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Application of a pseudo-one-dimensional kinetic Ising model to proton spin-lattice
relaxation rates in squaric acid (H2C404)
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A kinetic model of three-dimensionally-coupled Ising chains is applied to study the proton spin-
lattice relaxation rates in H2C404. Good agreement with the experimental proton spin-lattice relaxa-
tion rates implies the validity of the model in visualizing HzC404 as a quasi-one-dimensional solid.

I. INTRODUCTION

Squaric acid (H2C40&) is a molecular solid which shows
a structural first-order antiferrodistortive phase transi-
tion' at T, =373 K from a tetragonal (high-
temperature phase) to a mon oclinic structure (low-
temperature phase). The corresponding universality class
in renormalization-group language is n =2, d =3 where n
is the number of order-parameter components and d is the
dimensionality. The relevant mechanism for the phase
transition is accompanied by the order-disorder behavior
of protons. We do not, however, propose that the protons
alone are driving the phase transition, but believe that the
high polarizability of the CqO& unit plays a significant
part in the structural change, as was recently established
by ' C NMR measurements. The structural information
of this solid prompted us earlier to propose a model of
three-dimensionally-coupled Ising chains. In order to
visualize this chain structure we have plotted in Fig. 1 a
single ac plane of squaric acid with two orthogonal chains

ab!i!1~a. Q

~

being emphasized. The model is a hydrogen-bond chain
network, consisting of parallel chains with strong cou-
pling J

&
in the chain direction and much weaker coupling

J2 between parallel chains. Parallel to the ac plane and
along the b direction there are other layers stacked with a
separation b/2 J3 re.presents the coupling to such neigh-
boring layers. These three coupling constants were found
to be J& ——149 K, J2 ——63 K, and J3 ———5 K in the mean-
field approximation of a one-dimensional chain by fitting
to the neutron scattering data of Samuelsen and
Semmingsen. ' ' Due to the fact that the intrachain cou-
pling is much larger than all other coupling constants, one
can justifiably treat one chain rigorously and incorporate
the interchain interactions through, e.g., mean-field ap-
proximation. Such models have been used with fairly
good success in investigating the static as well as dynamic
properties of molecular solids.

In this paper, our interest is in the chain dynamics
which causes proton spin relaxation. One of the simplest
models to study the dynamical cooperative phenomena is
the Ising spin model, which, in an external magnetic field,
has been solved by Zumer' for its kinetics. Since squaric
acid can be visualized as a highly "one-dimensional solid"
we can use the kinetic model to investigate the proton
spin-lattice relaxation rate. We shall, however, give gen-
eral results for the dynamical susceptibility which reduce
to those of Zumer in certain approximations.

Before proceeding we should remark that proton spin-
lattice relaxation measurements have been recently report-
ed by Maier and Petersson. ' These authors did, however,
interpret their data in a classical way. Our data are in
agreement with theirs in those cases where similar fre-
quencies and orientations have been used.

II. BASIC THEORETICAL DETAILS

The spin-lattice relaxation rate, caused by fluctuating
dipolar interactions and represented by the interaction
Hamiltonian

FIG. 1. ac plane of squaric acid with two orthogonal chains
being emphasized to suggest the chainlike structure of this solid. is given by'
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=3y A I(I +1)—[J"'(coo)+J' '(2coo)] .
1

(2)

In the above equations E' ' are the lattice functions, 2' '

are operators acting on spin variables, and the J' '(cok)
are the spectral densities of the fluctuating dipolar tensor
defined as

J'k'(~„) = g f d~e " (~'J."'(0)&F'J '(~)),

In the mean-field approximation, which amounts to in-
troducing the interchain couplings in the exact one-
dimensional (1D) solution of the Ising Hamiltonian, the
expression for X ( q, co) is given by

X-(- )
X (q 0)
1+lcovq

(3)

gF,.'."'(t)=F '(t) —(F, '), the angular brackets
denoting the ensemble average.

