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Information theory and resistance fluctuations in one-dimensional disordered conductors
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A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional

conductor with static disorder. For the probability distribution of the transfer matrix 8 of the conductor we

propose a distribution of maximum information entropy, constrained by the following physical require-

ments: (1) flux conservation, (2) time-reversal invariance, and (3) scaling with the length of the conductor

of the two lowest cumulants of cu, where R =exp(ice J). The preliminary results discussed in the text are

in qualitative agreement with those obtained by sophisticated microscopic theories.

The zero-temperature dc resistance of a strictly one-
dimensional conductor with static disorder is known to be
nonadditive and non-self-averaging. ' This is due ultimate-
ly to the coherent elastic scattering from the random static
scatterers in the disordered conductor, resulting in exponen-
tial localization of the electronic eigenstates and spatial
nonergodicity. Thus, the resistance fluctuates from sample
to sample even when the samples are prepared macroscopi-
cally identically. It is necessary then to calculate the full
probability distribution of the resistance and not just some
(ensemble) averaged value.

'

Recently, such a distribution has indeed been obtained by
several authors, ' ~ for idealized models of disorder. Gen-
erally speaking, one could summarize their procedure saying
that the transfer matrix R of the system is written in terms
of more "microscopic" quantities (the potentials of the in-
dividual scatterers and their positions), for which a statisti-
cal law is assumed and used to evaluate the various aver-
ages of interest.

In the end, some results depend on the details of the mi-
croscopic quantities, but several others seem to be of a rath-
er general nature. ' It is thus tempting to try to construct
the distribution of R (the transfer matrix for the whole sys-
tem) directly, i.e., instead of postulating a statistical law for
the microscopic quantities, we would like to try and postu-
late a statistical law directly for R, a procedure which seems
conceptually simpler. We want to impose on that distribu-
tion some important physical requirements and look for the
"most probable distribution" (i.e., the one of maximum
information-entropy5 ) that satisfies them, thus implying
the use of a minimal set of assumptions.

From flux conservation and time reversal invari-ance of the
Hamiltonian, one can prove' that a transfer matrix R must
be of the form

dp, (R) of SU(1,1). This measure remains invariant when
all the R's are multiplied by a fixed one, Ro. We thus write
the differential probability of our ensemble of R matrices in
the form

u (R) =p(R)di (R), (2)

x [U(L2/2)R)U( —L2/2)1 (3)

The U's in Eq. (3) are diagonal matrices that take care of
the displacement necessary to center the resulting wire at
the origin [from Ref. 1, if the origin is shifted by the
amount xp, Ut~(xp) = U22 (xp) = exp(ikxp), k being the in-
cident wave number]. We can also write (3) as

R'= R2R I

and we now discuss how to choose the probability density

p (R).
First of all, if we specify the material that all our wires are

made of, we ask that the probability density p (R) be only a
function of R and the length L of the wires, i.e., pL (R) (we
may assume, specifically, that the origin of coordinates al-

ways coincides with the midpoint of the wire). We now ask
for the following combination requirement. Consider the en-
semble pL, (R) associated with wires of length L. We as-
sume that this same ensemble of R's is generated if we pick

up, from their respective ensembles, wires of lengths LI
and L2 (so that Lt +L2= L) and put them together in pairs.
We are assuming that LI,L2 are large compared with the
correlation length of the electronic potential, so that RI,R2
(the transfer matrices of the individual wires centered at the
origin) can be considered as statistically independent. The
resulting transfer matrix R takes the form

R = [U( —Lt/2)R2U(L, /2))

I~ I' —Ip I'= I, R'= U(L/2)RU(L/2)

i.e., R is pseudounitary and unimodular. The collection of
all such matrices forms the group SU(1,1), a noncompact
group homomorphic to the Lorentz group SO(2, 1). The no-
tion of equal a priori probability for the R matrices is then
naturally provided by the invariant or Haar's measure

and similarly for Rt, R2. Since R and U belong to SU(1,1),
so does R'. In the notation of Eq. (1), n'=n exp(ikL),
P'= P; since these relations can be trivially used to translate
to R all the conclusions that we shall find below for R',
from now on we shall drop the prime from R', to simplify
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the notation.
If D denotes any representation of SU(1,1), (4) then

gives

D (R) = D (R 2)D (R )) (6)

