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Theory of linear magnetoelastic effects
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A theory for the elastic properties of magnetostrictive materials is presented. The complete elas-
tic constant tensor is obtained from simple linear magnetoelastic approximations as a function of the
magnetoelastic coupling coefficients and the susceptibility. It is also shown that, by using the proper
dynamic susceptibility tensor, most of the observed effects can be described. More specifically the
field dependence of the attenuation and the difference in the ultrasonic shear-wave velocity -between

the cases of 8 parallel to the polarization and that of H parallel to the propagation direction are ex-
plained. A very good agreement is found when the theoretical predictions are compaged with some
available experimental data.

INTRODUCTION

The elastic properties of magnetically ordered materials
depend on the magnetic state of the sample and on the ap-
plied field. This dependence can be very large, ' and has
been measured in many different magnetic materials.
In general, these effects are detected as a dependence of
both the ultrasonic wave velocity and attenuation on the
intensity and direction of an applied magnetic field H.
The principal mechanism used to explain these effects is
the "Simon effect" predicted directly from the first-order
approximation linear-magnetoelastic theory. Higher or-
ders of approximation give rise to other effects (morphic
effect, rotational effect) which are often invoked to ex-
plain some characteristics of the experimental data unex-
plained by the Simon effect. This is, for example, the case
of the difference in the ultrasonic shear wave velocities be-
tween the case of H parallel to the polarization and that
of H parallel to the propagation direction; in addition to
this, the dependence of the attenuation on H has not yet
been accounted for by the available theoretical models.

All the theories for these magnetoelastic effects which
have been presented to date are extensions of Simon's
theory which include higher-order terms. The e1astic
properties are derived from the free energy by solving the
coupled elastic and magnetic equations of motion.
This method necessitates the preliminary choice of the
wave vector K and, as a result, gives the velocity and po-
larization of the three normal modes.

In the present paper we present a theory for the elastic
properties of magnetostrictive materials which, although
based on the linear magnetoelastic theory and hence
describe only the Simon effect, does not make use of the
equations of motion. The complete elastic constant tensor
C is derived by using an extension of the formalism com-
monly used to calculate the magnetostriction. In this way
we obtain corrections to the elastic constants which are
functions of the magnetoelastic coupling coefficients and
of the susceptibility. We show that most of the observed
effects can be explained by using a properly calculated
susceptibility tensor without the help of higher order ef-
ects.
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for the uniaxial system. The a; are the direction cosines
of the magnetization M and 8 is the angle between M and
the c axis.

The Zeeman energy is E,= —M-H and the elastic one
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with the normal convention for the indexes:
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The e; =e
13 are the strain tensor defined as
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for a&p and eaa

u being the a components of the particle displacement.
The number of independent elastic constants C,J is lim-

ited by symmetry. One has

Static linear magnetoelasticity

It is well known that in the first order of approximation
the energy of a magnetoelastic system can be written as'
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for the uniaxial system.
If the system is isotropic, one has the additional condi-

tion

C]3 —— ]2~ 33 =C]], C~ ——C55 ——C66 ——(C]]—C]2)/2 .

The first-order approximation for the magnetoelastic en-

ergy has the general form

for cubic systems, and
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where i and j vary between 1 and 3 while E varies be-
tween 1 and 6.

Due to symmetry this expression reduces to

E = bo(e~ +eyy+e~ )+b]( ae~+ayeyy+a

+b2(axayexy +ayazeyz +azax zx )

for the cubic system, and reduces to

E,= b]](e +eyy)+b]2e +b2](a, ——,
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'
)e

+b3[ —,
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for uniaxial symmetry.
The first step in the analysis of these systems is to find

the equilibrium state. This is generally achieved by as-
suming that the orientation of the magnetization is the in-
dependent variable and then determining the equilibrium
strain' by using the conditions

B(E,]+E,) =0.
Be; B.e;

From the solution of the above six equations the equilibri-
um strains e; can be obtained. Since

l o
eij i jl)J

is the elongation of the sample along a given direction, the
well-known expressions for the magnetostriction are ob-
tained. ' For cubic systems,

l
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(the ellipsis denotes terms independent of a;), where
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One can also immediately obtain the equilibrium volume
magnetostriction
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and for the cubic system it results in being equal to zero.
On the contrary, in the case of uniaxial system it is not
null and it results in

g y 2, 2b2](C]3 —C33)+b22(2C]3 —C]]—C]2)
=(a3——,
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and, for uniaxial systems,

The energy of the equilibrium state can now be ob-
tained by substituting in E the expressions of the equili-
brium strains. The expression for E obtained in this
manner depends only on the magnetization M. The elas-
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tic and magnetoelastic energy terms have now the same
form as that of the anisotropy. Their coefficients can be
seen as corrections of the second- and fourth-order mag-
netocrystalline anisotropy.

