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Correction to scaling exponent for the two-dimensional self-avoiding walk

J. W. Lyklema
Institut fiir I'estkorperforschung der Kernforschungsanlage Julich GmbH,

Postfach 1913, D-5170 Julich, 8'est Germany

K. Kremer
Exxon Research and Engineering Company,

Annandale, New Jersey 08801
(Received 19 November 1984)

A Monte Carlo series analysis for the scaling behavior of the two-dimensional self-avoiding walk is given.
We have calculated the mean-square end-to-end distance on a square lattice with such a high accuracy that

it is possible to analyze the data with ratio-type methods. From this we find for the correction-to-scaling

exponent a value of 4 = 0.84.

Recently there has been a large interest in the scaling
behavior of self-avoiding walks (SAW). This is due to the
availability of the exact result of Nienhuis, ' who analyzed
the two-dimensional O(n) model. For the exponent v,
which describes the asymptotic behavior of the mean-square
end-to-end distance he obtained the value —„. In two

dimensions, particular emphasis has been focused on the
correction to scaling exponent A. Aside from the intrinsic
interest of knowing the value of this exponent, one also
needs it in order to make a reliable extrapolation for the
value of the leading exponent v. In this Rapid Communica-
tion we present a high-accuracy Monte Carlo study of the
exponent 4. We analyze the data with methods which pre-
viously have only been used in the context of exact-series
enumeration. We find for 4 the value 0.84+0.04, a result
which differs markedly from all previously reported values.
One expects the mean-square end-to-end distance to vary
with N, the length of the chain, as

(R (N)) =AN "(I+BN + CN '+ )

This expression has been used by Majid, Djordjevic, and
Stanley to verify the value of v and by Djordjevic, Majid,
Stanley, and dos Santos to estimate the value of 5 from
exact enumeration data on the triangular lattice (N «18).
These authors observe that the assumption 5 & 1 which had
been made previously is incorrect and that as a consequence
one cannot simply extrapolate the effective exponent v(N)
vs I/N to obtain the critical exponent v. This can be under-
stood from the definition of v (N):

v(N) =In[[(R (N))/(R (N —1)) ]/21n[N/(N —1)]] . (2)

Inserting Eq. (1) into this definition results in the following
expression:

v (N) = v — Ã — N+-AB g C
2 2

(3)

From this it is clear that if 4 & 1 a naive extrapolation
versus I/N gives wrong results. It is therefore very impor-
tant to check if the correction to scaling exponent 6 is & 1
or not. If it is smaller, then one has to calculate it very ac-
curately in order to do the extrapolation versus N . This
has been done in Refs. 2 and 3 and leads to the conclusion
that indeed v= 4, in agreement with the Nienhuis' result.
However, the estimate for 5(0.66 +0.07) strongly disagrees

with Nienhuis s prediction of b, =
2 . The status of this ex-

ponent is not clear. It might be correct, but it is certainly
not the smallest one. A more sophisticated analysis of
somewhat shorter (N «16) series results for the same lat-

tice has been given by Privman. His biased (with v = ~)
estimate (5 = 0.65 + 0.08) agrees completely with Djordjevic
et aI.

A different method has been used by Adler' to study the
generating function on the honeycomb lattice (N «34).
From this series she finds three different exponents:

0.93, A2 —1.2, and A3 —1.5. These results, however,
are not confirmed by Guttmann who studied the generating
function for the triangular lattice (N «18), the square lat-
tice (N «24), and the honeycomb lattice (N «34). He
does not find consistent evidence for the presence of a con-
fluent singularity with 5 & 1. It is interesting to note that
his analysis of the 18-term triangular lattice series points to
a correction to scaling exponent of ~=0.84. He rejected
this value because the other lattices did not show evidence
for it.

We also have a prediction from field theory, 7 but in two
dimensions one does not expect to find accurate results.
Indeed, the value for the leading exponent (v = 0.77)
differs so much from the accepted value 0.75 that the result
for the confluent exponent (b = 1.15) cannot be considered
as a reliable estimate for the true value.

Havlin and Ben-Avraham have performed a Monte Carlo
simulation on the square lattice of only 10 SAW's of length
80, 160, and 320. To analyze their data they introduce the
concept of a local fractal dimension. From the scaling
behavior of this quantity they deduce v=0.753+0.004 and
b, = 1.2 + 0.1.

The wide range of estimates for the correction to scaling
exponent necessitates a more careful study of this problem.
To this end we have performed a high-accuracy Monte Car-
lo simulation of SAW chains up to a length of N = 48, using
the simple sampling method. ~ This is a straightforward pro-
cedure in which one chooses the new direction from all
directions with equal probability. The chain is stopped when
a site is visited for the second time and one has to start a
new chain. In this way no bias is introduced. The random
numbers are generated using the well tested algorithm R250
of Kirkpatrick and Stoll. ' The number of walks generated
varies depending on N, the chain length, between 10 for
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N = 10 and 6x 10 for N =48. The acceptance rate in this
Monte Carlo procedure of course decreases rapidly with in-
creasing N. For N = 48 only —0.7% of the attempts are ac-
cepted. This clearly makes it extraordinarily difficult to go
to longer chain lengths using the simple sampling method.
We claim, however, that the asymptotic behavior can al-
ready be studied with these lengths. This is numerically
confirmed, because the lattice typical odd-even fluctuations,
which are seen in a plot of v(N) vs 1/N (Fig. 1), have al-
most vanished. Because in the asymptotic scaling regime
there is no difference between the lattice and continuum ap-
proaches and one expects that lattice properties disappear,
we conclude that for N & 30 we can study the scaling
behavior of the SAW. To estimate the accuracy of our data
we have calculated the mean distance in the x direction.
This quantity fluctuates around zero and from its absolute
value we have estimated the error in (R'(N))'~' to be
0.025% in the worst case (N = 29) and usually is better than
0.01%.