In the pseudo spin picture, where a spin exists either in
the right (+ 1) or left ( —1) equilibrium site, the variation
of Ffp' with time can be represented through the ansatz

a
+q, 1D

1 —XiD(q 0)Jg(q)

X)D(q, O)
X (q, O) =

1 —XiD( q, O)Ji(q)

~(1+X')
1+X —2Xcos(q r )

(12)

(13)

(14)

(4)

The last term, however, can be shown to be too small to
retain. %'ith the introduction of the Fourier components
of o;(t),

XiD(q, co) =P(1=(o ) )
1 —X

91+X —2X cos( q ~ r) +i c.o~

(15)

o;(t) =N '.~ g o (t)e (5)

the spectral densities in the continuum limit are written as

cosh(Ph, ff) —[sinh (Ph, ff)+-e ']'
X=

cosh( ph, ff ) + [sinh (ph, ff ) —e ' ] '~~
(16)

J'"'(~k)= Jd'q[D+E+2DE(q )]S(q,~k),
(2m. )

(6)

where

D=X ID I'
J

E=g (8)

DE(q )= QDJEJe
J

(9)

In obtaining the result (6), we have replaced the q. sum-
mation by q integration which is to be performed over
the Brillouin zone. V is the volume of the unit cell and
S(q, co) is the Fourier transform of the correlation func-
tion

(10)

where the summation is performed over the two orthogo-
nal sets of Ising chains.

S(q, t)=(o (t)o (0)) —(o (0))(o (0)) .

Using the fluctuation-dissipation theorem, the spectral
densities are further expressed in terms of the imaginary
part of the generalized dynamical susceptibility X(q, co)
which can be calculated for our system using the kinetic
Ising model described by the Hamiltonian

2

col = g J) g o'( crj~+J2 g o'q ok+ J3 g o''(0t'

In expressions (11)—(16) 7 is the flip time of each spin,
(o ) is the order parameter, p=(kf3T) ', h, ff =(2J2
+8

~
J3

~

)(cr), and Jz(q) is the Fourier component of the
interchain interactions. The results of Zumer' are ob-
tainable from the above expressions when the terms of or-

2 —4pJ)der h, ff are neglected and e is assumed to be negligi-
bly small. For o;=1, q& r& ——2m.h and therefore

JJ (h k l) 2J2cos(2771 ) +8J3cos( frh )cos(mk )cos( frl )

and for a=2, q2. rz ——2ml and Jz(h, k, l) =J3 (l, k, h).
Thus, the spin-lattice relaxation rate can be calculated
from the above equations, the computational details of
which are given in the next section.

III. RESULTS

The proton spin-lattice relaxation times T] were ob-
tained with a Bruker SXP spectrometer, operating at 270
MHz, in pure single crystals of squaric acid for different
temperatures (288 & r& 413 K). The saturation-recovery
method was employed and the relaxation behavior was
found to be exponential. The crystal was oriented at three
orientations, viz. , 0=0', 54.7, and 90 where 0 is the an-
gle between the static field Bo and the b axis. In the first
orieritation, the field was perpendicular to the chain
whereas for 0=90' it was parallel.

The measured experimental results for the relaxation
rates for the three orientations are shown in Fig. 2. Long
relaxation times of over 2000 s are observed at room tem-
perature. The results indicate the presence of a back-
ground signal due to paramagnetic impurities which must
be subtracted from the observed behavior. The resulting
relaxation rates are now plotted in Figs. 3—5 for 0=90',
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FIG. 4. Same as in Fig. 3 except 0=54.7' and T, =374 K.

which give J
&

——509 K, J2 ——10 K, and J3 ———0.5 K
(these differ from the values obtained from the older
data 'b'). These values are taken as guides in our analysis.
The order parameter ( cr ) is calculated from the self-
consistent solution of

FIG. 2. T )
' as a function of temperature for three orienta-

tions of the magnetic field Bo with respect to the I axis: (a)
6I =0, (b) 8=54.7', and (c) 8=90'. The solid straight line corre-
sponds to the background relaxation.

