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Corrections to finite-size-scaling laws and convergence of transfer-matrix methods
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We examine the finite-size-scaling laws relating the values of a quantity in a (hypercubic) box of
size L, or on a bar of transverse size L (i.e., of cross section L '), to the same quantity in the

infinite-volume limit. A field-theoretical argument shows that the corrections to these laws are

governed by the bulk correction-to-scaling exponent co (also denoted b l/v or —y3). The data of
transfer-matrix methods, like those of the phenomenological renormalization, have therefore gen-

erally the same asymptotic convergence exponent cu. It is shown explicitly in some examples that

other convergence laws may occur. The large-X limit of the O(N) spin model allows for a more re-

fined quantitative study: dependence of corrections to finite-size scaling upon the details of interac-

tions, range of values of L for which the convergence is asymptotic, and nonuniversality of apparent

critical exponents in the mean-field case (D )D, ).

I. INTRODUCTION

Numerical studies of statistical-mechanical models very
often imply the extrapolation of data concerning finite or
partially finite systems to the infinite-volume (or thermo-
dynamical) limit. Three of the most powerful numerical
approaches to the study of critical phenomena suffer from
this extrapolation problem, namely the Monte Carlo
method, the Monte Carlo renormalization-group method,
and the transfer-matrix method. In the following we shall
consider essentially the last approach, which exhibits
purely systematic finite-size effects in nonrandom models,
while Monte Carlo results always have both systematic
and statistical errors, and moreover may have intrinsic
problems due to metastability or critica1 slowing down.

The transfer-matrix method (see Refs. 1—3 for recent
reviews) originated with Nightingale. It consists of solv-
ing exactly the model under investigation on a lattice
which is a bar of finite section L ' and infinite length
in the last direction. The transfer-matrix formalism is
particularly well adapted to this geometry. The exact
knowledge of the largest two eigenvalues of the transfer
operator is usually sufficient to determine every quantity
of interest, such as the free energy Fi (P) (and its deriva-
tives: specific heat, magnetization, entropy, susceptibili-
ty), as well as the correlation length gL(P), characterizing
the exponential falloff of correlations in the infinite direc-
tion of the bar.

The only questionable point in the transfer-matrix
method is the convergence of the values QL (P) of any ob-
servable on a bar of transverse size L (i.e., of cross section

') to the thermodynamical value Q(P).
strict ourselves to periodic boundary conditions: Most ap-
plications of the transfer-matrix approach use this type of
condition. Moreover, other boundary specifications may
introduce nontrivial surface effects. For P&P„QL (P) is
expected to converge exponentially towards Q (P) whenev-
er g(P) and Q(P) are finite. More interesting is the vi-
cinity of the critical point P„where the bulk correlation
length g(P) diverges. Fisher proposed the following scal-

ing behavior when L and g(P) are both large but compar-
able. '

gL, (P) gL, (P')
TI. I '. P~P' sllcll tllat

L L' (2)

for two fixed sizes L and L'. Then Fisher's relation im-
plies that the fixed point PL I ~ of the transformation TL I
is an estimate of P, for large L and L':

k. (PL„t. )

L
4, (PL„I. ) ~PL,I.' ~ PcL' L,L' —+ 00

(3)

and that the linearization of Ti. I around Pi r ~ gives an
estimate vz L of the critical index v:

+L,L'

lnf(dgL, IdP)I(de Idp)tt tt, ]
ln(L '/L )

(4)

The map TI z can be viewed as a real-space
renormalization-group transformation, usually called
"phenomenological renormalization. " It involves only
one variable (P) in a natural way, without any artificial
truncation (except the finiteness of L,L').

This phenomenological renormalization has been ap-
plied to a very large variety of models, mostly in two di-
mensions (see Refs. 1—3, and references therein). In most
cases, this method leads to very stable and accurate results
(even for reasonable sizes L). The Hamiltonian version,
where the infinite direction is continuous and the finite
transverse ones are kept discrete, has also been extensively
used. ' Models with quenched disorder, where the

QL, (P)=Q(P)Fg(L /g(P) ),
where F~ is a universal scaling function. This finite-size
scaling hypothesis was extended to the area of critical
dynamics.

One very interesting choice for Q is the correlation
length itself. Consider the following transformation:
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relevant quantities are the Liapunov exponents of a prod-
uct of a large number of random matrices, have also been
investigated through the, transfer-matrix —plus-
phenomenological-renormalization method. "'

Finite-size scaling has been considered for a long time
as a reasonable heuristic assumption. It has been
shown by Brezin' that the field-theoretical approach
naturally implies the invariance of the size L under the
renormalization-group flow. This essential. property is not
sufficient to ensure the validity of finite-size scaling, since
some regularity properties of the scaling functions around
the infrared stable fixed point are needed. These condi-
tions are not fulfilled when the fixed point is trivial
(mean-field theory). Finite-size scaling is therefore valid
for dimensionalities D &D„where D, is the upper criti-
cal dimension.

A question of great practical importance is the conver-
gence towards the thermodynamical values of the finite-L
estimates such as pL L, vL z, or other critical indices. It
has been recently argued' that this convergence is asymp-
totically governed by the bulk leading-correction-to-
scaling exponent co (also denoted b, ~/v or —y3). Since co

is rather large for most two-dimensional systems, the
phenom enological-renormalization approach con verges
much more rapidly than other types of analysis, ' which
may involve smaller leading-corrections-to-scaling ex-
ponents.

The contents of the present paper are as follows: In
Sec. II, we present a simp1e general field-theoretical ap-
proach to the corrections to finite-size scaling, which con-
firms the results of Privman and Fisher, ' and generalizes
them to other extrapolation methods, including those
quoted in Ref. 15. In Sec. III we consider the example of
the 0(%) (%= oo ) spin model in arbitrary dimension
(D )2). Since this model is soluble on a bar as well as in
the infinite space„we can compare theoretical predictions
and numerical data, study the dependence of the correc-
tion amplitudes upon the details of the interactions, and
see how the small-L results obey the asymptotic correc-
tion laws. Our results are extended to the marginal case
D =D, =4. For D ~ D„ the phenomenological-
renormalization predictions depend upon the particular
choice of renormalization, and therefore generally do not
give the correct mean-field values for critical indices.

