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Spin-1 exchange-interaction model of ferromagnetism

H. A. Brown
Physics Department, University of Missouri-Rolla,

Rolla, Missouri 65401
(Received 30 July 1984)

The spin-exchange operator for spin S= 1 and a constant-coupling-like approximation are used to evalu-

ate the thermodynamic properties of a system described by a two-spin Hamiltonian that includes dipole and

quadrupole interactions. The dipole and quadrupole moments and the exchange energy are found as func-

tions of temperature. There is a critical temperature, T„which depends on the coordination number of
the lattice at which the system undergoes a second-order phase transition. Below T„both magnetic mo-

ments, simultaneously, take on nonzero values and have infinite derivatives there while the derivative of
the exchange energy is discontinuous. Comparison is made with other results where possible and reason-
able agreement found.

Pt2= (St ~ S2)2+ St S2 —1 (2)

Since then, numerous papers have appeared in which the
original Heisenberg bilinear operator was modified by the
addition of a biquadratic term, (St S2), of arbitrary, adju-
stable magnitude. Much less numerous have been applica-
tions of the Schrodinger spin-exchange operator for S= 1 or
greater. The present work is an addition to the latter group,
using a pair of neighboring spins and a constant-coupling-
like approximation.

We begin with the assumption that the effective two-spin
Hamiltonian should be

A brief history of the theoretical problem considered in
this paper follows. In 1928, Heisenberg' proposed, as a pos-
sible source of ferromagnetism, the exchange interaction.
This could be expressed as an operator involving the scalar
product of the spins of two neighboring atoms, S] S2.
Dirac showed that the permutation operator for the spins
of two electrons has the form

Pt2= ~(1+a t o2)1

In 1941, Schrodinger developed an expression for the
spin-exchange operator for two identical particles of arbi-
trary spin. It included terms (St S2)" for v=0, 1, . . . , 2S.
An application of this operator to the problem of fer-
romagnetism was made, using the high-temperature expan-
sion (HTE) method, by Allan and Betts" in 1967 for a spin-
1 system, for which
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p=pj ~

X=Pp, H
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2
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(7)

are evaluated and equated to those obtained from a one-
spin (molecular field) Hamiltonian

m'= —I H'sg —vK's,',
by

Z' = 1+2e" cosh'. ' (9)

and

K= pvK

P =1/kT

The method used to evaluate the internal fields H and K
has been shown, in a similar calculation, to be equivalent
to the constant-coupling approximation (CCA). Explicitly,
the values of the dipole and quadrupole parameters

A = —JPt2 —pH(St, + S2, ) —vK(S$, + S22, ) (3) 9 lnZ'm'= (10)
where J is the Heisenberg exchange integral and P~2 is the
spin-exchange operator for S= 1 [Eq. (2)]. The second
term is the usual Zeeman energy, and the last term includes
the quadrupole interactions. The parameter J fixes the tem-
perature scale, while H and K are the dipolar and quadrupo-
lar internal fields representing the interactions of the two
spins with the rest of their neighbors, and are to be deter-
mined as functions of temperature. The magnetic dipole
and quadrupole moments of the spins are given by p, and v.

The eigenvalues of the Hamiltonian are found straightfor-
wardly and the resulting partition function turns out to be

Z = e~[1+2e2" cosh(2A. ) ]+2 cosh(p) [(e'"+2e" cosh(A. ) ]

(4)

Q lnZ'
q

QK

using the assumption that the internal fields are additive

H' z K'
H z —1 K

where z is the lattice coordiriation number.
The equations

(12)

m=m' q=q (13)

can both be solved numerically. Thus, the internal fields
and m and q are found as functions of temperature. Also
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FIG. l. The magnetization parameters m=(S, ) and q=(S2) and the exchange energy per atom a=E«/I=4(P) for a bodY-centered
cubic lattice (z=g) as functions of the reduced temperature t= T/T, Note the cha.nge in scale for t) 1. The dashed lines are the results
without the quadrupole terms in (3).

obtainable is the average exchange energy per atom (in
units of J):

Eex z 6 lnZ
J 2 Qp

(14)

An important result of the solutions for m and q is that
there is just one critical temperature T, and a very simple
phase diagram. The system is magnetically disordered
above T,; below T, both dipole and quadrupole moments
are nonzero.

