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The magnetic susceptibility of Cs2CrCls 4H20 (S =
2 ) in one direction (Z) is interpreted with an Ising

model where both the crystal-field and the exchange interactions are considered on equal footing. Since
the one-dimensional Ising model in the presence of a crystal field can be solved exactly for any spin, the

susceptibility parallel to the Z direction is calculated for S =
2 and an excellent agreement with the ex-

perimental results is obtained with a suitable choice of exchange (J = —0.038k) and crystal-field
(D = —G. j.6k) parameters.

I. INTRODUCTION II. THEORY

Recently, Carlin and Burriel' measured the single-crystal
susceptibility of Cs2CrCls 4H20 over the temperature inter-
val 40 mK-4. 2 K. They gave a theoretical interpretation of
these results in terms of a spin-2 linear-chain Heisenberg

antiferromagnet with the crystal-field and the exchange in-
teractions taken to be of comparable magnitude. In their
calculations, they assumed the crystal-field and the ex-
change interactions to be small compared with thermal ener-
gies. As a result, the theoretical calculations of Carlin and
Burriel' fit the experimental results at high temperatures
and down to the temperatures at which the susceptibility
maxima occur, but fail to reproduce the experimental
results at low temperature (0—0.28 K).

In this Comment an attempt is made to interpret the ex-
perimental data using a one-dimensional Ising model in the
presence of a crystal field. Since the Ising model in one
dimension and in the presence of a crystal field can be
solved exactly for any spin, the exact susceptibility for
S=

2 is calculated in this model and compared with the
susceptibility in the Z direction. This model involves only
two parameters —the crystal field (D) and the exchange in-
teraction (J)—and excellent agreement with the experimen-
tal results is obtained over the whole temperature range
(0—4.2 K) with a suitable choice of D and J. These values
are very close to the values obtained by Carlin and Burriel. '

The susceptibilities along the b and y axes' cannot be com-
pared, as the transverse Ising model for arbitrary spin has
not yet been solved. This model has been solved 4 for spin

~ only and the calculation shows that susceptibility maxima

appear in the transverse directions as well. There is no
reason for change in this susceptibility behavior for higher
spins. Therefore, we can expect susceptibility maxima along
the b axis also, without assuming any long-range order.

The crystal structure of the compound under investigation
is discussed in detail by Carlin and Burriel. ' The magnetic
ion in Cs2CrCls 4H20 is Cr + which is a d ion and has an
432 ground state in the octahedral crystal field. It is a spin-

system and the ground state suffers a splitting (S, = +
2

and S, = + ~) due to the D4q symmetry of the crystal field

as determined by crystal-structure analysis. '

Since S„'+1 =—SI, regrouping the terms in the form

H = X { D[(S„') + (S„'—i ) ] —2JS„'S„'
n=l

(2)

one notes that the partition function Z can be expressed in
5' representation as

N

Z=Tr Q T„=TrT~,
n= 1

where all the transfer matrices T„have an identical Hermi-
tian form

(4)

where p = 1/kT and the matrix elements are given by

(S i TiS') = exp [2pJss' — [(s)2+ (s')2] },
2

where s,s' are the projections of spin s.
Starting from the Hamiltonian [Eq. (2)], the transfer ma-

trix T for S = ~ is obtained as follows.
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where X = J/2kT and n = D/4kT. Diagonalizing this
transfer matrix, eigenvalues and eigenvectors are obtained
as follows.