II. GENERAL APPROACH TO CORRECTIONS
TO FINITE-SIZE SCALING

A. Field-theoretical argument

In this section we shall repeat briefly Brezin's proof' of
the validity of Fisher s finite-size scaling hypothesis, and
show how it can be extended to incorporate the leading
nonanalytic corrections, governed by the exponent co, just
as for the bulk quantities. We shall follow throughout
this section the notation and the method exposed in Ref.
16.

Consider a (P ) field theory on a hypercubic lattice in
D dimensions. The associated partition function reads

Z= J +dP exp ——gV&P„P'„P„
X X,P

X

In renormalization theory, all the divergences appearing
as the lattice spacing a goes to zero can be absorbed in a
finite number of counterterms, as long as the theory is re-
normalizable [i.e., for D&D, with D, =4 in the case of
( P ) ]. Brezin has shown that the counterterms of the
infinite-volume theory are sufficient to make the physical
quantities finite in an arbitrary geometry with periodic
boundary conditions. In other words, the size L of a (hy-
percubic) box with L sites, or the transverse size L of a
bar of section L ' is not renormalized.

The irreducible Green's functions I L
' obey therefore

the same renorma1ization-group equations as their ther-
modynamical (infinite-volume) values I"'

I L '(t, g,p)=exp ——J dx r/(g(x)—)
2 & x

Xl L '(r(&),g(&),&p) .

1
L(r,g,P)=p L r, gLp ' Lp

Assume now that L is very large in lattice spacing
units: L ~~a or L/J, &~1. Then g(1/Lp) goes to the
stable fixed point g*=g(0), and the running temperature
t (1/L p ) is such that

1/v

L2&2 I
(10)

Lp
tL 1/v

g(p)

Equation (9) can therefore be equivalently rewritten as

QL (p) =Q (p)pg(tL ' ")

or

or

QL (/3) =Q (/3)Eg(L /g'(p) )

Q (/3)=L' fQ(tL' ") .

(12)

(13)

That proves the validity of Fisher s relation for any multi-
plicatively renormalizable quantity Q with critical ex-
ponent v [Q(p) —(p —p, ) '].

Consider the ratio

I (~)(r )
pL rrgtp

~~g~p

It follows directly from (6) that @L is an invariant of the
renormalization-group flow:

pL(r, g,p) =pL, (t (&),g (&),&p) .

Using dimensional analysis and choosing A, =l/L/J„we
obtain
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Consider now the corrections to Eq. (11) when L and
g(p) are both large but finite. The most convenient way
to deal with such effects is to introduce a g-dependent
normalization of the temperature t(g) and an expansion
of the I'L ' in a power series of (g —g*) (see Chap. 8 of
Ref. 16). We define the leading correction Dl(N)(t, p) by

scaling. Consider only the temperature dependence for
simplicity.

It is known from the beginning of the renormalization-
group approach to critical phenomena' ' ' that t is an
analytic function of P near P, .

Let us normalize t such that

—t =(p—p, )+~(p—p, )'+ ~ -. (22)

I,(")(r,g,p)=exp —f dg "g

XI' '(&(g),g', p)

X [1+(g g*)D—L,"'(&(g),p)+ . ] . (14)

On the other hand, since a bar of size L, is in fact one di-
mensional, Ql (p) is analytic in p, and therefore the f&'
are analytic in their arguments. That is generally not the
case of F~ or y& in other formulations, (12) and (13). If
one uses, for practical reasons, a convenient variable such
as

t=p p„—or (T —T, )/T„or e ~ e— (23)
This quantity satisfies the following renormalization-
group equation:

)u, +co — ——2 r DL (r)M)=0,a
Bp v Bt

(15)

g (p) L T/v[f (rL 1/v) +L —
cd ( )(tL 1/v) +. . . ] (19)

for a multiplicatively renormalizable quantity.
For quantities which obey an inhomogeneous

renormalization-group equation, (19) has to be modi-
fied. ' ' For the specific heat, our prediction reads

C, (r) =C„,(t)+L '[f,(«")+L "f,"'(tL"")+. . -j,

(20)

where C„(t) is the regular part of the bulk C(t);
C, (r) =C(t) C„(t) usua—lly exhibits a power-law singu-
larity in

~

t
~

In order to make our argument as simple as possible,
we have considered only the temperature variable. The
extension to a nonzero magnetic field, and to other quan-
tities such as correlation functions, is straightforward. '

The scaling functions f&,y&, . . . become functions of re-
duced variables:

f(rL ', rM ' i', tp; ), (21)

where M is the magnetization and p; the external momen-
ta. Equations (19) and (20) are the main result of this sec-
tion.

Let us discuss now the nature of other corrections to

where co =p'(g*) is the usual bulk correction-to-scaling
exponent. The general solution of (15) reads

DL '(t, )M)=i(,"DL '(t(A, ),A,)M) . (16)

Using dimensional analysis we obtain

D' '(t, (L(, )=A,"D' „'(t(A, )/A, )M ) .

Choosing A, = 1/Lp && 1 and using (10), we have finally

D(N)(t p) (Lp) —6)D(N)(tL 1/v) (18)
I

The field-theoretical approach predicts therefore the
following general form of the finite-size scaling relation,
including the leading correction term

the insertion of (23) into (19) and (20) leads to corrections
of the type L ', L, , . . . . These have been pointed
out' ' and called nonlinear scaling fields effects, i.e.,
nonuniversal reparametrization effects. We shaH show in
the following that they are not apparent in most of the
practical applications of Eqs. (19) and (20).

