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The development of a modulated (2,2) antiphase ordering in the two-dimensional anisotropic
next-nearest-neighbor Ising model is studied following a quench from the disordered phase to a
low-temperature unstable state. The domain growth and the dynamical structure factor are found
to evolve anisotropically. The structure factor is shown to satisfy scaling for a variety of choices of
a length scale. The growth laws for different definitions of length scale are shown to be most con-
sistent with an effective power-law exponent of n =0.50. The dynamical roles of different types of
domain walls and vertices present in this model are discussed, with an emphasis placed on the need

for theoretical studies of this model.

I. INTRODUCTION

The kinetics of domain growth in systems which are
quenched from a high-temperature disordered phase to a
temperature below the critical temperature of an order-
disorder transition has recently received considerable
theoretical and experimental attention.'!# These non-
linear phenomena far from equilibrium are fundamental
problems in statistical mechanics and are of practical in-
terest in a variety of fields including metallurgy and sur-
face science. In particular, models of physisorbed and
chemisorbed systems are currently receiving considerable
attention.*!* This is warranted because these systems can
be fairly realistically modeled by simple lattice-gas Hamil-
tonians.!’

The quantities which are typically analyzed in these
thermal-quench studies are the growth law for the average
size R (¢) of the ordered domains, and the nonequilibrium
structure factor S (E,t) where X is the wave vector and ¢
is time. Both R(#) and S(K,?) can be experimentally
studied by electron microscopy and low-energy electron
diffraction, respectively. For the nonconserved Ising
model, with a doubly degenerate ground state, it is now
known theoretically? and experimentally>* !4 that

R(t)~t", (1)

with n=1 and that the structure factor satisfies time-
dependent scaling,

S (k,t)=R%t)F(kR(t)), t>t, ()

where d is the dimensionality, F is the scaling function,
and t, indicates the initial time period after which the
scaling is valid.

Recently these properties have been tested in systems
with a variety of features,” !? in order to find the unifying
principles which may be operative for the growth process-
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es. It is thought that there may exist universality classes
in analogy to those known from critical phenomena,
which would be partially determined by the degeneracy of
the ground state>™!2 of the system. It has also been sug-
gested’~® that the domain wall “softness” may play a role
in determining the universality class. This issue remains
somewhat unsettled, however.! In a recent Monte Carlo
study by Sadiq and Binder® the domain growth in a com-
mensurate modulated structure was addressed. In a very
careful study of the role of the conserved density com-
bined with the ground-state degeneracy p >3 they found a
growth law with an exponent n=+. If true, this implies
a new universality class. (Note that although the density
is conserved in this model, the order parameter is not con-
served.) For the case with a degeneracy p =2 the conser-
vation of the density does not play any role.*!* The sim-
ple lattice-gas model studied by Sadiq and Binder shows a
richness of different types of domain walls which can play
a role in domain growth. Another class of modulated
structures in incommensurate systems has recently been
studied theoretically by Kawasaki.!® Such incommensu-
rate structures appear for example in the N-state clock
model [N > 5 (Ref. 17)] and the chiral clock model.!®
In this paper we have chosen to study a two-
dimensional anisotropic next-nearest-neighbor Ising
(ANNNI) model,'*?° which is described by the following
spin Hamiltonian:
ff=—(2)(J15ijsi+1j—-lzsijsi+2j +Josisij+1), Q)
ij
where Jy,J1,J2>0 and the sum is over all sites of a
square lattice, each site being occupied by an Ising spin
with s;;==+1. This spin Hamiltonian can be simply
transformed to a lattice-gas Hamiltonian. To our
knowledge there is no physisorbed or chemisorbed system
which is described by such a lattice-gas Hamiltonian.
Nevertheless, this Hamiltonian offers yet another (very
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simple) example of modulated commensurate and incom-
mensurate structures. In addition it is perhaps the sim-
plest model in which to study the effect of anisotropy on
domain growth.

