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Evidence for strong-coupling effects in the thermal conductivity of superconducting lead
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We have measured the temperature dependence of the thermal conductivity ~ and the electrical resistivi-

ty p of a lead single crystal between 1.7 and 10 K. Between T, and 5 K the data agree well with a recent

theory by Beyer Nielsen and Smith on electronic thermal conductivity in strong-coupling superconductors.
Below 5 K, however, heat conduction by electrons as well as by phonons is important. The temperature
dependence of the lattice thermal resistance is obtained and is analyzed in terms of resistance contributions
for phonon-boundary and phonon-electron scattering. Our results provide strong support for the Beyer
Nielsen and Smith theory.

The low-temperature thermal conductivity K of high-
purity lead has been the subject of various experimental and
theoretical investigations. ' 8 Experimentally, the thermal
conductivity in the superconducting state is observed to de-
crease below T, = 7.18 K towards a minimum near T/ T,= 0.7. Belo~ this temperature, K again increases and a pro-
nounced thermal-conductivity maximum develops between
2 and 3 K. The position and magnitude of this maximum is
found to be sample dependent. At still lower temperature
the thermal conductivity decreases rapidly.

In pure normal metals heat transport takes place mainly
through the conduction electrons while heat conduction via
phonons is generally small due to strong phonon-electron
coupling. The traditional interpretation of the thermal con-
ductivity data on superconducting lead, therefore, ascribes
the initial decrease in K below T, to a decreasing electronic
contribution as a result of the opening of the superconduct-
ing energy gap. The increase in ~ below T/T, =0.7 on the
other hand is thought to result from a dramatic increase of
the lattice contribution to the heat conduction due to the
progressive weakening of the phonon-electron scattering.
Ultimately, the phonon mean free path will be limited by
scattering from defects as well as by sample boundaries, and
the thermal conductivity then decreases and the supercon-
ducting metal has thermal properties that are similar to
those of insulators.

An alternative explanation for the observed maximum in
the thermal conductivity has recently been proposed by
Beyer Nielsen and Smith. 9 These authors have derived a
kinetic equation for thermal conductivity in strong-coupling
superconductors which includes electron-phonon scattering
as well as scattering from ordinary and magnetic impurities.
For very high-purity lead their solution of the kinetic equa-
tion shows a thermal conductivity which initially decreases
below T, because of the rapid increase in the gap and the
strong energy dependence of the electron-phonon scattering
rate. Below T/T, = 0.7, however, the electronic thermal
conductivity is found to increase again largely as a result of
the reduction in the phonon population. At T=0.25T, the
calculated thermal conductivity reaches a maximum value
which depends on the sample purity but may be twice the
value at T, . On further reduction of the temperature the
behavior is dominated by the exponential freezing out of
the number of quasiparticles, and the electronic contribution
to the heat transport is completely negligible for T( 1 K.

The solution of the kinetic equation for a range of impuri-
ty-scattering relaxation times, furthermore, showed that the
position and magnitude of the conductivity maximum was a
sensitive function of sample purity with the conductivity
maximum decreasing in magnitude and shifting to higher
temperatures as the electron scattering rate increases. From
the calculations of Beyer Nielsen and Smith it, therefore,
appears that heat transport in pure superconducting lead in
the temperature range 1 K to T, = 7.2 K might be attributed
entirely to the conduction electrons.

In order to test this idea and to determine the relative
contributions from phonons and electrons to the heat trans-
port in a pure strong-coupling superconductor, we have
measured the thermal conductivity of a high-purity lead sin-
gle crystal between 1.7 and 10 K. Because the theoretical
calculations show that the electronic component to K can be
determined only if the electron impurity-scattering time is
known, we also measured the electrical conductivity of our
sample in the same temperature range.

The single crystal was grown by the Czochralski method
from a nominally 99.9999% pure lead melt in the form of a
cylinder with a 5 mm diameter and a length of about 10 cm.
The specimen was prepared in the form of a parallelepiped
with dimensions 1.3 & 0.8 & 33 mm by a very smooth
elecron spark erosion. After mounting the thermometers,
consisting of sliced 100-A Allen-Bradley carbon resistors
wrapped in silver foil, and the heater (a small manganin-
wire coil), the sample was mounted on a sample holder in
the same manner as shown previously. In a fixed position,
the sample was then annealed at room temperature for
several weeks. The procedure to measure the thermal con-
ductivity is standard and was also described in Ref. 8. For
subsequent measurements of the electrical resistivity, four
leads were attached to the sample using a room-temperature
curing silver-epoxy mix.

The electrical resistance was measured with a four-probe
technique using both a dc and an ac method. Below T, the
normal-state resistance was determined by placing the sam-
ple into the appropriate magnetic fields.