Besides these rather trivial corrections, there are other
ones, of the form L ', due to further irrelevant opera-
tors. In the limit D —+4 we can affirm they are much
smaller than L, since we have, in D =4—e,

co=e+O(e ),
co; =2n;+O(e), n; =1,2, . . . , (24b)

For models which cannot be described by a field theory,
we do not have any a priori estimate of co, nor the co s.

The comparison between theory and experiment in
fluids (see Ref. 21, and references therein) encounters the
very same problems of reparametrization effects, and of
irrelevant operators. Since arbitrary crossed products of
I ' terms may appear, the general correction term in
the variable t in Eqs. (19) and (20) is

(Noco+ gN; ro;—)

with Ao, &;=0, 1,. . . .

For practical purposes, one has to keep in mind that usual
variables such as p are analytic in t, but not equal to t.

B. Application to the phenomenological renormalization

We can deduce from Eqs. (19) and (20) the a,symptotic
convergence laws of the data obtained by different analy-
ses of the transfer-matrix approach. Consider first the
phenomenological-renormalization transform (2). Equa-
tion (19) for the correlation length reads

=f(~L '/ )+L f, (tL '/ )+. . .L(p)
(26)

where co; correspond to operators W; of (canonical) di-
mension 5; =4+2n;. n = 1 contains for instance

(25)
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The relation between (26) and the convergence of PL I
and vz L' has been studied by Derrida and de Seze. ' Let us
summarize their notation:

gL, (P, )=ApL(1+A)L "+ .
. )

[with A p ——f(0); A
~ f~

(0——)/f (0)],

C. Application to other quantities

Consider now the convergence of other analysis
methods suggested in Ref. 15. Take the susceptibility X
as a prototype of a multiplicativity renormalizable observ-
able. We have therefore

X (P)=Lr [f(tL' ")+L f, (tL' )+ . . ] . (30)
=BpL'+""(1+B,I. "+-

dP

[with B = —f'(0); B,=f', (0)/f'(0)],

(27)

d =CL'+'"(1+CL +CL ' + . )
dp P=P,

[with Cp ——f"(0); C& ——fI'(0)/f "(0); C2 ———2of'(0)/
f"(0)].

The term C2L '/, which is of no interest in the fol-
lowing, is an explicit example of a reparametrization
correction.

The authors of Ref. 1 deduce from (27) that the quanti-
ties PL L, and vL L ~ converge towards P, and v (in the limit
L,L' moo with —L'=A,L and 0& A, & 1 fixed) as

tLL"=xp+L -"x,+ (31)

where xp is the solution of f'(x)=0 (assume it is unique,
i.e., XL has only one maximum for large enough L) and

f i(xp)
f"(xp)

Defining estimates of y/v by

ln(XL/XL )

v ~ ~, ln(L/L')

(32)

(33)

A way of extracting 2 —g=y/v (and therefore y if v is
known) is to look at the maxima XL of the curves XL (P),
occurring for values tL of t Tak. ing the first derivative of
Eq. (30) leads to

PL.,I. P, -5PL—
(28) we obtain from Eqs. (30)—(32), in the limit L,L'~ oo,

Apd]
5p= cpv

Bp
r

5 =catv B&—

f)(0)
f'(0)

ApCpA ]

Bp2

, f'(0)f ) (0)—f"(0)f)(0)

f'(0)

This method can be generalized to renormalization from a
size I. to a size L' with l g&L'&~L, such as L'-cL
(with 0 & cr & 1). In that case, it is easy to realize that the
difference between PL I ~ and P, reads

P P, -5p(L') "L—' -constXL " "+ "
with (29a)

0
5p ——

Bp

vLL —v 5Q

In the very current case L ' =L —1 or L —2 (i.e., A, ~ 1),
the amplitudes 5 read

V 7 —co——-6LyV JLI V

where 5r reads, in the case L '/L =A,~ 1,

fi«p)
f (xp)

(34)

(35)

The same method, when applied to the specific heat,
may be governed by another convergence exponent. Let
us look for the values tl* at which the curves CI (t) have
their maxima CL. The equation to be solved is [see Eq.
(20)]

f& (t4'L I/v) +L —cof ( I ) (t+L I/v)

+L /"C, (t")+

It is therefore clear that the convergence exponent of
tI*L ' ' towards yp such that f,' (yp) =0, and of (a/v)L I
towards a/v=2/v D, is the smalle—r between a/v and tp.
In the example of the three-dimensional Ising model
(a/v=0. 2 & co =0.8), a/v is clearly dominant.

Assume a/v& co. We then have

while the estimate for v converges as

5
(L')

ln(L /L')

with

ApCpA (5,= —v B(—
0

(29b)

with

+L y + o ~ ~

C,',s (0)

f,"(yp)

(36)

(37)

In the extreme case where L' is kept finite while L~ ao,
the convergence of PL L towards P, is in L '/", while the
convergence of vL L towards v is in (lnL )

a/v
a

V L Lt V

with the same notation as for y, and with
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tz C„s(0)
v f,bo)

(39) tL, L' =zo+z1L ' "+
with

(45)

when L'/L =A,~l.
Although finite-size scaling for the specific heat has

been extensively used, the large difference in asymptotic
convergence laws for specific heat (L l

) and suscepti-
bility (L ") has not been noticed in numerical works, as
far as we know, even when a «cov.

There exist other extrapolation methods, much less
currently used, which break explicitly the scale invariance
or the reparametrization invariance of the theory. The
two following examples will clarify what we mean by
these breakings.

