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Structural and magnetic instabilities in a twofold-degenerate band
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The question of coexistence of cubic-to-tetragonal structural transition and both paramagnetic-
to-ferromagnetic and -antiferromagnetic transitions in a twofold-degenerate band is studied under
the Hartree-Fock approximation of the Hubbard Hamiltonian. The phase diagrams for both the
transitions have been worked out at T=O coupling of electrons to the tetragonal shear mode. The
results show the absence of tetragonal and ferromagnetic states simultaneously for any filling of the
band whereas both tetragonal and antiferromagnetic transitions are possible if the splitting of the
center of gravity of the band to the tetragonality is more than that due to the antiferromagnetic or-
dering.

I. INTRODUCTION

Many intermetallic compounds undergo structural tran-
sition from cubic to tetragonal symmetry on cooling. '

The transition is favorable for the system where the Fermi
level in the cubic phase lies in a narrow degenerate band,
e.g., d band. The coupling of lattice with local electron
density lifts the degeneracy of the band and the electron
redistribution between the split bands causes the lowering
of electronic band energy. The transition occurs when the
decrease of the band energy is more than the increase of
elastic energy due to tetragonal distortion. Structural
transition due to this band Jahn-Teller mechanism has
been studied by Pytte for the threefold band and Ghatak
et al. for the twofold (ez) band. As the lowering of elec-
tronic energy depends on the density of states at the Fer-
mi level in cubic phase, the transition is mostly favored
for the narrow-band solid. It is also known that the
itinerant magnetic phase appears for the solids with the
narrow band and, therefore, it calls for analysis of the
coexistence of magnetic and distorted phases.

The question of the coexistence becomes more relevant
with reference to the observed strong decrease of cubic to
tetragonal transition temperature with external magnetic
field in La3S4 and La&Se4. As the magnetic field induces
uniform moment, it appears from above that the fer-
romagnetism would inhibit the distortion. Below, we ex-
amine the coexistence of magnetic and distorted phases at
T=O K in a system with the Fermi level lying in the two-
fold (ez) band.

II. MODEL

We consider the case of the twofold degenerate eg band
in presence of electron-lattice coupling. The Hamiltonian
for such a case can be written as

H =H, +HI +H, L .
H„being essentially the Hubbard Hamiltonian for elec-

JU' —— gn;i n;2 2J Q—S;i S;2,
r, cr

(2)

where e- is the energy of electron with momentum KK acr
and spin o in ath (a=1,2) band and n - =C- C-

K acr K acr K acr
is the number operator. The on-site intraorbital and in-
terorbital Coulomb repulsions are U and U', respectively,
and J is the exchange integral. The chemical potential is
represented by p, HL represents the lattice energy corre-
sponding to the tetragonal strain

H~ = z&coe',

where elastic constant Co ——( —,
'

). (C» —C,2) and N, being
the number of atoms. The last term is electron-lattice
coupling which is responsible for band Jahn-Teller (JT) ef-
fect '

H, I ——Ge g(n;2 —n;i ) .
l, cr

(4)

Here, the lattice is coupled to the electron through the
difference of population of two orbitals, and G is the
relevant electron-phonon coupling constant. In the fol-
lowing Hamiltonian H, is treated in the Hartree-Fock ap-
proximation. In order to study the interplay between dif-
ferent phases we define order parameters as

n2 —ni =n6,
n+ —n+ ——nm,

where n2 i refers to average occupation per atom of band
2 and 1, respectively, and ri+, to that of up- and down-
spin bands. The average occupation per atom is
n =n2+ni ——n++n

trons in a twofold-degenerate band in a rotationally in-
variant form in the spin space:

H, = g (e- —p)C- C- + U g n;~+n;~K acr K acr K acr
i,aK,a, o
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The parameter 5 is related to strain through
5=Coe/Gn and thus is a measure of tetragonality, e and
m is uniform magnetization. The phases are then charac-
terized by {1) cubic paramagnetic (CP): 5=m =0, {2)
cubic-ferromagnetic (CF): 5=0; m&0, and (3) tetragonal
paramagnetic (TP): 5&0; m&0. To characterize the an-
tiferromagnetic or spin-density wave (SDW) with wave
vector, Q =~/a, a being lattice constant we define an or-
der parameter:

The density of state p(e) of subbands refers to initial CP
phase. The last two terms are the consequence of the
mean field approximation. The parameters I and j are
given by

I = —,(U —SJ+4G /Co) and j= ~(U+J).
The occupations of subbands are then determined by

the equations

b..= g (C C„),
K

we also take

n P)+
n)+ ———(1—5+m) = p(e)de,

4 ~—w

n P2+
n2+ ———(1+5+m}=f p(e}de .