54.7, and 0', respectively.
Let us now calculate T&

' from the equations given in
the last section. The inputs required for this purpose are
J), Jp, J3, (cr), D( =E), DE(q), and r. The quantities
J2/J~ and

~
J3

~
/J& were recently obtained from a least-

squares fit of the neutron scattering data by Ehrhardt
et al. '" These are J2/J~ ——0.02 and

~
J3

~
/J~ ——0.001

sinh(2PJ, ( cr ) )

[sinh (2PJ~ (cr) )+e ']'
We next calculate the spectral densities which can be
rewritten from Eq. (6) as

J'"(~„)=—' g f, f, f, [2(D +2DE (q)]
a= 1

XS (h, l, k, cok )

&( dh dl dk

Use has been made of the symmetry property
(h, l)=(1—h, 1 —l).

The calculated values of D = —,g+ for 34 nearest
neighbors are listed in Table I. g~E (q), on the other
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FIG. 3. T
&

' as a function of T —T, for 8=90 where
T, =375 K. The solid curve is obtained from theoretical calcu-
lations with J2/J, =0.02,

~
J3

~
/J& ——0.0006, and

~= 1.65 )& 10 ' s while the dashed curve is obtained when (as
explained in the text) the experimental values of the order pa-
rameter are used.

r
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FIG. 5. Same as in Fig. 3 except that 8=0o, T, =375 K, and
J3

~
/J& ——0.001. The dashed-dotted curve corresponds to

() ()2 an
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TABLE I. Lattice sums for proton dipole-dipole interaction
according to Eq. (7) for three different orientations 0 of the
crystal b axis with respect to the external magnetic field Bo. All
values are in units of 10 "m

7 &10

90'
54.7

00

D(coo)

0.106 50
0.07027
0.123 88

D(2coo)

0.311 13
0.320 52
0.19077

tA

~ 10-lo

hand, is q dependent and calculated for, again, 34 nearest
neighbors while performing the integrations in Eq. (18).

The critical effect in the relaxation rate is thus con-
tained in the integral Jd qs(q, co). Since

(19)

1.Q 10.0 20.0
(T -Tc) (K )

FIG. 6. Correlation time ~, as defined in the text versus tem-
perature above the phase transition. The straight line through
the closed circles corresponds to the correlation time v; from the
' C relaxation data (Ref. 16).

the expressions (11)—(16) can be used to evaluate J'"'(cok ).
We have carried out the triple integration by Gauss quad-
rature formula with n =8. The integrals over h and I
were subdivided. The convergence of the results was also
checked and found good. Finally, r is treated as a free pa-
rameter chosen such that the calculated behavior for
T & T, followed closely the experimental data for all the
three orientations. It should be pointed out that accurate
order parameters are necessary to obtain quantitative re-
sults for T & T, in low-dimensional solids. '5

The results shown in Fig. 3, for 0=90', were obtained
using J2/JI ——0.02,

~
J3

~
/JI ——0.0006 (JI ——520 K, Jz

= 10.4 K, and J3 = —0.3 K), and r= 1.65 X 10 ' s.
These values were chosen such that the relaxation
behavior above the critical temperature is reproduced. As
is clear from the results, excellent agreement is found.
For T & T„however, the agreement seems only qualita-
tive which is due to poor estimates for the order parame-
ter (cr). When experimental values of (o.) obtained from
' C line separations are used in our calculations, quanti-
tative results (dashed curve) are again obtained. Similarly
for the second orientation (8=54.7 ) the results of the
model, with the same set of parameters JI, J2, J3, and 7,
are in quantitative agreement with the experiment (Fig. 4).
However, for 8=0', the above values for JI, J2, J3, and r
give relaxation rates larger than the corresponding experi-
mental values at all temperatures. We therefore studied
the dependence of TI ' on J2, J3, and ~ and found that
the correct relaxation behavior can only be obtained if