The first case one can imagine is a situation where one
cannot a priori attach the data QL to the size L or L —1.
This ambiguity may occur when comparing results with
periodic and free boundary conditions. Let us make a
model of this case by defining a modified phe-
nomenological-renormalization equation:

(L(p)
L —b

gL (p')
L' —b

(40)

where b is some unknown but constant boundary effect.
Equation (26) implies that the fixed point pL L of the map
(40) is given (in the variable t) by

Ao /I )(L " L' )+b—(L ' L' ')+-
~L. L,

=
L 1/v L t 1/v

(41)

Assume co&1. Then pL L and the associated estimate
vL L will converge towards p, and v as

f"(zo)=0,
f'(zo)

I
fill( )

(46)

The corresponding (y/v)L L ~ defined as in Eq. (33) con-
verge as

5 L —1/v (47)
V ~~, V

and 5r reads, in the limit L'/L =A,~1,

o. f'(zo)'
v f"'(zo) (48)

We have certainly not exhausted all possible examples of
convergence of transfer-matrix data to their therrno-
dynamical limit. Our main result is the introduction of
corrections to finite-size scaling in Fisher s relation.
These are governed by the bulk exponent co. Most of the
applications of finite-size scaling exhibit therefore the
same convergence exponent. %'e have nevertheless listed
some cases where a special effect, existence of a regular
background, ambiguity on the definition of the size, use of
coordinate-dependent properties, or renormalization from
L to L' «L, may lead to another asymptotic convergence
exponent, such as 1/v, 1, a/v or even 0. In particular, the
exponent 1/v is less frequent than suggested in (Ref. 15).
Other situations we have not yet explored are certainly
understandable through the basic equations derived in this
section.

Pt.,c P, -&pL—

&L„L,' —&-&v L
(42) III. EXAMPLE OF THE 0( N) (N ~ ce ) SPIN

MODEL

with amplitudes 5 which become, in the limit
L/L'=A, ~l.

Ao f (0)
f'(0) '

(43)

&
2 ~oco

b 2 f(0)f"(0)
&o f'(0)'

Another case where convergence may not be governed
by the bulk exponent co is the extrapolation of a non-
reparametrization invariant quantity, such as an inflection
point Indeed, the .maximum of a curve f(t) is invariant
in replacing t ~t(t), but the inflection point is not. Let us
return to our example of the susceptibility, and look at the
point tL where d XL /dp =0. Equation (30) leads to [o.
is as in Eq. (22)j

f"(teL 1/v)+L cof "(t+L 1/v) L ——I/vf '(teL I/v) 0

(44)

Assume 1/v&co. Then 1/v becomes the leading conver-
gence exponent

In this section we reply to, in the particular case of a
soluble model, some of the questions left unanswered in
Sec. II: How large are the correction amplitudes 5; what
range of values of L is really governed by the exponent co?

A. Exact solution for arbitrary D & 2

This section is essentially a continuation of Brezin's
work' on the large-N limit. Consider the Q(N) spin
model on a. D-dimensional hypercubic lattice with arbi-
trary finite-range ferromagnetic translationally invariant
couplings K,J K(i —j), ——

a= gKS, S, , (49)2,
2=and the constraint S;=1 at each site. It is known since

the work of Stanley that this model considerably simpli-
fies in the large Nlimit. Consider i-ts partition function

Z= f +d S; +5(S;—1) e p gK; S;.S.
$7J

(50)
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By introducing a Fourier representation of the 5 function,
we obtain a Gaussian integral over S;, leading to

terms of order g, L will also be neglected hereafter.
The critical point is therefore given by (we assume

D )2)
Z= f Qda; exp X ga; ——,'Tr»(2a —PK)

+ const

where the operator a has matrix elements a;J =a;5;J.
The large-X limit is dominated by the saddle point with

lowest effective action. In the infinite volume, as well as
on a bar with periodic boundary conditions, this saddle
point is constant:

p, =fd-, '
=(o —'o).

We define the scaling variables

and hence

4
L

x ] x 1=m= —,gt =mt =
L yL zL

(58)

(59)

a;=a, for all i

with

(o, o)=i. (52)

K(q) =+K(n)e

The situation with any other type of boundary condition
is much more complicated. ' I et us introduce the nota-
tion

iq&n&L

/3= QI(nq ) with I (n~ ) = fdq
mt +K(q)

(60)

where nq describes Z '. The term n~=0 is just the
infinite-volume temperature corresponding to mass mL.

We obtain therefore, by subtracting (56) from (60),

The domain of interest of finite-size scaling is therefore
L~oo at fixed x.

Equation (57) can be transformed (by using Poisson
summation formula) into

K(q)=K(0) —K(q) .
(53) t(ml ) —t(m) =S(mt„),

where

(61)

We shall restrict ourselves to isotropic ferromagnetic
models, and normalize P such that

K(q)=q +0(q„) .

t(m)=P, P=m—f dq
[m +K(q)]K(q)

(62)

The usual nearest-neighbor model corresponds to

K(q)=2+(1 —cosq„) . (55)
S(mt )= g I(nz) .

n~(~0)
(63)

The solution of Eq. (52) reads as the following.
(1) Infinite volume: a, =(P/2)[m +K(0)] with

Let us first estimate S(mt ) in our domain of interest.
I(n~ ) can be rewritten as

P= fdq (56)
m +K(q)

where fdq is the normalized measure on the Brillouin
zone.

(2) Bar with transverse size L: a, =(P/2)[mt +K(0)]
with

iq n L —aq2 42~'
The leading term gives after integration

S(ml ) =(4m. )
~ L Fo(z), (64)

dqi
i

ml +K(q)
(57) with z as in (59) and

where F~(z)= f t~- ~'e '~'g(t)dt,
1

D —I

qz
L 0&n„&L —1 g(t) y e —n /4t

n&2;

D —1
(65)

where q& (2m/L)n„ for each —d—irect. ion (1 &p &D —1).
When they are small, the quantities m and mL can be

identified with the inverse correlation lengths g' ' and
gt ', respectively. The difference between m ' and the
genuine correlation length [defined as the nearest complex
zero of m +K(q)] has a relative weight g' . Other

Equations (64) and (65) give a well-defined continuation
of the asymptotic large-L behavior of Eq. (63) to nonin-
teger values of D. The following asymptotic behaviors of
the functions F~ will be useful throughout this section:
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(4 )(D —()/21 (p + 1