The thermal conductivity results are presented in Fig. l.
The curve shows the characteristic features for high-purity
lead mentioned previously with the conductivity maximum
occurring at T=2.S K. The thermal conductivity at T, is
4.11 %'/cmK, while the ratio of the conductivity at the
maximum to that at T, is 1.32. Near 1.7 K the thermal con-
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FIG. 1. Temperature dependence of the thermal conductivity of a high-purity lead crystal. K~, experimental data; K„electronic com-

ponent according to the theory of Ref. 9 with c = 0.073 and K, (T,}= 4.11 W/cm K; Kg, lattice. thermal conductivity.

c = [f/(0. 15k' T,1(mp) j (2)

If we estimate v; ~ from the residual resistivity through a
Drude model we find that for our sample c = 0.2. This im-
plies that the thermal-conductivity curve appropriate for our
samples is between curves labeled D and C in Fig. 2 of Ref.
9. For such a curve the ratio K,'(T)/K, (T,) at the max-
imum is about 0.7 and is, thus, almost a factor of 2 smaller
than the experimental value. In ordei to explain the ob-
served magnitude of the thermal conductivity maximum en-
tirely through electronic heat conduction requires a residual
electrical resistivity for our sample an order of magnitude

ductivity varies faster than T', the characteristic tempera-
ture dependence for heat transport by phonons in the
boundary-scattering limit.

In its simplest form, the electrical resistivity of a pure
metal can be written as p =po+ pi, where po is the resistivi-
ty at T=O and p~ the ideal resistivity. In the Gruneisen
theory of electron-phonon scattering p& varies at T5 and our
resistance measurements are in agreement with this tem-
perature dependence. For magnetic fields above 0.05 T the
normal-state resistance was corrected for magnetoresistance
effects. The resistivity of our sample for H=0 is given by

p(T) =9.5x10-' +5.32x10 ' T (0 cm) . (1)

This implies a ratio of room-temperature resistivity to resi-
dual resistivity of about 20000. The size of the magne-
toresistancc effects and the scatter in the data is such; how-
ever, that the residual resistance cannot be determined to
better than 50%.

The calculations of Beyer Nielsen and Smith for the elec-
tronic thermal conductivity are presented in terms of a
parameter c which is inversely proportional to the impurity
scattering time 7; „. For their model electron-phonon
scattering the relationship is

smaller than what we observed. Such a value lies outside
the experimental uncertainty for the resistivity. We, there-
fore, conclude from this comparison of experiment and cal-
culation that in our case the thermal conductivity near the
maximum must be determined approximately equally by
electron as well as phonon heat transport.

The measured thermal conductivity K should then be ex-
pressed in terms of an electronic component K, and a lattice
component Kg so that

(T) =K,(Tc)+Kg(T) (3)

In annealed lead samples the lattice thermal conductivity
in turn is dominated by phonon-electron scattering and at
very low temperatures by phonon scattering from sample
boundaries so that in terms of the respective thermal resis-
tances we can write

(Kg) t—= W~= Rb+ Mph,

For lead the boundary scattering can be written as

(4)

Wq = (0.341/Ab) (1/ T3) (cm K/W) (5)

where Ab is a boundary scattering parameter (in cm) that
describes the effective phonon mean free path.

Any analysis of the thermal conductivity of a supercon-
ductor such as lead and any test of theories for the electron-
ic component to heat transport is hampered by our poor
understanding of Kg(T). We can, however, make some
qualitative comments concerning the expected temperature
dependence of Kg ~ The normal-state lattice thermal conduc-
tivity Kg is known to be small. Through work with lead al-
loys, Montgomery estimated that Kg = 1.3 x 10 T and
Kg ( T, ) would thus amount to only 2% of K ( T,). It is then
reasonable to expect Kg to also be small near T, so that
K ( T) = K,'( T) in that temperature region. As the tem-
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perature is lowered, the phonon mean free path should in-
crease and Kg is expected to rise.

It was shown by Odoni, Fuchs, and Ott, that K ( T) of
high-purity lead samples with dimensions 'similar to those of
our specimen show a T temperature dependence near 1.2
K. At that temperature there seems no doubt that the ther-
mal conductivity is entirely phonon dominated. In the low-
temperature region for our sample we should, therefore, ex-
pect K~ to show a T or weaker temperature dependence. In
our analysis we have thus assumed that the electronic con-
tribution is as calculated by Beyer Nielsen and Smith, and
we then obtain for ag( T) the expression

IO.O,

IO—

i IO~0

—I.O

(6)

where x,'(T,c)/~,"(T,), is the electronic thermal-conduc-
tivity ratio calculated in Ref. 9. For our analysis we have
set Kg ( T~) = 0.

It is difficult to calculate from the residual resistivity the
correct c parameter. In view of this and because of the sub-
stantial error in the residual resistivity it seemed more ap-
propriate to determine c by insisting that near the low-
temperature end of our experiment the computed lattice
conductivity should have a T temperature dependence.
For c = 0.073 (curve c in Fig. 2 of Ref. 9) this condition is
approximately satisfied and the electronic component as well
as the resulting lattice conductivity are shown in Fig. 1. The
lattice conductivity has a maximum value of 2.86 W/cmK
near 2.2 K. As Fig. 1 sho~s, the electronic component for
this (and smaller) value of c follows the experimental points
very well from T, to the minimum in K near 5.5 K. This
implies that the lattice conductivity in this temperature re-
gion is too small for us to determine. In the low-tem-
perature region K~/T3 = 0.33 W/cm K4. From Eq. (5) this
yields a boundary scattering parameter Aq=1. 1 mm which
is, thus, comparable to the lateral dimensions of our sample.
We can now use (4) to determine in a limited temperature
range JY,h, or alternatively K„h, = ( W,h, ) ' which is the
component of lattice thermal conductivity that is limited by
phonon-electron scattering. The result is shown as curve a
in Fig. 2.