Figure- 1(a) shows the phase diagram of the ANNNI
model, which demonstrates the three different ordered
structures possible in this model: a commensurate fer-
romagnetic phase, a modulated (2,2) antiphase, and an in-
commensurate phase. The boundary between these phases
occur at a value of the parameter a=J,/J,
=+ (K=J,/J;=7). We have quenched to the (2,2) an-
tiphase region of the ANNNI phase diagram. The modu-
lated (2,2) antiphase has a ground-state degeneracy p =4
and consists of an alternating sequence of two ferromag-
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FIG. 1. (a) Schematic phase diagram of d =2 ANNNI model
based on the free-fermion approximation by Villain and Bak
(Ref. 19). Ferro, para, (2,2), and I refer to the ferromagnetic,
paramagnetic, antiphase, and incommensurate regions of the
phase diagram, respectively. The location and temperature of
the quench is indicated. (b) Some of the different types of
domain walls using lattice-gas terminology; (i) heavy-light wall,
(ii) superheavy-superlight wall, (iii) soft superheavy—soft super-
light wall, (iv) soft heavy—soft light wall; (v) and (vi) are the
only two possible antiphase boundaries in the y direction. Open
and solid circles correspond to up and down spins, respectively.

netic layers of up and down spins in the x direction. This
is described by a two—component order parameter?

x(Q
Ya= (NM)‘/2 (2 Snm

where Q,=(27/a)($,0), Q,=(27/a)(—+,0), and M
and N are the number of sites in the x and y directions,
respectively. After a deep quench to the (2,2) antiphase
region we expect to see the structure factor

2

>, a=1,2 (5)

), a=1,2 @)

- =

sa(E,t)=< anme” Q+ X7,

evolving at these Bragg positions Qa (K is the deviation
from the Bragg position). In this paper we study S,(k,?)
and drop the subscript hereafter.”® Due to the anisotropy
of the Hamiltonian, Eq. (3), we would expect to see an an-
isotropic structure factor. Thus the growth rates in the x
and y directions should differ. Indeed we find that the
growth laws in the x and y directions have the same time
dependence but with different amplitude factors. The
growth laws are found to be most consistent with an ef-
fective power-law behavior given by the exponent
n=0.50. Further theoretical studies of the growth laws
for this system seem necessary, however, in view of the
complexity of the domain walls shown in Fig. 1(b). The
role of these domain walls will be discussed in qualitative
terms later. We also propose a generalized dynamical
scaling form which takes into account the anisotropy of
the structure factor.

II. RESULTS

We have studied the kinetics of domain growth of the
ANNNI model'*?° by preparing a system of M X N spins
in an unstable state by instantaneous quenching from an
infinite temperature to the low temperature kg T /J,=0.2.
With the choice of anisotropy parameters, a=0.8 (K =4),
this is a deep quench within the (2,2) antiphase region
[Fig. 1(a)]. The dynamics of the system is chosen to be a
simple “Glauber spin-flip” process, which for an adsor-
bate system would correspond to random evaporation and
condensation events of adatoms on a surface. We have
considered a square lattice with periodic boundary condi-
tions primarily of size 120<60. Test runs on a larger
(200 100) lattice yielded the same results as were ob-
tained on the smaller lattice. This we interpret as indicat-
ing that the system size is large enough to encompass the
physics of the phenomena of interest. Other more subtle
finite-size effects are possible,* however.

A standard requirement of Monte Carlo simulation is
to obtain good statistics. In nonequilibrium phenomena
this becomes even more important, because time averages
are not ensemble averages. It should also be mentioned
that a larger system cannot be “broken up” into many
smaller independent systems to effectively increase the
number of quenches. This is due to a long-range instabili-
ty at ¢t =0 which connects all regions of the system.!> Our
results involve 120 and 300 runs for the structure-factor
and perimeter-length studies, respectively. We believe this
provides reasonable statistics for this model.
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The evolution of the system after the quench is rapid,
as is demonstrated by a typical sequence of diagrams in
Fig. 2. The time region of our study is limited to <200
Monte Carlo steps (MCS) per spin, i.e., to the regime be-
fore percolation effects become important. The domain
growth proceeds anisotropically. This is to be expected
since the Hamiltonian is anisotropic. It should be men-
tioned that in Fig. 2 we have not made any distinction be-
tween the various domain walls, shown in Fig. 1(b). Later
in this section we will discuss their role in determining the
rate of growth of domains.: We also find three- and four-
rayed vertices occurring in the morphological structure,
due to the fourfold degeneracy of the ground state. These
do not appear to play a significant role in the growth.

The anisotropy of domain growth is apparent in the
shape of the structure factor. This can be made quantita-
tive by determining a generalized second moment in the
(kysky) plane,!