)z2p+1[1+O( (D——1)] s

p 2(D+1)/2 —p 1/2(D 1 ) p+3/2 D/—2 —1/z[ 1 +O ( )] ()
(66)

The nonuniversal 0 (q p ) terms give corrections to (65)
which have a relative weight I. . They will be negligible
throughout the following [see remark after Eq. (57)]. -

Consider now the small-m behavior of t (m), and define
for that purpose its Mellin transform:

M(s)= f dm I' 't(m) . (67)

It is easy to check that M(s) is defined through (67) for
Res & 2 Da—nd —2 & Res & 0 (these domains intersect for
D & 2), and that it is related by

M(s) = — . J(s)
2 sin(sm. /2)

to the following transform of the couplings:

J(.)= fdqK(q)'- =(oiK /- i0) .

(68)

(69)

Res(J, 2 —D) = 2(4~)-D/2

I ( ,'D)— (70)

The analytic continuation of M has therefore a double
series of poles:

Since Ki~ is a finite-range operator, K(q) is an analytic
even function of each qp. The poles of J(s) are therefore
located at s =2 D 2n —(n —=0, 1,2, . . . ). The corre-
sponding residues are not explicitly computable, except
the first one:

This relation is precisely Fishers finite-size scaling
equation for the correlation length. As expected, it is
universal (Fo does not depend on K;~ at all).

The limits of Eq. (72) when x goes to 0 and ac deserve
some special interest. The behavior of y(x) for large x
has been recently analyzed for arbitrary models, includ-
ing lattice gauge theories, in terms of integral equations
involving elastic diffusion amplitudes. In the present
case, we have the following behavior:

1/2(x /2)(1 D)/2e —x—D —1

I (2——,D)
(73)

gi, (P, ) —/I L for L » 1 . (74)

The universality of 2 is a consequence of the universality
of Fisher's scaling function. ' '

A is the solution of

This relation can be continued to D =2. In order to com-
pare the O( co ) models to other ones in D =2,23 and D =2
and D =3 for the O(ac) model, we give in Table I the
values of y =gL /g corresponding to some particular
values of x, in two and three dimensions. (That question
is meaningless in D &4: see Secs. IIIC and IIID). (See
also Figs. 2 and 3.)

The x ~0 limit of Eq. (72) gives a universal amplitude
/I (denoted /Io in Sec. II) such that

—I (1—,'D)=A —F()(A). (75)

B. The norma1 case (2& D &4)

In order to study the leading correction to finite-size
scaling, let us take into account the first two terms in the
expansion of t(m) for small m. These are given by the
poles of M at s =2 Dand s = —2:—

t(m) = —(4m. ) I (1——,D)m

+J(—2)m +O(m ) . (71)

Equation (71) gives in particular the well-known values
of the exponents co and v in the large-N limit:

v=, to=4 D for 2 &D &4 .—1

D —2'

s = —2, —4, —6, . . . ,

s =2—D, —D, —2 —D, . . . .

In order to pursue our study of finite-size scaling, we have
to deal successively with three cases: 2&D &4, D =4,
and D &4.

A is clearly universal (independent of K;~ and of any
reparametrization of p). When D —+2 or 4, A diverges ac-
cording to

(4+a) '/' for D=4 —p,
1

for D =2+g .

(76a)

(76b)

Figure 1 shows a plot of A versus dimension D.
The quantity A has been the subject of some interest in

two dimensions, ' ' where it is related for a very large
variety of isotropic systems to the critical exponent g:

1Ag= —.
7T

(77)

TABLE I. Values of y =gL /g corresponding to some partic-
ular values of x =L /g for the 0( oo ) model in two and three di-
mensions.

r(1 ——,'D)(x -'—z'- )=F,(z) . (72)

If we consider only the leading term in (71), we can
rewrite Eq. (61) in terms of the scaling variables: x =L/g
and y =gL, /g =xz, namely

y (D=2}
0.851 67
0.943 44
0.979 64
0.992 91

y (D =3}
0.812 37
0.937 46
0.980 97
0.994 33
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Y

;0=2)
1

0.5

FIG. l. Universal amplitude 3 such that gL(P, )-AL as a
function of the dimensionality D.

t(m)= — ln +O(m inm),
2m. Ao

(78)

where Ao is a model-dependent constant (Ao ——5.6568 in
the nearest-neighbor model) and

This equation has been generalized to anisotropic sys-
tems, and to the Hamiltonian formalism ' in 1+ 1 di-
mensions.

The existence of this universal relation between 3 and

q has been recently related to conformal invariance of
two-dimensional critical theories. It is therefore not very
surprising that, for D ~ 2 where the conformal invariance
is much less restrictive, A is not simply related to critical
exponents. Equation (75) suggests that the relation be-
tween A and other universal quantities such as amplitude
ratios, if any, is far from being as simple as (77).

In two dimensions, Eqs. (71) and (72) become, respec-
tively,

FIG. 2. Finite-size scaling relation between x =L/S and

y =gL, /g in two dimensions.

J(—2)- — in D =4—E
Sm. t

(82)

independently of the K;z and the normalization (54) of P.
As D~2, J(—2) is dominated by the residue of J at

s = —D. Its dependence upon KJ is therefore explicitly
tractable. Assume we have only on-axis couplings, such
that

E(q)=q +kgq~+O(q„) (83)

[notice that the ordinary nearest-neighbor couplings (55)
lead to A. = ——,', ]. We have then

Y

(0=3)
1

the couplings KJ through one number: J(—2). More-
over, as D~4, J( —2) becomes universal, in the sense
that we obtain

I'o(z) = —21ny .