J3
~
/J~ ——0.001 . The results in Fig. 4 shown by the con-

tinuous line correspond to Jz/J~ ——0.02,
~
J3

~
/J&

=0.0006, and ~=1.65&&10 ' s while those shown by the
dashed-dotted line correspond to J2/J I ——0.02,

~
J3

~
/J& ——0.001, and r=1.65X10 ' s. In general, we

find that the results are much more susceptible to change
on J3 than to J2 or ~. This points out the necessity of
making modifications, particularly in the interchain in-
teractions, to obtain quantitative results from the
molecular-field approach.

The values of J2/JI in all three orientations are the
same and equal to that obtained from the neutron scatter-
ing data, while

~
J3

~
/JI, except for 8=0 orientation, are

different from the neutron scattering value by a factor

1.67. Since J2/J~ and
~
J3

~
/J& have been obtained in-

dependently of the neutron scattering results, the agree-
ment between the two is quite satisfying. The value of w

is different by 1 order of magnitude from that obtained
from ' C spin-lattice relaxation measurements. Note,
however, that the absolute value of r as determined from
spin-lattice relaxation data is extremely sensitive to the
amplitude (b,x) of the proton motion in the hydrogen
bond. Since this amplitude is not known accurately
enough, the absolute value of r might be somewhat in er-
ror.

In order to furnish some quantitative insight into the
critical slowing down near the phase transition we have
plotted in Fig. 6 the correlation time ~„defined as

dtg(t)= Jd qS(q, 0) (20)

versus temperature, as obtained from the proton TI data
using the Ising-chain analysis. The correlations are seen
to decay very slowly with increasing temperature, a
behavior typical for low-dimensional solids. For compar-
ison we have also included the ' C relaxation data. Note
that the absolute values of ' C and 'H correlation time r,
agree near the phase transition. However, with increasing
temperature a deviation is observed, most likely due to the
overestimated one-dimensional character of the pseudo
one-dimensional kinetic Ising model.

Assuming the scaling behavior ~, =~e, where
e=(T —T, )/T„ it is found that the data cannot be fitted
with a single value of A, . If one is willing to accept for a
moment a piecewise exponential law, the critical exponent
A, is equal to 0.89 at (T —T, )=0.1 K and then it in-
creases progressively with temperature. For three-
dimensional models' A, varies between 0.5 and I.O while
for the two-dimensional Ising lattice it is 1.6 (Ref. 18).
The experimental behavior might thus indicate the ex-
istence of three-dimensional fluctuations near the phase-
transition region which become increasingly lower dimen-
sional with an increase in temperature, i.e., the phase tran-
sition is essentially driven by three-dimensional ftuctua-
tions. This situation is similar to low-dimensional mag-
netic systems where the phase transition is a three-
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Within our model of kinetic Ising chains, we are also
able to calculate the dielectric susceptibility
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3
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e(co) =1+4nX(q =O, co),

where

(co)'=e (co)—lE (co) .

When using Eq. (11)we arrive at

4m.X(co,0)
E' co =1+

1+co vp

(21)

(22)

(23a)

100

I I I I I I I

350 360 370 380 390 400 410
T (K)

FIG. 7. Dielectric susceptibility versus temperature. The ex-
perimental points were obtained from Ref. 20 and are compared
with our calculation (solid line) based on the Ising chain model
[Eq. (23a)].

coral(to, 0)
e"(co)=4m

i+co 7p
(23b)
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dimensional ordering process and, for example, one-
dimensional fluctuations are observed in the paramagnetic
( T & T, ) region. Such a behavior is indeed expected from
the structure and the type of interactions present in
H2C404. In essence this behavior is built into our model.
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