4 1"—w

(13)

n« n~—— =n/2 and b = b~ ~—=b~

to have maximum amplitude of SDW and zero amplitude
of charge-density wave vector Q. The fractional moment
amplitude m~ per atom is then related to ba through the
relative nm& ——g b~ The.refore, the nonvanishing
values of b and 6 determines the tetragonal-
antiferromagnetic (TAF) phase. Below, we consider the
situations at T=O separately.

III. PHASE DIAGRAM AT T=O

A. Tetragonal and ferromagnetic phase

In the Hartree-Fock approximation, the Hamiltonian
(2) reduces to

p(e)= (1—e /w ) .3
(14)

Using this density of states in Eq. (13), p's can be ex-
pressed in terms of order parameters 5 and m. As 5 andI are less than unity and, moreover, near the phase
boundary they tend to be small, the change in Fermi ener-

gy compared to that of CP phase can be expanded in
terms of 5 and m. A straightforward calculation then
gives the energy in terms of leading powers of m and 5:

bE= —,'Am + ,'Bm —+—,'Cm 5 + —,A)5 + —,'B)5 (1S)

where

Next, we consider the simple form of density of state for
p(e) as

HHF —— g E- n - +EHF ~

K acr Kao
K,a, g

The energies E- for four bands are given byK acr

E =e- —p+Ge+(U —SJ) + nm,n5 U+J
K 1+ K 4 4

n6 U+JE =e —p —Ge —(U —SJ) +
K 2+ K 4 4

nm .

(9)
n

A = (1—4jpo),
4Pp

n
A

&
—— (1—4Jpo),

4Pp

4 p
81 m

2

Pp

N

4

(16)

1 26=~1
(1—{po/~)'1'

The constant shift of all bands by (3 U SJ/4)n—does not
play any role in determining the phases, and, therefore,
will not be considered below. Due to strain and conse-
quent orbital population differences the center of gravity
of two bands are shifted. Similarly, the homogeneous mo-
ment splits up- (+ ) and down- ( —) spin bands. The
splitting of the bands appear at the same point of Bril-
louin zone (BZ), e.g. , at K=O and two processes compete
with each other. In deriving Eq. (10), U' is taken as
U —2J for the eg band. The last term of Eq. (9) is given
by

EHF ———,(U+J)n m + —,(U SJ)5 n—

FC

CP TP

0

FIG. 1. Phase diagram for structural and ferromagnetic tran-
sitions. FC represents ferromagnetic-cubic phase, CP represents
cubic and paramagnetic phase, TP represents tetragonal-
paraphase, j and I are defined in the text.

where @1+——p —I5+jm and @2+——p+I5+jm and p and

pp the Fermi levels for TF and CP phases, respectively.

where the part that is independent of order parameters is
dropped in Eq. (11). The energy difference between the
TF phase and CP phase can be written as

b, E = J + J ep(e)de ,'I5 —,
' jm—, (12)——

Po Po
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and

C=38 .
Here, po is the density of states at the Fermi level po for

the cubic-paramagnetic phase. We note that the coeffi-
cients 8 and C are positive for all values of filling of the
band as

~
po/w

~

&1. Therefore, the coupling between
magnetization and the strain increases the energy and so
the interplay is of destructive nature. This is the conse-
quence of appearance of band splittings due to strain and
magnetization at the same point K=O. It is also to be
noted that both order parameters are of infinite wave-

length. The phase diagram in j-I parameter space as fol-
lows from Eqs. (15) and (16) are shown in Fig. 1. The CF
phase is given by usual Stoner criterion ( U+J)po&1.
Similarly, the TP phase boundary is determined by
( U+4J —5J)po & 1. It follows that the effect of exchange
is to reduce the tendency of distortion. As the coefficient
C ~8, the tetragonal distortion and ferromagnetism are
mutually exclusive of each other. Similar results have
been obtained earlier for a one-dimensional system with a
half-filled band where the Peierl's distortion and SDW
(both with same wavelength) do not coexist. '

B. Tetragonal and antiferromagnetic phase

The Hartree-Pock form of the Hamiltonian H, +H, L for this case becomes

HHF —— g e- C- C- + g y (C- - C- - +H c )+EHFKa Kao Kaa a K+ Qatar K+ Qatar
K,a, o a, K

with band energies

Un1
K1 K.

=e- —@+Ge+ + U — n2,2 2

(18)

, t

h- = —1+
K a 2 (&2 +y2)1/2

K

1/2

Un2&- =&- —p —Ge+K2 2
+ U — n 1

where again the constant shift proportional to n is
dropped on Eq. (18). The quantities y's are given by

y1, 2 ( Ub1, 2+ +Jb2, 1+ )

The amplitudes of the SDW for two orbitals are expected
to be different in presence of tetragonal distortion. But
their differences to a first order can be neglected when the
band splitting due to distortion is small. Using the as-
sumption b = b[Eq. —(8)], the Hamiltonian (17)
for such system can be put into diagonal form

HHF g E d d +EHF (20)
K,a, +

g 1Kn 2 (e2 +y2)l/2
K

and the energy

EHF ———,(U+J)b + —, U — n 5 /4.
2

As the strain e is related through BE/Be=0 to the param-
eter 5 by e =G/Con5, the energies E-'s can be ex-

pressed in terms of parameter 5 and b as
2 +( U+ J)2b2]1/2

(23)
E- = J5 p+[e-+—(U—+'J) b ]'

with the band energies of four bands

E-, =E,+( -+y')'

+ (
2 +y2)1/2

where

&O1,2 =&-
K 1,2 K

(21)

The band centers are shifted by strain and bands are split
due to the presence of the SDW.