The small-x behavior of y is therefore

1 x lnx
7T

(79)

(80)

+(4') / J(—2)L "(z —x )=Fo(z) . (81)

The correction term is in L "(co=4 D), as expected—
from Sec. II. It is of course nonuniversal, but depends on

In other words, although finite-size scaling is valid [the
function y (x) does exist], we do not have (74) at
P=P, =ac. Figures 2 and 3 show plots of the function

y (x) in two and three dimensions.
Let us now include the leading correction term to the

finite-size scaling relation (72):

I (1——D)( —z )

0.5

FICx. 3. Finite-size scaling relation between x =L/g' aud
y =gL, /g in three dimensions. The slope at the origin is
A =0.661 395. . . .
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3A,J( —2) —— for D =2+e .
4vre

Whenever A, is negative, J(—2) vanishes at least once in
the interval 2 (D (4. In the nearest-neighbor case,
J(—2) =0 for D =3.322 178. . . .

In three dimensions, there exists no easy way to predict
even the sign of J(—2). Therefore, we have investigated
numerically J ( —2) in the case of on-axis couplings
K& )0 between nearest neighbors and K2 between sites at
distance 2 along each axis. Let r denote the ratio Kq /K ~.
The absolute normalization of K&,K2 being fixed by Eq.
(S4), every nonuniversal quantity is a function of r In o. r-
der to keep a ferromagnetic model, we have to take
r ) ——, . Figures 4 and 5 show the variations of p, and
J(—2) versus r. Notice that J(—2) vanishes for a very
small value of r (r ——0.041).

The most interesting application of (81) is the predic-
tion of the convergence amplitudes 5tI, 5„defined in Sec.
III8, and the comparison with actual results of the
phenomenological-renormalization-group transform (2)—
(4) in three dimensions.

By expanding the solution z(x) of Eq. (81) around
z (0)=A in a double series in t [see Eq. (62)] and L, we
can compute the various coefficients of Eq. (27) as a func-
tion of the universal quantity J(—2) [p is as in (54)]:

-0.25 0.25 0.50 0.75

with

4 D(4m)—~ J(—2)
(D —2)' &(A)

FICs. 4. Critical temperature P, as a function of the ratio r of
second-neighbor to nearest-neighbor interactions, in three di-
mensions.

(4n. )
i J( —2)

A(A)

A(A)

(4~) "J(—2)B =
A b.(A)

&& [2A FI(A) —4Fq(A)

—(D —2)(D —3)l (1—
2 D)A ],

(85)

%'hen D goes to 4, we have the following universal
behavior:

1 e5p- ——
4 2m.

When D goes to 2, 5p/p, and 5„/v vanish in
nonuniversal way. In the case of on-axis couplings [see
Eqs. (83) and (84)], we obtain

Co ——

h(A)
J{-2j

0.2—

)& [6A Fi(A) —4F2(A)

(D —l)(D——2)I (1—, D)A ], — 0.1

with the notation (66) and

6(A) =2F, (A) —(D —2)r(1 ——,
' D)A'-D .

We have therefore

PL, L —i Pe -5Q—
with

4 DJ( —2)—
P=D 2 A2

(86)

(87)

-0.2—

0.25

I

0.50
I

0.75

VL, L —1
—V 5v

FICi. 5. Same as in Fig. 4 for the quantity J( —2) which
governs all corrections to finite-size scaling.
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5
-6m A,e for a =2+@.

5„/v
0.2—

Let us restrict ourselves to nearest-neighbor couplings in
order to compare our predictions with actual data. The
relative convergence amplitudes 5p/P, and 8,/v for
nearest-neighbor interactions are plotted as functions of D
on Figs. 6 and 7, respectively. In three dimensions, they
read

-0.2

5p ——0.027 8073. . . ,

5 = —0.150144. . . .
(90)

The phenomenological-renormalization equations (3)
and (4) are very easy to handle numerically in our 0(ao )

model, because the relation between mL ——gl
' and P is ex-

plicit in the case of nearest-neighbor couplings, where (57)

gives, by integration,

-0.6—

FIG. 7. Same as Fig. 6, for the critical exponent v.

0&8 &L —1

mL +4+2+ (1—cosq„)

—1/2
X ml +2g (1—cosq„), (91)

where q„=(2m./I. )n& for 1&@&D —l.
Figures 8—11 show our results for Pi I &

and vt I
versus the appropriate power of L„up to L =50. The
straight lines indicate the asymptotic behaviors according
to Eqs. (87)—(90).

The agreement for P, (Fig. 8) is surprisingly bad. We
have willingly plotted on this figure the data for L =2 to
6 exclusively, since I. =5 or 6 seems to be the largest size
that can be treated exactly by the transfer-matrix ap-

proach for Ising-type three-dimensional systems. ' ' Even
the sign of the correction disagrees with the analytical

prediction. If one pursues the analysis to totally unrealis-

tic sizes (Fig. 9), one obtains finally an agreement with the

L,L-1

ID=Bi

0.252—

0.2

0, 1

0.248—

-0.1;
0.244 I

0, 1

I

0.2 L-2

FIG. 6. Relative convergence amplitude 5p/p, of the

phenomenological-renormalization estimates for the critical
temperature P„ for nearest-neighbor interactions, as a function

of dimensionality.

FIG. 8. Phenomenological-renormalization estimates for the

critical temperature P„ in three dimensions. The straight line

represents the asymptotic estimate of Eq. (87).
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L,L-'t

(0=3j

0.25280

0.995

0.25275

0.990

0.25270
0.005 L-2 0 ~ 01

FIG. 9. Enlargement of Fig. 8 showing larger values of L.
0.05 0.10

FIG. 11. Enlargement of Fig. 10 showing larger values of I..

asymptotic behavior, after a maximum at L =11. This
situation is related to the fact that J(—2) is anornalously
small [J(—2) vanishes when 4% second neighbor cou-
plings are present].