The algebraic solutions of Eqs. (13) show that the value
of T, would be unchanged if either E or 0were assumed to
be zero. The thermodynamic properties will be different,
but not T,. More specific conditions are as follows.

(a) If E =0, T, is found from the low-field limit, H 0.
Then q = q'= ~ is satisfied and m = m' gives the critical

temperature for dipole ordering as
t

J y
l

z+1
kT 5

(15)

(b) If H=O, m—= 0—= m', and with IC 0, q=q' gives
the same critical temperature, but now the ordering is qua-
dr upolar.

(c) If neither H nor E=O, then the order in which the
double limit H, E 0 is taken is not important, the only
difference is which of Eqs. (13) defines T, . Some other
results show a similar phase diagram. Using the spin-
exchange operator, Chen and Joseph found that all the
multipolar susceptibilities, X„, v= 1, . . . , 2S, diverge at the
same temperature. However, the Hamiltonian used to cal-
culate X„ included only one field term, proportional to 5,",
and so is not the same as (3).

For further comparisons we must go to the literature on
biquadratic exchange. Using the molecular-field approxima-
tion (MFA), Chen and Levy~ find that there is only one
critical temperature for any a, but the symmetry of the or-

TABLE I. Calculated values of kT, /J. Numerical values of the
reduced critical temperature vs the coordination number z from
various calculations with the method of approximation employed
(see text for abbreviations). The numbers in parentheses were ob-
tained by the same authors in some of their earlier work.

12 Reference
Approximate

method

2.5

2.52-2.76
(3.48)
3.6
1.03

3
2.4

(4.55)

1.82

3.09
4

7.6
3.23

4,6
14
15

13

16
Present

HTE
GF
GF

GF

Oguchi (Ref. 17)

dered state is in doubt. The same authors evaluated the di-
pole and quadrupole susceptibilities, X~ and X2, using the
HTE method up to terms in T . The coefficients in these
series are used to find the singularities at, say, T~ and T2,
the higher of the two taken to indicate the type of order
below that temperature. In both calculations, the same am-
biguity exists. For o. & 1, the transition is to ordered di-

poles, for o. ) 1, the transition is to quadrupoles. At o. =1
(and Tt= T2) the situation is uncertain. Another MFA
result predicts that the purely quadrupolar phase will not
exist for any n. A Green's function (GF) calculationto
agrees. Another calculation using the CCA (Ref. 11) em-
ploys a Hamiltonian that is almost the Ising model
equivalent of (3). There are differences that prevent any
direct comparison, however, and in any event, the region
near o. =1 was not considered, only o. «2. Note that usual-
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ly, but not uniformly, n is the ratio of the biquadratic to the
bilinear exchange integrals, occasionally it is the inverse, or
something else.

The thermodynamic functions m, q, and e [Eqs. (6), (7),
and (14)] are easily obtained as functions of temperature by
numerical means and are shown in Fig. 1. The shapes of
the magnetization and energy curves are typical of a
second-order transition. Both m and q go from
saturation —or complete order —at T = 0 to disorder
(tn = O, q = -f ) at T, where their slopes are infinite. The ex-

change energy rises from —z/2 to —z/6 in going from zero
to infinite temperature, showing a sharp rise just below T,
and a discontinuous slope there, i.e., a discontinuous heat
capacity. Qualitatively at least, this behavior is in general
agreement with the observed properties of ferromagnets.
The figure also shows the results of the calculation' with

the S, terms not included, i.e., with a Hamiltonian like (3)
but with K=O. It is seen that the absence of these terms
leads to a magnetization and exchange energy that change
more abruptly just below T, .

There is little from other methods with which to compare
these results. The HTE methods, of course, do not apply
below T, . Biquadratic exchange calculations, by whatever
means, usually evaluate only the n dependence of T, and
either predict a first-order transition for o. = 1 (Refs. 9 and
13) or give ambiguous results. 7

Finally, values of kT, /J from various theories are collect-
ed in Table I. There is little evidence of agreement but the
present result is gratifying close to the HTE value, which is
usually considered "exact." Considerable scatter exists in
the GF results, reflecting their sensitivity to the mode of
decoupling.
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