Taking averages on both sides of this equation and using
the notation

0 —1 0 —i
T] 1 0 ~ 72 . 0 q 'T3

From (11) we find explicitly

—1 0
0 1

R = (cosh&a)1+i cu
. sinh~

where v; are analogous to the Pauli matrices

(D).= )l D (R)pt. (R)dp, (R)

we have

(7)
CO3

cosh~ + i sinhcu
OJ2 —i 0) ]

sinheo

(D)&$+tp (D)L/(D)L

Notice the important conclusion that the matrices on the
right-hand side of (8) must commute, as a consequence of
our combination requirement. Equation (8) implies that
(D) t, must depend on L as

(D(R)), =W', (9)

where A depends on the representation, but not on L.
Since (9) holds for any representation, it must hold in

operator form, i.e., when we write D =exp(2iao J), with
eo ~ J= co~ J~ + co2J2 —~3J3 J, being the generators of
SU(1,1) and 2'; (the factor 2 is for later convenience)
three parameters of SU(1,1) analogous to those of the axis
of rotation in SU(2), or R (3). We then write

Cd2 + l 0) ]
sinhoj

M

M3cosh' —i sinhco
0)

(12)

where cu =eo~+m2 M3.2 2 2 2

It is shown in Ref. 1 that R ~t = 1/t, R t2 ——r/t (where r, t
represent the reflection and transmission amplitudes of the
one-dimensional scattering problem) and that the "dimen-
sionless resistance" is given by Landauer's result p = Jr/t J'.
In terms of the parameters co;, the resistance is then

2 2
CO~ + CO2P= (sinhcu )

CO

(13)

In terms of the co s we can also find the invariant mea-
sure of SU(1,1) (see Ref. 7, p. 313) as

t 2

( 2(~ t) (10)
dp(R) = dai

co
J

(14)

Let us briefly interrupt the argument to see a few applica-
tions of the parameters ~;. We first note that the R ma-
trices, themselves, can be written in terms of the cu; as

R (a)) =e'"',

where deo=d~~d~2d~3. This expression is analogous to
the one obtained by Wigner' for the group R (3).

We now go back to the requirement (10) and write it as
(if the J were commuting operators, this would be the
familiar cumulant expansion)

ln(e '"' )t. = 2ig ~ J + g gp(ru cuit
—co mp) J Js(2i)'

2t

+ g g&g„(co costa~ —~re cottru„—~co co&cu„+2~ co&ru„)J J&J~+ =L Operator,(2i)' 3 — 3

3I
(15)

o) =a L

Cd 0)p M Alp= 6 pL

(16a)

(16b)

and look for that distribution that has maximum informa-
tion entropy P', among those distributions that satisfy (16a)
and (16b). A is defined as~ 6

where the bars on the rhs denote the same ensemble aver-
age as on the lhs and a sum over repeated indices is under-
stood. In Eq. (15), g&=g2=1, g3= —1. We can satisfy
(15) by requesting that the various independent terms in
the expansion be proportional to L. In practice we do not
have information on all the moments of the distribution of
co. We thus propose to fix the first two cumulants

Loosely speaking, among all the distributions whose two
lowest cumulants scale with L, (18) represents the "most
probable one, " or the one that treats R "most randomly. "

Equation (18) gives a prediction for the joint distribution
of co&, co2, co3 (and hence for the real and imaginary parts of
Ri [see Eq. (12)]j that can be compared with detailed
Monte Carlo calculations and with other theoretical models.
Some preliminary results are examined in what follows.

We first consider the large-L limit where, from (16), the
distribution of co, Eq. (18), should be concentrated in a re-
gion far away from the origin. Let us assume that this re-
gion does not cross the "light- cone, " so that it is well
within the domain op & 0, or co & 0. Suppose op (0 first.
Then u& =i@ From (1.3),

P'[p] —= —Jl p (R) lnp (R)dp, (R)

One finds the result5 6

(17)
and

p = (cu&+cup) sin @/@ ~ (cog+a)2)/@

dP(ao) = C exp(h. ra —A. ~m cup) dao
sinh~

=p (ctl )decl (18)

p l (~1)'+ (~2)' j/ 1 (t0t )'+ (~2) (~3)'I

independent of L from Eq. (16). The physical situation'
will then arise when cu (eo) ) 0, which we now consider.
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(r) =we s~ (20)

One can prove, and this will be reported in a future publica-
tion, that the same form (20) arises from a microscopic cal-
culation, in which the potential is assumed to be a Gaussian
random process with the properties ( V(x)) = 0,
( V(x) V(x')) = Kg(x —x'); in that microscopic calculation
the resulting exponent is B=K(2mt k ')', with m the
mass and k the wave number of the electron.