The convergence of the estimates vl I ~ is much more
regular, and agrees with its asymptotic estimate even for
small sizes, after a smooth minimum at L =4. A more
realistic situation, namely 2D percolation, also exhibits
this wild discrepancy between finite-size corrections up to
L. —10 and their asymptotic regime. ' These "crossover
sizes" L —10 or 11 have of course no precise meaning.
One has only to be aware of the fact that they may be
large, -and larger than the numerically tractable sizes.

(0=3j

C. The marginal case ( D =D, =4)

This section is devoted to the upper critical dimen-
sionality (D, =4), where logarithmic corrections affect
the bulk properties. We shall show how similar logarith-
mic behaviors are exhibited by quantities on bars of size
I..

For D =4, the Mellin transform of t has only double
poles at s = —2, —4, —6, . . . . We have then

t(m)= — zm ln +O(m lnm)
8+2 &o

(&p= 10.97&. . . in the nearest-neighbor model).
Therefore, the scaling variables x and z are related

through
1.10

2z ln(zLAp) —2x ln(x 'LAp) =Fp(z) . (93)

The presence of logarithms of L in (93) violates finite-size
scaling. One can nevertheless recast (93) into a modified
scaling form by defining

X= lM
'"

4n.

(94)

O. 9O I

0.1
I

0.2
I

0.3 L-' o.s

FIG. 10. Same as Fig. 8, for the critical exponent v, in three
dimensions.

The relation between X and Z is now well behaved in the
large-I. limit:

Z'+(ZX)' —1=0 . (95)

This modified finite-size scaling relation is as universal as
the "normal" one [Eqs. (1) and (72)]. At P=P, (X
=0 =-Z =1)we have'
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gL (p, ) =L lnL 4m ln lnl
9 lnI. (96) (D=4)

Consider now the effects of the modified scaling laws
on the phenomenological-renormalization group. Follow-
ing Sec. II, we estimate first the successive derivatives of
gL, (p) at p, . The preceding equations lead to

0.575—

0.550

dg'L

dp
'p'=3L' '+31~+ (97)

0.525

d2

dp2
C 9(P, )=—L'

1/3
4~
lnL

(98)
0.500

0 0.5 f(nL)-1

pL L
—p, ——,'L (2m lnL—) (100)

The critical exponent v associated with pl L through Eq.
(4) converges towards the mean-field value —, as

for all A, . (101)

The convergence of phenomenological-renormalization
data is therefore very slow at the upper critical dimension.
It is also totally independent of the couplings K;~.

As in the 3D model, we have solved numerically Eqs.
(2)—(4), using Eq. (91), up to L= 100. Figures 12 and 13
show plots of the data (pL L, t —p, )L versus (lnL)
and vL I t versus (lnL) . The straight lines indicate the
asymptotic behaviors (100) and (101). These behaviors are
reasonably obeyed by the finite-size data, although the
scales are logarithmic.

These formulas allow us to estimate the fixed point
PL, L of Eq. (2) in the limit L,L ~ao at fixed ratio
A. =L'/L:

pI L
—p —— L(2n ln—L)—2 ln A.

C 2
A,

2 —1

%"hen I,—+1, this becomes

FIG. 13. Same as Fig. 8, for the critical exponent v, in four
dimensions.

D. The anomaious case ( D & 4)

Let us consider finally dimensionalities larger than the
upper critical one. The application of the phenomenologi-
cal renormalization to realistic systems at D ~D, seems
of no practical significance for at least three reasons: The
main goal of the method, namely the critical exponents,
are known to be those of the mean-field theory, ' the
transfer-matrix method is essentially adapted to low di-
mensions (D =2 and 3 in some cases); finally, finite-size
scaling is known to be modified. ' '

We aim nevertheless to consider this case, because the
large-N limit allows for an explicit analysis of modified
finite-size scaling in mean-field-like models, a subject
which has been considered in other circumstances; sys-
tems which are infinite in (D —1) directions, or finite in

all directions. ' '
Another interest of this anomalous case is that some

models, for which D, is unknown, and which are easily
tractable by the transfer-matrix approach, may exhibit
analogous behaviors. For D ~4, the leading behavior of
r (m) is governed by the pole of M at s = —2:

t(m)=J( —2)m +O(m + ), (102)

-0.025

0.5
and the correction exponent 0 is given by the location of
the second nearest pole of M, namely

Q=D —4 for 4~D &6,
(103)

0=2 for D) 6.

-0.050—

The relation between x =L/g and z =fL /L reads
therefore

2J( —2)[1—(zx) ]=L z +O((zL) ) . (104)

-0.075—

(I L L-1 P~)L

(D=4)

The power of L in the right-hand side of (104) is a source
of breaking of finite-size scaling. A modified scaling re-

lation can be found between the variables

FICx. 12. Same as Fig. 8, for the critical temperature P„ in
four dimensions.

X=[2J(—2)L 4] ~ ~

[2J ( 2)L D —4]—1/3
(105)
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Z ~(ZX) —1=.0 (106)

which satisfy the same universal equation as in D =4, The corresponding estimate vL L ~ of the critical ex-
ponent v in the L,L'~ ac limit is such that

up to corrections of order L " with
r

(D —l)(D —4) or 4&D &6,
D —1

3 ,' (D ——1) for D & 6 . (107)

1+ 1

+L,L'
= 3(D —1)

1n[(BZ/Bx)(x A( " /(dZ/dX)(Xp)]
+

l

(116)

Equation (106) means that gL and g' are asymptotically re-
lated through

gf ( (L /g )L (D —4)/3 )

and that, for instance, we have at the critical point

gL(p, )-L [2J(—2)L ]'/

(108)

(109)

It has been suggested ' ' to write the finite-size scaling
relation in the case of a box of size L as follows:

(110)QL Q fg(——N/N, ),
where N =j is the volume of the system and X, is a
correlation volume:

(D &D, ) or P (D &D, ) .

In the present case, since one dimension of our bars is
infinite, we propose to extend (110) by introducing a
correlation transverse volume:

(D &D, ) or g ', (D &D, ) . (112)

It is now easy to check that (108) and (110) are equivalent
with the definition (112) of N„and with N =L
(transverse volume of the bar).

