, macroscopic electrostatics is valid. For metals one
readily finds

8
K K-

QZ BZ

aK+ 2Kp K+
az az

Consequently, the inhomogeneous contribution to yp
from this interval is of order Q(z, z') 1ncoo, which is down
by at least a factor (a/z)'~ lnz compared to the leading-
order estimate in Eq. (54).

The arguments given here can actually be placed on a
more rigorous footing by directly studying the differential
equation (51). This equation is first converted to a first-
order equation by making the replacement

2VKO
a. —V' — A(r, r', e)=Q(z,z'),

KZ

where we have introduced the parameter

v= 1/4ao .

(51)

(52)

Its solution can then be obtained in closed form, allowing
a direct study of the contribution to yz. '

The remaining contribution y~ p comes from quasipar-
ticle amplitudes corresponding to eigenvalues e, &p —coo.
These can be estimated by our results in Sec. IVB [Eq.
(41)], and we find

1 —I'
V, z(zz') —(N () (r', o)P5Vo(r), 5Vz(r)P5(ro) N)(Eo H)—

—(N (P (r', oP5(ro)(N)(N —( 5Vz(r) 5Vo(r) N —.() .
(Eo —M)

(56)
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where we have made use of the low-ca behavior of the
response function X, ImX(r, r', co)-co, and the fact that
classical image-charge theory is valid far away from the
surface. Thus, y~ p is smaller than yz by at least a fac-
tor of the order z '1n(az).

In summary, we have found that the density matrix far
away from a metal surface is given by

y(z, z')- [ao/(z +z')]2 (r, r',p),
where A (r, r', p) fulfills

[——,
'

V + Vc(r)+ —,'u(r, r) —p]A (r, r', p) =0

(57)

to leading order in z ', and a similar equation in the vari-
able z'. The spectral function A exhibits the asymptotic
behavlol

i v +O(z+z')
A ( r, r', p) -(zz')'e (59)

where (for metals) v= (4vo)
In order for DF theory to correctly reproduce the densi-

ty profile,

v—] —2KOz
p(r) —z " e, z~oo

Here, we have used the analysis in Appendix 8 to obtain
the second asymptotic equality. The first factor in this
equation gives, by definition, yp(z, z'), which we analyzed
above. We see that the second factor can be written as

coIm UXU rr'm co —z+z' 'ln p mp
coO

-z ' ln(aaoz),

states and thus to a nonvanishing density of gap states.
Even in the ideal case with absolutely no impurities, there
are still surface states in an insulator which again give a
continuum of states in the gap. It is uncertain whether or
not the surface states can ever be removed by some suit-
ably chosen external potential, and, consequently, for all
realistic cases the discussion above carries over to the case
of insulators with only minor modifications. One differ-
ence is that the polarizability a(r, r) well outside the solid
becomes

1 &p —1
a(r, r)-—

2z 6'p+ 1
(61)

6p —1
V=

4Kp gp+ 1
(6&)

in Eq. (59). By requiring the DF theory to reproduce the
density, we again deduce that U„, far outside the system is
given by the polarizability,

instead of Eq. (50). Remembering that DF theory is a
theory of electrons subject to a time-independent external
potential, we notice that eo is the static (macroscopic)
dielectric constant of only the electrons. As before, Eq.
(61) follows from classical macroscopic arguments. Thus
we find that the density matrix far away from the surface
of an insulator with a nonzero density of impurity or sur-
face states in the gap is given by the same expressions as
for metals, Eqs. (57)—(59), provided we use the polariza-
bility relevant for insulator surfaces [Eq. (61)], and the
corresponding exponent

the DF orbital equations must have the form

[——,
'

V + Vc(r)+ —,
' u(r, r)]yk(r, o ) =eke k(r, o )

&p —1
U„,(r) ——,

' a(r, r) ——
4z up+1

(63)

far away from the system, and the uppermost occupied
eigenvalue must fulfill e& E(N) E(N———1) as—in the
finite-N case. From the DF orbital equations, we deduce
that