To be more specific about the above results, as well as to
have a preliminary suggestion about the physical interpreta-
tion of the parameters appearing in Eq. (16), we consider a
particular case which can be related to other publications.
For ai = a, a2= a3 ——0, bii = b, b22= b33 b pep ——0 [since
only co~ survives, the restrictions imposed by the noncom-
mutativity of the J 's in Eq. (15) do not appear], the distri-
bution of ln(1+p) reduces, for large L, to that of Ref. 13,
i.e., a Gaussian with centroid 2aL and variance 2bL. This
also agrees with the results of Refs. 2 and 12. The corre-
sponding distribution of p then becomes

2
e

—a I /2b

( ) e a/2b —1 —(inp) /SbL (21)
42m bL

whose general structure is similar to that found in Ref. 4 as-
suming a Gaussian random process for the potential. For
the coefficients A„,B„associated with the nth moment of
the resistance, Eq. (19), one finds explicitly

A„=4 ", B„=2n(a+nb) (22)

so that the c and c' mentioned right after Eq. (19) in con-
nection with varp/(p)' take the values c'= 1, c =4b In.
this same model, the coefficient B of Eq. (20) is a —b/2;
this then connects the parameters a, b with a statistical prop-
erty of the potential, through the result indicated right after
Eq. (20). Comparing these results with those of Refs. 1—4
and 11-13,we see that we have to choose our input param-

One can calculate the nth moment of the dimensionless
resistance p of Eq. (13) with the distribution (18), by using
the saddle-point approximation. The result turns out to be
of the form

(p") =A„e" (19)
which has a structure similar to that found in Ref. 11. In
particular, (varp)/(p) 2 —c' exp(cL), which, in general,
diverges with L; occasionally it could be constant, when
c = 0; this agrees with the remarks made in Ref. 1, Sec. 9.3.

Using the saddle-point approximation one can also calcu-
late the average of the transmission amplitude t = I/Rii
with the result

eters a and b as proportional to the inverse of the loca1iza-
tion length Lo. We can thus be more explicit about the
above large-L approximation and interpret it as meaning
L»LO.

In the opposite extreme, in which L is small compared
with the localization length, other authors recover the
linearity of (p) with L. In our model, we expect p(ai) to
be concentrated near the origin, around which we can make
a series expansion. Considering for the parameters of Eq.
(16) the particular case of the previous paragraph, one can
show

(p) = bL + (a2+b )L + (23)

where the leading term is indeed linear in L.
To summarize, we have suggested the joint distribution of

Eq. (18) for the matrix elements of the transfer matrix (a
more complete distribution than what normally appears in
the literature), based only upon the following physical infor-
mation: (1) flux conservation, (2) time-reversal invariance,
and (3) scaling with L of the two lowest cumulants of the
co 's. The specific physical system in question enters
through the specific value of the scaling constants. The fi-
nal expectation values are expressed as three-dimensional
integrals, instead of involving the much more numerous mi-
croscopic variables of the standard treatments.

The preliminary results mentioned in the text agree with
the general trends of other models. A more detailed ac-
count of them will be given in a future publication. More
extensive calculations are needed, however, and these we
plan to perform in the future. Of course, more information
could be added to the problem by scaling, in Eq. (15), terms
that contain higher cumulants of the cu 's.

We may also mention that an analysis of this problem
very much connected with the group SU(l, l) was given in
Refs. 13 and 14 and a study of its relation with the present
approach would also be interesting. A clearer understanding
of that relation might also be helpful in understanding the
physical significance of the parameters of Eq. (16).

As a final observation, the reader may find applications of
information theory to other physical problems in Refs. 5
and 6.
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