S kOIS (k(6),1)
SS(k(0),)

where 0 is the angle between k(68) and the k, direction.
Thus 6=0 and 6=1/2 correspond to second moments in
the x [k$” =k, (0=0)] and y [kY’ =k, (8=1m/2)] direc-
tions, respectively. We find that the anisotropy of the
structure factor?? as measured by the quantity (k¥ /k5")
remains roughly constant over the time region 0—200
MCS/spin. This feature of the anisotropy is an indication
of scaling of the structure factor S(k,?) with a time-
dependent length. We have tested the scaling in various
cross sections in the (ky,k,) plane by calculating the fol-
lowing scaling functions,

F(u)=k,(0,t)S(k(0),t), u=k(8)/VvV'k,(6,t) (7

ky(0)= (6)

(a) 20 MCS/spin

%‘

for various values of 6. In Fig. 3(a) we show this scaling
along the line 2k, =k,. For all the 6 values considered,
the scaling seems to hold to a good approximation.®> As
an alternative time-dependent length scale we have used
S(0,2) (which is proportional to the square of a length) in
the following way:®

F(it)=S8(k(8),t)/S(0,t), #=V'S(0,00k(0) . (8a)

In Figs. 3(b) and 3(c) we show the scaling along the lines
2k, =k, and k,=0, respectively. Scaling also holds in
these cases. In addition, we have tested scaling using the
second moment of the “full” anisotropic structure factor,

ky(t)=———. (8b)
>S(k,1)
All these differently defined length scales seem to lead to
scaling of S( K,?). Thus these length scales are essentially
equivalent.
In order to analyze the growth rate of the average
domain size, we have used three different definitions of a

length scale. The first is due to Sadiq and Binder,® who
define a length through

S0,)=MN2+v3) , ‘ )
so that
RE(1)=S(0,1) /9% (10)

corresponds to an effective domain area. ¥ denotes the
equilibrium value of the order parameter, which for the
low temperature considered in the present study has a
value close to unity. The second quantity we use is the
perimeter length per unit area (i.e., the number of broken

(b) 100 MCS/spin

(c) 200 MCS/spin

J_.r“"

FIG. 2. Typical time evolution of domains after an instantaneous quench.

domain walls of Fig. 1(b).

g

No distinction is made between different types of
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FIG. 3. Dynamical scaling function of the structure factor. (a) Scaling with the second moment k,(8) along the line 2k, =k,. (b)
Scaling with the peak height S(0,¢) along the line 2k, =k,. (c) Scaling with the §(0,¢) along the line k, =0.

bonds)"? in the x and y directions, respectively. We will -

quote results for the inverse perimeter density squared,
A;(t), for the x and y directions, and also for the total
perimeter. The third length scale chosen involves the in-
verse second moment as defined in Eqgs. (6) and (8). It
should be emphasized that although these length scales all
have units of the square of a length, they do differ in their
ways of measuring order. S(0,f) measures the long-
wavelength correlations in the system S(0,t)=NM {(y?).
The squares of the inverse perimeter densities,
A;(t) (i =x,y,tot), are sensitive to short-range correlations
and can often be related to the average energy in the
evolving system.® The inverse second moments probe the
intermediate-range correlation.!*> We consider S(0,z) and

A;(t) to yield more reliable results than the inverse second
moments due to the sensitivity of the latter quantities to
the choice of ultraviolet cutoff in Egs. (6) and (8). It is
well known that for scattering from a sharp interface
S(k,t)~k =41 for large k.>* Thus the second moment
will have an additional, probably weak, time dependence
involving the ultraviolet cutoff.

In Fig. 4 we present our data for the S(0,z) and A4,(¢).%
It is clear from this figure that finite-size effects start to
play an increasingly important role in the growth rates for
‘times greater than about 150 MCS/spin.2® We have also
analyzed the behavior of various choices of the inverse
second moment. Apart from an initial transient region
(<20 MCS/spin) these quantities have a time dependence
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FIG. 4. Growth rate of the long-range order parameter
S(0,t) (crosses) and inverse perimeter densities squared, A4;(t);
A,(t) refers to the x perimeter (circles), A,(¢) refers to the y
perimeter (squares), and A,,(¢) refers to the total perimeter (tri-
angles) of domains. S(0,t) and A;(t) have units of area. The
vertical scale is arbitrary. Error bars are discussed in the text.

quite similar to that of S(0,?) and 4;(¢). It should also be
noted that at fixed time the half width of the structure
factor in the x direction is considerably narrower than
that in the y direction. This reflects the fact, noted in the
Discussion, that the overall growth rate is greater in the x
direction than in the y direction.