U„,(r) ——,'a(r, r)- —1/4z, z~oo . (60)

E. Insulator and semiconductor surfaces

We shall discuss here the modifications needed to cover
the case of insulators and semiconductors. With regard to
the discussion above, the main difference between these
and metals is the vanishing state density in the gap. In
terms of the spectral function A (r, r', e), the one-particle
state density Dn(e) of the volume 0 is defined by

Dn(e) =—J d r A (r, r, e),

where 0 is a volume of interest, such as the entire solid or
the surface region. Our discussion so far relies on having
a spectral function which does not vanish outside the
solid. Clearly, this cannot be the case for an insulator
since Dn(e)=0 in the gap for any Q. At the end of this
section we will discuss this case in more detail, but first
we note that it is somewhat academic. Real insulators al-
ways have some impurities which give rise to impurity

It will follow from our analysis below of an ideal insu-
lator that the density far outside a real insulator originates
entirely from impurity and/or surface states. Despite this
fact, we see in Eq. (63) that v„, outside the surface is in-
sensitive to the presence of surface and impurity states as
long as they do not give important contributions to the
dielectric response to a test charge far outside the surface.

We now turn to the modifications needed to treat the
case of an ideal insulator with no surface or impurity
states in the fundamental gap. We shall assume that the
valence band is exactly filled in the N-electron ground
state

~
N). In this case the one-particle state density

Dn(e) tends to zero with the excitation energy p e for-
any Q. On physical grounds it is clear that Q (r, r', e) out-
side the system tends to zero as the density of one-particle
levels, i.e., normally as (p —e)'~ when e~p. Here, we
confine ourselves to that case.

Although the density of (N —1)-electron levels tends to
zero when e~p, it is clear that the inhomogeneous term
in Eq. (37) for the quasiparticle amplitudes contains con-
tributions from amplitudes with energies arbitrarily close
to p. This again implies that all amplitudes decay as
exp( —aoz) far away from the surface.

Following our previous procedure of dividing the excit-
ed states into two groups with energies close to (P) and
further away (1—P) from the Fermi energy, we find that
our analysis of the quasiparticle amplitudes corresponding
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to the group 1 —I' goes through unchanged. Thus, Eq.
(41) is still valid, as is our estimate of the contribution

y& z to the density matrix [see Eq. (56) and following].
To analyze the contribution yz to the density matrix

corresponding to energies close the Fermi energy, we in-
troduce a renormalized spectral function

B(r,r', e) =(p —e) ' 2 (r, r', e), (64)

where B(z,z',p), fulfills the same asymptotic equation as
A (z,z', p), Eq. (58). B has the form

—~p(z+z')B (z,z', p) -(zz')'e

with v given, as before, by Eq. (62), in terms of the dielec-
tric constant.

The asymptotic density for the ideal insulator,

( )
y 3yz —2lcpz

tends to zero more rapidly than the density from the cor-
responding imperfect insulator with impurity or surface
levels in the fundamental gap. We have thus shown that
the density far away from an imperfect insulator ori-
ginates entirely from impurity and/or surface states.

By requiring the DF theory to reproduce the density far
outside an ideal insulator, we find the following:

(a) The uppermost occupied DF eigenvalue equals p.
(b) The exchange-correlation potential is given by Eq.

(63) in terms of the polarizability a(r, r) or the macroscop-
ic dielectric constant.

[In order to obtain the last result, (b), we have assumed
that the DF energy levels exhibit a fundamental gap. ]

which tends to nonzero values when e—+p. Far outside
the surface, B only depends on e, z, and z', and fulfills a
similar equation as the spectral function A [Eq. (49)], the
only difference being that the inhomogeneous term is now

(p —e) ' Q(r, r', e), in place of Q(r, r', e). For the per-
fect insulator we are considering, the low-lying excited
(N —1)-electron states have one single, stable quasihole in
the valence band. As a consequence, there are phase-space
restrictions which allow us to improve our earlier estimate
of the inhomogeneous term [see Appendix 8, Eq. (B12)]:

(p —e) ' Q(z,z', e)=O(z B(z,z',p)) .