The self-consistent equation for the order parameters
can be easily obtained from Eqs. (20)—(22) and are given
by

[f«-„)—f(EK )]
K,a

and y = —(U+ J)b; b = —, g b +. In deriving the above
results, the complete nesting e- = —e- - is assumed.

K K+Q
Due to strain, the band centers are shifted and the SDW
order produces an energy gap at band centers. The opera-
tors d's is given by canonical transformation

X
(e2 +y2)1/2

K T~O

for energy gap y and

b =I5=I g [f(E- ) f(E, )]T 0—
(24)

(25)

d =h C- +g CKa+ Ka Ka Ka K+ Q, a

d =g- C- —h- C-Ka — Ka Ka Ka K+ Q, a

with

(22) for splitting A.
The function f(e)=(1+e ) is the Fermi func-E/k~ T

tion. The chemical potential p is governed by electron-
number conservation
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(U+ J)pp ——— 2

1+2 ln(V 3/2)(1 —I /4Ip0)1/
(29)

which is shown in Fig. 2.
The transition from the TAF phase across the phase

boundary is of second order. The phase boundary has
sharp variation around the critical value of tetragonality.

In the presence of SDW, the tetragonality decreases and
for small amplitude of SDW, the strain can be expressed
as

e =e0(1—y /b, 0)'

IV. DISCUSSION

FIG. 2. Phase diagram for structural and antiferromagnetic
transitions for the half-filled-band case.

n= g f(E- ).
K. ,a, cr

(26)

and

( g2 y2) 1/2

b, =4I f p(E)de for A &y

1=(U+J)f, for h&y,p(E)d E
0 (~2+ y2)1/2

5=0 for 6 &y .

(27)

(28)

This means that when the half-filled system is antifer-
romagnetic, the tetragonality would be inhibited. On the
other hand, antiferromagnetism can appear if the tetra-
gonality already exists in the system. The existence of ei-
ther tetragonality or antiferromagnetism depends on the
relative magnitude of parameters I, ( U+J), and p(e).
The phase boundary is governed by the condition

XO ~0 ~

where subscript 0 refers to the value of 1 when the other
is absent in the system. Using symmetric density of states
Eq. (14), and from Eqs. (27) and (28) the above phase-
boundary condition leads to an equation ( U+ J)p0:

These three coupled equations [(24)—(26)] are to be solved'

in a self-consistent fashion to obtain the phase diagram.
Below we consider the situation at T=O and for the

half-filled-band case which can be solved easily. As the
band is symmetric around the band center, the chemical
potential remains stationary for all phases and is given by
p =0. The above equations (24) and (26) reduce to

1=(U+J)f, de for A &y,p(e)
p (&2+~2)1/2

In this paper, a twofold-degenerate narrow band (es)
represented by Hubbard Hamiltonian together with
electron-lattice coupling is treated to examine the coex-
istence of SDW and distortion within the system. The ab-
sence of tetragonal and ferromagnetic state is the conse-
quence of particular mechanism to produce these phases.
Here, Jahn-Teller effect lifts the degeneracy of band and
so splitting between two subbands appears at center of BZ.
Similarly, in Hartree-Fock approximation the spontaneous
homogeneous moment splits the spin-up and spin-down
band. The redistribution of electrons in two subbands due
to band JT effect and that due to magnetism work in op-
posite direction in changing band energy. The former
tends to decrease whereas the latter increases the band en-

ergy. As these changes are produced at the same point of
the band they interfere destructively. These results would
be drastically modified for different mechanism of tetra-
gonal distortion like Gor'kov's mechanism or for tzz band
and will be reported elsewhere.

In a system with half-filled band the antiferromagnetic
(SDW) state is favored for any finite value of U or J be-
cause the splitting due to SDW always lowers the elec-
tronic energy in this case. The coexistence of tetragonali-
ty and SWD is possible if the splitting of the center of
gravity of bands due to tetragonality is more than the
splitting of band due to SDW. In this case, the energy is
lowered when both the order parameters are finite. In
presence of SDW, the Fermi 1evel for half-filled system
hes at the energy gap created by SDW and if splitting due
to strain is less than that due to SDW the total energy
cannot be further lowered by distortion. The situations
will be different for more than or less than half-filled
cases and are being studied.
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