The raw data for the mean-square displacement are
analyzed using the following definition of v (N):

1 ln[(R~(N+i))/(R (N —i)) ]
2 in[(N + i)/(N —I) ]

(4)
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FIG. 1. Plot of v(N) vs 1/jN for all N values between 15 and 43.
The parameter i =5. A linear extrapolation results in a v value of
0.748.

Together with the assumption for the scaling behavior of
(R (N)) [Eq. (1)], this results again in the expression Eq.
(3) for v(N), independent of the choice of i The . sym-
metric definition of v (N) has the advantage above the
asymmetric definition [Eq. (2)] that in contrast with the
latter, it does not introduce a bias for larger values of i.
This is especially important when the ratio i/N is not very
small. Also the difference between the two entries (2i) is
always even, thereby eliminating the odd-even fluctuations
to a great extent. In Fig. 1 we show a plot of v(N) vs 1/N
for i = 5. One pan clearly distinguish two different curves,
which become parallel and almost identical for N & 30. It is
more convenient to study only one of these curves, namely,
the one calculated from SAW's with an even number of
monomers. This curve we show in Fig. 2, for i =1 and
i = 5. From the scatter of the points of the i = 1 curve, we
estimate the error of v(N) to be roughly 0.001 or 1% for
high-N values. For the i = 5 curve this has been improved
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FIG. 2. Plot of v(N) vs 1/N for the N values 11, 13, 15, . . . ,47.
The parameter i=1 (~) and 5 (+).

dramatically and it is not possible to give an error estimate
for this curve. Note that the high i value does not intro-
duce an observable bias. In this curve the low-N values ex-
trapolate linearly to a v value —0.744, whereas the higher-
N values give a value v —0.748. The crossover point is
N =27, a value just above the maximum chain length
which can be reached by exact enumeration. This explains
why this technique gives the wrong prediction for 5 and
shows at the same time that one cannot obtain v from the
series results using a simple extrapolation method.

To study the correction to scaling exponent b, we assume
v = ~ and calculate the quantity

To complete this work we show in Fig. 4 a plot of y(N) vs
A linear extrapolation here points consistently to a

value 0.750 for v. Our confidence estimate for this value is
0.001.

From our discussion thus far it is clear that the analysis of
the exact enumeration data has been done on series
which are too short and consequently cannot give correct
results. Also the use of more sophisticated methods to
analyze the series has failed to give the correct result. A

N I (R (N+i))/(N+i)"
.- 2i (R'(N —i ) ) /(N —i)'"

=ABN +CN '+ .

The equality is obtained by inserting the assumed asymptot-
ic behavior of (R (N)) [Eq. (1)] into the expression for
F(N). If 6 & 1, we can estimate it from the slope of the
plot of lnS vs lnN for large enough ¹ This plot is shown in
Fig. 3 for i = 5. Again, this value does not introduce an ob-
servable bias with respect to i =1. There is a clear cross-
over at N = 27. From the points below this value of N we
estimate a slope of 0.64. This is in complete agreement
with the results from series enumeration. However, the
slope for the larger-N values gives 6=0.84, distinctly dif-
ferent from the low-N value of the slope. From the slopes
of all possible pairs of points in the asymptotic region we es-
timate an error of 0.04. Thus, assuming that for N & 30 we
are in a regime where the scaling behavior Eq. (1) holds, we
find

5 = 0.84+ 0.04
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FIG. 3. Plot of lnF(N) with i =5. The slopes give the estimate
for the correction exponent 4 for N & 30 and N ) 30.

FIG. 4. Plot of v(N) vs N . with i = 5. A linear extrapolation
results in a v value of 0.750.

possible exception is the Fade analysis of Guttmann of the
generating function series of the triangular lattice. It seems
worthwhile to extend this series to obtain an independent
check of our value for 4.

The Monte Carlo estimates of Havlin and Ben-Avraham
are not reliable, due to the insufficient statistics of the
Monte Carlo data. In addition, the method of data collaps-
ing, though it shows the self-similarity very nicely, is not

precise enough to calculate the correction to scaling ex-
ponent A.

In summary, we have shown that the asymptotic scaling
regime for the SAW on a square lattice sets in only after a
chain length of N = 30. From a ratio-type analysis of high-
accuracy Monte Carlo data we find for the correction-to-
scaling exponent b, the value 0.84 ( —~), markedly dif-
ferent from all other predictions.
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