Using this estimate and our methods in Sec. IVD, we ver-
ify that the inhomogeneous term in the asymptotic equa-
tion for B (z,z', e) [cf. Eq. (49)] does not influence the den-
sity matrix to leading order in z . Thus, the density ma-
trix far outside the system is given by

y(z, z')= de(p —e)'i B(z,z', e)
P —COp

——,
'

(m. )' [(~p/(z+z')] i B(z,z', p), (65)

Note that whereas the density far outside an ideal insu-
lator is qualitatively different from the density far outside
an insulator with surface or impurity states, the
exchange-correlation potential is essentially the same.

V. CONCLUDING REMARKS

In this paper we have studied the relations between DF
eigenvalues and exact excitation energies. From exact
asymptotic results for the spin density far away from a
finite system, we have shown that the uppermost DF
eigenvalue equals the ionization potential, not only for ex-
tended systems like solids, but also for finite systems like
atoms. Thus, contrary to what one might expect from
Koopmans's theorem, no relaxation correction should be
added to the highest DF eigenvalue in order to obtain the
difference E(N) E(N ——1) in total energies between the
N and (N-—1)-electron systems. We have also been able
to deduce the asymptotic form of the ground-state poten-
tial U„, far away from finite systems, and far outside solid
surfaces, from higher-order terms in the asymptotic densi-
ty profile. For spin-polarized systems we have shown that
the uppermost occupied DF eigenvalue in each spin chan-
nel gives an exact excitation energy.

Our exact results make it possible to test the accuracy
of approximate exchange-correlation potentials, and may
also provide some guidance for constructing better ap-
proximations. Detailed comparisons between exact results
and results obtained from approximate density-functional
schemes have been given elsewhere. '
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APPENDIX A

In this paper we have studied the relations between DF
eigenvalues and exact excitation energies. From exact
exchange-correlation potential for a simple case where the
(N —1)-electron ground states involve orbital degenera-
cies. We consider an atom with a nondegenerate
electron ground state

~
N) ('S) and orbitally and spin-

degenerate ground states corresponding to the term I..
We start from Eqs. (28)—(30) derived in Sec. II. The

density matrix is the same in both spin channels since

~

N ) has zero spin, and we thus only need to consider one
channel, o. We label the (N —1)-electron ground states in
the subspace Ms —— cr/2 as—

iN —1, 0, a) = ELM),
L, and M being the usual angular momentum labels. We
perform a multipole expansion of the Hartree potential
matrix elements in Eq. (29) and make use of the Wigner-
Eckart theorem:

t

Qz being the quadrupole-moment operator. Equation (29) also involves a polarizability operator which we term a;J.
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We write this operator in terms of spherical-tensor operators of rank zero (ao) and two (a2 ),

gr;rja J
—=d.i d'r=(2o+g &2m(r)+2m r

/, j II)

form the required matrix elements in Eq. (29), and use the. Wigner-Eckart theorem. After adding the Hartree potential
matrix elements, we obtain

Urrrr(r) (L=—M Vrr(r) —
r gr;rra~ LM')

i,j

+ L
' LO Qo — oLO~, — (

2r4 LO 20 LO r 2r

(Al)

Insert this result in Eq. (28) for the ground-state ampli-
tudes fo (r, o.)—:fLM(r), and use the relation

flM(r)=(LM
~
P(r, o)

~

N) =R (r)YLM(r),

and that

1 a
U„,(r)- ——+ r' zr4 ' (A7)

which follows from the transformation properties of
f(r, cr) under spatial rotations. This gives

since these orbitals must give the same asymptotic density
as the ground-state amplitudes fiM in Eq. (A6).