The Hamiltonian for the one-dimensional Ising problem
for an ¹pin ring in the presence of an axial crystal field is
given by

N

H = X [D (S„') —2JS„'S„*+i ]

31 3158 1985 The American Physical Society



31 COMMENTS 3159

Eigenvalues:

A. ~
= e cosh(9K) +e coshK + l [e cosh(9K) —e coshK]2+ 4e '0 cosh2(3E) )' 2

X2 ——e cosh(9K) +e coshK —{ [e 9 cosh(9K) —e coshK]'+4e '0 cosh'(3K) }' '
A. 3

——e sinh(9K)+e sinhK+ l [e sinh(9K) —e sinhK] +4e '0 sinh2(3k) )' 2,
A4= e 9 sinh(9K) + e sinhK —

( [e 9 sinh(9K) —e sinhK ]2+ 4e ' sinh (3K) }'
It is evident that X1 is the largest eigenvalue.

Eigen vectors:

K1

i%i) = »&, , where K~= [X~ —2e ' cosh(9K)]/[2e ' cosh(3K)]

1

lq 2) 2»2, wh««2= [X2 —2e cosh(9K)]/[2e 5 cosh(3K)]1

1
(7)

K3

ly3) = 2»2, where K3 = [A3 —2e sinh(9K) ]/[2e sinh(3K) ]

—1

K4

}&2)= 2»2, where K4= [K4 —2e sinh(9K)]/[2e sinh(3K)]

—1

Using correlation functions, ' the susceptibility is obtained as

ÃpS2X=
kT (l + K', )

l („„3+3) g]+ g3 („,&4+ 3) k, + A. 4

1+K3 ~1 ~3 1+K4 ~1 ~4
+

2

where g is assumed to be 2.0. The A, 's and K's are obtained
from Eqs. (6) and (7). 4.0

III. RESULTS AND DISCUSSION
0=0

J —0.045 lt

The successful analysis of the susceptibility data of
Cs2CrC15 4H20 parallel to the Z direction has been carried
out in terms of an Ising linear-chain antiferromagnet which
has been solved exactly. This model includes the crystal-
field effect which is comparable to the exchange interaction,
and no approximation is involved regarding their strengths
as compared with the thermal energies. Therefore, the
present calculations reproduce the experimental results at
high as well as low temperatures, while Carlin and Burriel'
were able to reproduce the experimental data at high tem-
peratures (T & 0.28 K) only. Using the present model the
exact susceptibilities have been calculated with different D
and J parameters and the results are shown in Figs. 1 and 2,
respectively. As is evident from Figs. 1 and 2, the suscepti-
bilities are less sensitive to D and more sensitive to J.
Therefore, D was fixed at the value obtained by Carlin and
Burriel' and J was varied to reproduce the experimental
results. The best-fit results are shown in Fig. 3 and the
best-fit parameters were found to be D = —0.16k and
J= —0.038k. In this figure, the theoretical results are
shown by a full line curve and the experimental results are
shown by dots. Here, no long-range order is considered

5.0—

6
e 2.0—

lO—

I I I I

0.2 0.4 0.6 0.8
T(.K)

I

l.0
I

l.2
I

l.4 l.6

FIG. 1. Variation of susceptibility with temperature for dif-
ferent values of the crystal-field parameter (D).
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FIG. 3. Magnetic susceptibility in the z direction.
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FIG. 2. Variation of susceptibility with temperature for different
values of the exchange parameter (J).

and, therefore, it contradicts the statement of Carlin and
Burriel. ' They have stated an ordering temperature
(0.185+0.005) K from the maximum slope of the suscepti-
bility curve, which is not very clear, There is no evidence
for the existence of antiferromagnetic ordering at this tem-
perature either from specific-heat or neutron-scattering ex-
periments. As the present calculation (Fig. 3) shows, the
susceptibility can have maximum slope even in the absence
of long-range order and, therefore, the existence of long-

range order is not at all necessary to explain the experimen-
tal results. Of course, any approximate theory (e.g. , mean
field or correlated effective field) should demand the ex-
istence of long-range order (even in one dimension) in or-
der to produce the susceptibility maxima in the z direction
as well as in other directions. Since the transverse Ising
model for S =

2 has not yet been solved exactly, the sus-3

ceptibilities along the b and y axes' cannot be reproduced
with the present model.
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