We have attempted a similar analysis for the thermal con-
ductivity measurements on high-purity lead by Mezahov-
Deglin. 7 His results show the same general features for the
thermal conductivity in the superconducting state that we
observe. The main difference appears to be in the low-
temperature region. Our measurements vary as T" with n
larger than three while most of his results on well annealed
samples that had cross-section areas larger than ours appear
to show a T temperature dependence that extends close to
the thermal-conductivity maximum. For samples that are
strained, the conductivity maximum shifts to higher tem-
peratures and for a severely deformed sample the conduc-
tivity sho~s a T3 region up to about 1.2 K and a much
stronger temperature dependence above this value. The
best samples investigated in that work had resistance ratios
somewhat higher than the value for our sample although, as
in our case, the uncertainties are large and the appropriate c
parameter is very difficult to estimate. To estimate Kph
from his data we, therefore, again let c = 0.073. The magni-
tude and general form of Kph that we obtain for his
highest-purity samples is shown as curve b in Fig. 2, and is
seen to be similar to ~ph, for our sample.
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Between 1 and 3 K the character of the thermal-conduc-
tivity curves of high-purity lead is strongly affected by pho-
non-boundary scattering. This is illustrated in Fig. 2. For
the curves shown the total thermal conductivity is written as

x(T) =~, (T,c)+ [(a/T')+ Wpg, ] (7)

The electronic component was obtained for c=0.073,
and we used curve b of Fig. 2 for W„„, with K(T,) =4.2
W/cm K. For large values of a—that is, samples with small
cross sections or with internal phonon-scattering centers-
the thermal conductivity is small and follows a T law to al-
most 1.4 K. Beyond that temperature heat conduction by
electrons becomes significant and near 2.5 K phonons and
electrons contribute approximately equally to the heat trans-
port. As the phonon mean free path is increased by either
increasirig the sample diameter or by annealing a large di-
ameter sample, significant deviations from a T' behavior set
in at progressively higher temperatures while the thermal-
conductivity maximum shifts to lower temperatures.

The available experimental data seem in general agree-
ment with these results. For example, our sample has
a=3.6 (cmK4/W) and we would expect a faster than T'
temperature dependence for our lowest-temperature points
in agreement with the measurements. For some of the
samples of Mezahov-Deglin, on the other hand, o. ——1 and,
again in agreement with experiments, a nearly cubic tem-

FIG. 2. Temperature dependence of ~ for high-purity lead ac-
cording to Eq. (7) for a range of boundary-scattering parameters a.
For all curves the electronic contribution was obtained from Ref. 9
with c=0.073 and K(T,) =4.2 W/cmK, and the lattice thermal
resistance from phonon-electron scattering was assumed to have the
form of curve b. For large values of o. the curves show a kink near
1.5 K which reflects the onset of heat conduction by the conduction
electrons. Curves a and b are the lattice conductivity limited by
phonon-electron scattering. a, this work; b, Ref. 7.
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perature dependence for the low-temperature side of the
thermal-conductivity maximum is suggested by Fig. 2. For
the curves in Fig. 2 a constant c parameter and, hence, a
constant electron mean free path I was assumed. In general,
changes in Ab will be accompanied by changes in I, and will,
thus, also lead to changes in the electronic component to
the heat transport. Changes in l can, furthermore, affect
the matrix elements for phonon-electron coupling so that
x», will in general vary with sample quality. Our simple
analysis is, however, capable of reproducing most of the
features of thermal-conductivity curves on high-purity su-
perconducting lead and the results provide strong support
for the work of Beyer Nielsen and Smith. The results of
Fig. 2 suggest a more reliable way of obtaining the electron-
ic component K, and of verifying directly the exponential
temperature dependence of K,' near T, = 0.25. Measure-
ments between 0.8 and 2 K of the thermal conductivity of
high-purity lead wires with diameters less than 2 mm

should show an initial T temperature dependence while
above about 1.3 K a much more rapid temperature depen-
dence should be observed. Thermal resistance from pho-
non-electron scattering is negligible below about 2 K, so
that the deviation of the experimental data above 1.3 K
from an extrapolated T behavior should yield the magni-
tude and initial temperature dependence of ~,' as well as the

appropriate c parameter.
Our analysis suggests that in high-purity samples the pho-

nons contribute only about 5'/o to the total heat conductivity
at T/T, = 0.7 while near the thermal-conductivity maximum
phonon heat transport predominates in samples with a large
phonon mean free path awhile electronic conduction predom-
inates if the phonon mean free path is short. It is suggested
that a more detailed examination of the theory of Beyer
Nielsen and Smith should be possible through thermal-
conductivity measurements between 0.8 and 2 K on small
diameter high-purity lead crystals.
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