1 2 Z —N+1 Q a——V— + — —&o fIM(r)-o
2 r r' 2r4

r~ oo (A3)

where we again have used the Wigner-Eckart theorem. In
Eq. (A3),

' 1/2

Q = (L 0
~ Q2() i

L 0)

=f d r( —,z ——,r )(LO
~
p(r) ~LO) (A4)

is the quadrupole moment, and
' 1/2

5n= L 0 ao+ a20 LO
4m

*II E(II —)) * l—

n(r, o)=g
~
fLM(r)

~

= ~R(r)
~

M 4m.
(A6)

to order exp( d'or)/r in terms of the so—lution to Eq. (A3)
[cf. Eq. (30)].

The uppermost (2L +1)-degenerate DF orbitals in spin
channel cr, (p„lI, fulfill the asymptotic equation

1 2 Z —X——7 + +u„,(r) e„l. (p„LM(r) -—0 .
r

We see that

e„l ——eo
—=E (N) —E (N —1)

is the polarizability of the (N —1)-electron ion in its
ground state

~
L;OMs ). The asymptotic spin density of

the X-electron atom is given by

APPENDIX 8

In this Appendix we shall study matrix elements
(4'

~

M
~

@) between many-electron states
~

C) ) and
~

4')
with energies very close to the ground-state energy Eo.
More specifically, we shall assume that

~

(p) and
~
4) be-

long to the subspace ( P) corresponding to energies
E ~SO+coo. The operator M is assumed to be a macro-
scopic operator, i.e., it should to be insensitive to the fine-
grained structure of the quantum states. In our applica-
tion, the operator M is either taken as the Hartree poten-
tial VH(r) or the polarizability

1 —I'
5 VH(r) 5VH(r)

at points r far outside the system. Owing to the long-
range nature of the Coulomb interaction, both these
operators are insensitive to variations in charge density
over microscopic distances, as required.

We first study the expectation value (@
~

M
~

C) with
respect to a normalizable state

~

4). Because
~
@) is

close in energy to the ground state (
~

0) ), and since M is a
macroscopic observable, we expect that

(B1)

In order to see this, we note that the validity of thermo-
dynamics requires ensemble averages of macroscopic ob-
servables to be insensitive to the fine-grained structure of
the ensembles. In particular, in the thermodynamic limit
(N —+(x) ) all ensembles (p) with an energy very close to
that of the ground state should give the same ensem-
ble average as the ground-level ensemble, i.e.,
Tr(pM)=(0

~

M
~
0). Thus, Eq. (Bl) follows by choosing

q= ic )(c
i y(vie).

Yet another physical argument for Eq. (Bl) is based on-

Landau's Fermi-liquid picture When studying very-
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low-lying matrix elements &4
~

M
~
4) of macroscopic

observables M in a, normal Fermi system, one may
represent the actual interacting system by a fictitious sys-
tem of noninteracting fermions with properly chosen
one-particle energies. It is then not difficult to see that
Eq. (81) holds to within an accuracy coo compared to the
Fermi energy p.

In order to estimate &@
~

M
~

'0), we apply Eq. (81) to
the state a

~

@)+p
~

'P) with arbitrary a and p, and iden-
tify the coefficients for a and p. This gives

a =&e~5MP5M ~C&/&C ~e&. (84)

The projector P restricts the phase space to a thin ener-

gy shell of thickness coo. Simple phase-space arguments
would suggest that b,@, is of the order coo/p. However, the
Pauli principle imposes additional restrictions and causes
the density of particle-hole excitations to tend to zero as co

with the excitation energy co. ' (The density of multipair
excitations tends to zero even faster. ) As a consequence,
6@is actually of the order (coo/p), and

(85)

As an example, we derive Eq. (85) for the case when

M =VH(r) and r is far outside the system. Let us first
assume the validity of Eq. (81) and replace

~

@) by
~
0)

in Eq. (84). Since &0
~
0) = 1, we obtain

We next study the corrections to Eq. (81) in more de-
tail. We write the correction as