This proves that the relation (110), proposed by Botet et
al. to synthesize in one formula both the normal and
modified finite-size scaling laws, is valid in the large-N
limit. Let us now forget about this, and apply to the
model the usual phenomenological-renormalization group.
Consider as above the limit L,L'~ac at fixed ratio
A, =j'ij.

Namely, vL I ~ converges as j,j'~ ao towards an apparent
critical exponent v(A, ) depending on the ratio A, =L'/L:

1
v(A, ) =v

v(1)= D —1

3(D —2) (118)

Just as in D =3 and 4, we have also solved numerically
Eqs. (2)—(4). Figures 14 and 15 show plots of the data
pl I I

—p, versus L and vt, l. 1 versus L
Let us conclude this section with a remark which may

contradict intuition: If we compute estimates VL L ~ of v
by using the exact P„ instead of the fixed point of (2)
PL L, then these estimates vr. r converge towards

(119)

when L,L'~ae for arbitrary A,. This value v is always
worse, i.e., further from the correct value —,

' than v(A, ).
The anomalous finite-size phenomena, occurring in the

mean-field domain (D &D, ), in particular the modified

L,L-1

(0=5j

ink

in[(u, —2A, —1)/( —3A, +2+A, )]

(117)
As A, varies from 0 to 1, v(A, ) decreases from the correct

mean-field value —, until

The solution of (113) is explicitly given by
1/3

A,
2 —1

X2—X4-DZ =Zp(A, ) =

Then Eq. (2) reads, in terms of the variables X,Z,

z(x) =x'D-""z(xx( -"") (113)

0,112-

(114)
(g) (1 'i(4 D)1/2(g2 g4 D) ——)/6(g2 1)—1/3—

The convergences of Pl I ~ towards P, is therefore asymp-
totically governed by

P 1/3

( g )2L —(2/3)(D —I )

4 0

0.110—

0.108
0

I

0.01
I I

0.02 0.03
I

0.00
I

0.05 L 8/3

(115)
FICJ. 14. Same as Fig. 8, for the critical temperature P„ in

five dimensions.
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(D=5j

+exact

0.475—

0.450—
v('lj—

0.425—

0.400
0 0.1 0.2 L-4/3

FIG. 15. Same as Fig. 8, for the critical exponent v, in five
dimensions.

IV. REMARKS AND CONCLUSIONS

We have presented in this paper two kinds of results
concerning the convergence of exact finite-size lattice
methods such as the phenomenological-renormalization
group. The first class of results is a consequence of an es-
timation of corrections to finite-size scaling laws in the
general framework of field theory: the leading correction
to Fisher's ansatz is the product of L by another scal-
ing function of dimensionless ratios such as tL, ' . The
transfer-matrix estimates for critical points and exponents
have therefore genera11y the same L " asymptotic con-
vergence law. In some cases: use of a nonmultiplicatively
renormalizable quantity (specific heat), of characteristics
which vary under reparametrization (inflection point) or
of two very different sizes, the finite-size estimates may
obey a different convergence law.

The large-N limit is one of the very few opportunities
of having analytical results, and therefore a good quanti-

scaling law (110), and the dependence of the
phenomenological-renormalization results upon the way
of defining the flow (here, the value of X), are very remin-
iscent of the fact that the corresponding ( P ) field
theory is not renorrnalizable. In other words, even in the
critical limit, physical quantities still depend on the lattice
spacing a, and hence scaling laws may involve powers of
the dimensionless ratio g/a. Other well-known patholo-
gies of mean-field theory, e.g., the breakdown of hy-
peruniversality relations such as 2 —a =Dv, are also
consequences of the fact that two length scales remain
present in the critical regime for D ~ D, .

tative understanding of finite-size effects. As far as we
know, convergence amplitudes such as 6p or 6 had been
computed exactly only in the 2D Ising model. ' Our ap-
proach shows that the convergence amplitudes, as well as
the range of values of L for which the convergence is
close to its asymptotic regime, depend on intricate and
nonintuitive quantities, such as J(—2) in the 0( Oo )

model. The prediction of the variation of these correc-
tions with the details of the model, and even the predic-
tion of their sign, is more difficult than solving the model
in the thermodynamical limit. It is therefore hopeless to
find a procedure which would give the optimal interac-
tions which minimize the finite-size effects, e.g. , the
equivalent for realistic models of the value of r which
makes J( —2) vanish in 3D.

Moreover, different quantities in the same model may
exhibit very different convergence regimes: the example
of P, and v in 3D is quite illustrative of this phenomenon.
These nonmonotonous and long transient regimes before
the genuine large-L behavior are certainly not a pathology
of the iV = m limit. One should therefore be extremely
prudent when dealing with corrections to scaling, in par-
ticular in extracting the bulk correction-to-scaling ex-
ponent co from phenomenological-renormalization data, or
reciprocally in using the value of co (when it is known) in
order to improve the convergence of these data.

The present analysis of corrections to finite-size scaling,
although it has been motivated by transfer-matrix
methods, could be applied to other finite-size numerical
studies. For instance, in some Monte Carlo
renormalization-group methods, when two lattices of size
L and 2L have their couplings adjusted to present -the
same ratio L/g, the finite-size effects should decrease
only as L, i.e., rather slowly for some 3D models.
More generally, systematic finite-size effects in whatever
system with an extent L comparable to its correlation
length are expected to be of order L

Note added in proof. In Sec. II C we studied the suscep-
tibility as an example of multiplicatively renormalizable
quantities. Although the quoted results are valid for a
generic multiplicative quantity, our example is not judi-
ciously chosen, since XL (P) has no maximum for finite
transverse size L. It scales indeed like L ' for P&P,
with a continuous symmetry group. We thank V. Priv-
man for having brought this point to our attention.
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