We have analyzed the growth laws of S(0,7) and A4;(¢)
by performing two different types of least-squares fits: (a)
y=Dt +B, where B takes into account the initial tran-
sient region; (b) y =Dt?". In Table I we present the results
for the least-squares analysis together with the correlation
factor to indicate the goodness of a fit. The error bars
quoted in this table refer to the pointlike errors given by
the inverse square root of the number of quenches. The
estimates, which were based on the central-limit theorem,
can be considered to be conservative. Our results are most
consistent with the effective power-law exponent n =0.50.

We now briefly discuss the role of different types of
domain walls which can appear in the x direction during
growth. For the given anisotropy parameter «, the
“heavy” and “light” domain walls, Fig. 1(b) (i), are ener-
getically as favorable as the “soft superheavy” and. “soft
superlight” domain walls shown in Fig. 1(b) (iii). The two

other types of walls, shown in Fig. 1(b), are energetically
very unfavorable. Such walls would not occur (beyond a
short transient period) for KzT /Jy=0. At finite tem-
peratures, however, this picture could change completely
due to the role of entropy. To test the density of these
various domain walls we have followed the density of the
energetically least favorable domain walls, i.e., “su-
perheavy” and “superlight” Fig. 1(b) (ii), over the time re-
gion 0—200 MCS/spin for the 300 quenches to
KpT/Jy=0.2. After an initial transient time, the density
of these walls is about 5% of the total density of walls.
Thus we expect to find all these different types of walls
occurring during domain growth, although heavy-light
walls dominate for ¢ >20 MCS. Of the two types of anti-
phase boundaries which can occur in the y direction, the
wall shown in Fig. 1(b) (v) is energetically more favorable.
We expect the ground-state degeneracy and the intrinsic
softness of domain walls to play a role in determining the
growth rates. Within the precision (and time domain) of
our study, these effects seem to result in different ampli-
tudes for growth in the x and y directions.

III. DISCUSSION

The scaling property of the anisotropic structure factor
yields valuable information about the average morphology
of the domain growth. Indeed, we found scaling with a
time-dependent length scale. Thus the anisotropic domain
growth proceeds via self-similar pattern formation. How-
ever, the anisotropy does not seem to introduce a new
length scale in the system. All the length scales we have
studied are essentially equivalent.

We have also extensively studied the growth law using
various choices of length scales. The best estimate for the
exponent n which characterizes the average domain size

" (n=0.50) in the present study of a fourfold degenerate

modulated system is the same as the corresponding ex-
ponent for the twofold degenerate nonconserved (Ising)
system.”” We find the time dependence of the growth
rates to be the same in both the x and y directions. The
overall growth rate, however, is faster in the x direction
(i.e., the amplitude is larger in the x direction). Indeed,
we find that the ordering “percolates” in the x direction,
but not in the y direction, during several quenches in the
study. This more rapid evolution in the x direction is at
first sight surprising, but presumably is related to the lo-
cal free energies involved in the kinetics of the domain
walls. Clearly, theoretical work on the roles of the vari-
ous domain walls in the kinetics of ordering in the
ANNNI model is necessary, even though the dominant
mechanism for growth appears to be the interface curva-
ture.

TABLE I. Analysis of the time dependence of the structure factor and the squares of inverse perime-
ter densities, as defined in the text. A measure of the goodness of fit is given by the correlation factor p-

Linear fit y=Dt+B

Effective power-law fit y —y,=D(t —t,)*"

Quantity D B P D - 2n+A p

S(0,1) 3.39 0.17 0.999 86 3.38 1.04+0.1 0.999 87
Ax(2) 6.90 11.27 0.99991 7.29 0.99+0.06 0.999 82
A,(t) 3.24 1.52 0.999 98 3.51 0.98+0.06 0.99997
Ai(t) 1.14 1.14 0.999 97 1.24 0.98+0.06 0.99992
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