R =&@~5M ~@),
where 5M =M —&0

~

M
~

0). We use Schwarz's inequali-
ty and the identity

~

@)=P
~

4&) to obtain

)R
~

& &@
~
@)(b@,)'J (83)

where the low-energy fluctuations, b.q„ in M, are defined
by

&@
~

5VH(r)
~

@)=0(&@
~
@)(cop/p)z ' ') . (89)

Here, the factor coo/p would enter in the estimate of any
macroscopic one-electron observable, whereas the factor
z 'J originates from the particular properties of the
Hartree potential VH.

Let us now argue that our estimate (87) based on a
study of the ground-state fluctuations b,o is not altered if
we instead use the fluctuations b,@. The quantities 60 and

6@ can be considered as macroscopic averages of charge-
density fluctuations with respect to two different ensem-
bles, one with zero energy content and one with an energy
of the order too. The central quantity of the discussion
above is the ground-state structure factor, which now
should be replaced by that corresponding to the state

~

@). We will assume it to be known that such averages
are insensitive to details in the ensemble as long as macro-
scopic quantities such as the mean energy remain the
same. Supported by this argument, we will instead con-
sider the structure factor corresponding to the canonical
ensemble with a mean energy per particle of order coo. In
this case the structure factor is proportional to the energy
at small energies, as was the case for the structure factor
of the ground state, but only down to coo. Below this
value the canonical structure factor stays approximately
constant down to zero energy. This behavior follows
from (i) the fluctuation-dissipation theorem' which re-
lates the structure factor to the dissipative part ImX of the
density-density response function, and (ii) the fact thatI~ is proportional to the energy for small energies. ' '
Consequently, the value of the integral in Eq. (86) will
only change by a numerical factor of order unity if the
ground state is replaced by the state

~
@),and we see that

our order-of-magnitude estimates in Eqs. (88) and (89)
are also valid in this case.

We have so far considered normalizable states (
~

@)
and

~

qJ) ), but we actually need to approximate quantities
of the form

& N
i
Pt(x')5(H +e Eo p)MPQ—(x)

i
N—)

bu ——&0
~
5VH(r)P5VH(r)

~

0)
COp

de(uSv)(r, r, co),
0

where

S(r,r', co)=(2m) '
1 dt e'"'&0

~
p(r, t)P(r', 0)

~
0)

(86)

(87)

by the simpler expression

&N
~

Tf'J (x')5(H+t- EQ p, )l/J(x)
~

N—)&N——1
~

M
~

N —1)

where e&p —coo [cf. Eq. (46)]. [Eo E(N —1).] Th——e
correction to this,

is the dynamical structure factor at zero temperature, and
uSv is shorthand for the convolution of S with two
Coulomb interactions (u). In metals, the structure factor
behaves as S-co/p for small energies co,

' ' whereas, for
ideal insulators, S =0 when co is below the threshold for
particle-hole excitations. Furthermore, in the ground-
state state, the structure factor equals the spectral func-
tion of the charge response function X. As explained in
Sec. IV, (uXu)(r, r,co)-z ' far away from a solid surface,
and we have

h(e) = &N
i
Pt( )5x(H+e Eo p)5MPQ(—x)

i
N), —

cannot be directly estimated by our previous method since
b(e) involves 5-function-normalized state vectors. In-
stead, we introduce the state vector

i
&b(e)) =[A ( ',xxe)] ' 5(H+e Eo —p)P(x')

i
N—),

and, for brevity, we write

i
qJ) =5MPQ(x)

i
N) .

b,o ——0((~0/p )'/z ),

glvmg

(88) We readily verify that the states I ~
@(e)) ] are 5-

function-normalized,

& C&(e)
i
@(e')) =5(e—e') .
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Next, we express A(e) in terms of
~

@(e)&, integrate 5 (e)
over an interval e to e+5e,

6+% 6+5Ef de'b, (e')= f de'A(x', x', e')

and replace A (x',x', e') by its maximum value in the in-
terval. The expression obtained in this way becomes
larger by replacing the projector

Pj —— e' Ne' 4e'
by the projector

e+5e
P2 —— e' e'+H —Eo —p

(This follows from the fact that P2 projects onto all eigen-
states of H in the interval e to e+5e, whereas P~ only
projects onto a subclass. ) We obtain

e+Se 6'+ 5E'

f de + (e)& max A(x x e') f de'(q ~5(e'+H —E(N))(+&.
E'&6 & E+56

By letting 5e tend to zero, we now find an estimate analogous to the estimate (83) for normalized state vectors,

b, (e) & A (x',x', e)(N
i
gt(x)P5M5(H+e Ep p—)5M—PQ(x)

~

N & . (810)

The analysis now proceeds as before [cf. Eq. (84) and following]. Application of Eq. (81), with
~

@&=Pg(x)
~

N &, and
M replaced by 5M5(H +e Ep —p—)5M, gives

6 (e) & A (x',x', e)y (x,x)(N
~

5M5(H +e Ep p—)5M —
~

N &,

where

yp(x, x') = (N gt(x')Pg(x)
i
N & .

In the particular case M = VIr(r), the last factor is seen to be (uSu)(r, r, p —e). For this quantity we had the estimate

(uSu)(r, r, p —e) =0 (z 'cop/p) .

We thus find [cf. Eqs. (44) and (45)]

Q(r, r', e) = —(N
~ q (r', cT)5(H +e Ep p)5V—H(r)—Py(r, cr)

~

N &

=0([A (r', r', e)yz(r, r)z 'cop/p]'~ ) . (811)

In the case of an arbitrary macroscopic observable M, we
would have obtained a similar estimate as in Eq. (Bl1),
but without the factor z

In Sec. IV we make the choice

cop =alcp/z pa /(Icpz)

In this case the rhs of Eq. (811)becomes

0(z '[aA (r', r', e)yz(r, r)]'~ } .

For the special case of and "ideal insulator, " i.e., a sys-
tem with no many-electron states in a forbidden gap, we
need a sharper estimate of Q(r, r', e) (cf. Sec. IVE). We
assume that the valence band is exactly filled in the X-
electron ground state. Then, the low-lying ( N —1)-
electron states have only one single, perfectly stable
quasihole and can therefore be labeled by one single one
electron label cx. This is a very strong restriction with im-
portant consequences. We write these states

~

N —1, cc&,
or simple

~

a &, to distinguish them from a general
( N —1)-electron state

~

N —1, s &, where s stands for
—N —1{) labels.

The special structure of the low-lying (N —1)-electron
states gives rise to drastic phase-space restrictions. The
density of (many-electron) states g, 5(E E, +Ep) is-
normally of the order exp(N). (This follows since the log-
arithm of the density of states defines the entropy, which
is normally of order N. ) For a perfect insulator, however,

the density of (N —1)-electron states is only of order

+5(E E, +Ep )—:+—5(e—e )-N (p e)'~—

X & ~15VH(r)P P(r ~)
l

N & .

From this we see that Q is proportional to the density of
( N —1)-electron states and thus of order

P
Q(r, r', e) =0 (p e)'~ cop f Q(r—, r', e')de'

&—~o

~here we can estimate that

f Q (r, r', e)de= 0(y~(r, r')(cop/p)z ' )

using a slight modification of the method leading to Eq.
(89). Thus,

Q(r r' e) =0([(p—e)/(copz)]'~'yp(r, r') } (812)

for an ideal insulator with no states in the forbidden gap.
With cop ——aicp/z, the rhs of Eq. (812) is of the order or
smaller than az ~ B(z,z', p), in terms of the renormal-
ized spectral density B used in Sec. IV E [cf. Eq. (64)].

below the threshold for particle-hole creation. The lhs of
Eq. (811)now becomes
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