In the cubic case one obtains

1
AKi ——

C11 ~12

bz

2C44
(9)

Also for the uniaxial systems, the hX are not riull and
they result

~&i = —b~/2C~ —
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At this point the energy depends only on the orientation
of the magnetization. Hence the equilibrium direction of
M, for a given applied field, is immediately found by
minimizing the energy with respect to the M rotations.

One thus obtains both the magnetization curves M
versus H, often in implicit forms, and the equilibrium
magnetization M for a given field. Knowing the equi-
librium state of the system, one can now investigate its
response to a magnetic or elastic perturbation.

RESPONSE TO A MAGNETIC PERTURBATION

r) E(Hp)
Eee =-

GO

r) E(.Hp)
2
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e=epv =vp

and in which it has been considered that, at equilibrium,

%'e can now calculate the response of our systen1 to a
perturbing magnetic field h, small compared with the
static applied field and/or with the anisotropy.

In insulating materials or at low frequency one can ig-
nore the screening effects; one, moreover, can assume that
the elastic distortion rearranges itself immediately to fol-
low any rotation of the magnetization; i.e., the relaxation
time for the magnetostriction is short compared with the
considered frequency. Consequently the energy of our
system does not explicitly contain any elastic or magne-
toelastic terms, providing that the effective anisotropy
constants K; =KP+ hX; are used. If, for a given field H,
00 and yp correspond to the equilibrium magnetization
M in a polar-coordinates reference system, after the per-
turbation the magnetization will rotate to a new 0 and y
orientation, where 8=8p+e and y=qr +g. e and g are
infinitesimal quantities for infinitesimal perturbations.

Expanding the energy around the 00 (pp equilibrium po-
sition, one can write

E=Ep+ Egee +E~~j M.h, —
where

cos 49psin yp
gyy

——M,
Eee
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Eee
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gy, ———M, 7

Eee

2 sln6Ipcos80cos+0g~= —M,
Eee

cos Opcosypsinyp sin Opcosypsinyp

Eee Epq)

Moreover, one obtains the energy difference between the
perturbed and unperturbed states:

AE= —Mp. h ——,m h . (12)

RESPONSE TO AN ELASTIC PERTURBATION
r

If, at constant field, we apply an elastic perturbation as
an externally induced distorsion having components e;,
then the n1agnetization vector, due to the magnetoelastic
coupling, will rotate away from its equilibrium position.
The new values of the direction cosines will be
a; =a;+a;.0

The energy variation of the system, induced by the per-
turbation, is

Minimizing Eq. (10) with respect to e and to g, one im-
mediately obtains

ep = (M /2Eee ) (h„cos8pcosyp+ h» cos8psinyp —h, sin8p),

gp (M, /2E——~„( h„—sin8psinyp+ h» sin8pcosyp) .

Defining the response to the perturbation as m=M —M
and writing it in terms of the usual differential suscepti-
bility tensor m=7.h, one finds

cos Opcos gp sin Ops1n happ

ee

r) E(Hp)
aevi e= ep%'= 0'p

AE=E(a;+a;, ej +ej) E(a;,ej ) . —
Adding and subtracting from bE a term E(a;+a;,eJ),
one can see that
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me 1 I)E 1 0
hJ
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Hence, the total perturbation energy takes the form

DE=Esse +Eq~g mh '+ ,
' —Cje;e~, —

(13)

b,E] E——(a;+a;,ej ) E—(a;,ej )

represents the energy variation induced by a small rota-
tion of M; hence it is equal to what we have calculated in
the case of magnetic perturbation. This term can then be
written b,E=E&ee +E~~gas 'in Eq. (10). The energy
difference

b, E2 E(——a; +a;,ej +ej. ) E(a;—+a;,eJ).
has to be calculated by explicitly writing the different en-

ergy terms. The magnetocrystalline and Zeeman terms do
not contribute to AE2. Moreover, in AE2 there are terms
having the form (C]ke; +b]jxa, aj)ex. These terms are
null because the unperturbed system is in equilibrium. In
fact, the term in parentheses has to be zero according to
Eq. (7). The only terms of AE2 different from zero have
the form

0
bI E2 bijou a] QJ ex + , CJ e—;ej

The terms of bE2 linear in aj can be seen as being due to
the effect of a perturbing field h ' having components

The importance of having an explicit expression for all
the effective elastic constants, knowing X and the direc-
tion of M, is that one can then predict all the elastic prop-
erties of the systems. The results of the explicit calcula-
tion for the magnetoelastic field components and for ECIJ.
are reported in Table I for the cubic system and in Table
II for the hexagonal one. Finally it must be noted that it
is possible to derive the expressions for an isotropic sys-
tem (randoin polycrystals) either from the cubic or from
the hexagonal case by making the following substitutions.
For the elastic constants,

CI ] —C22 —C33 —X+2p

C12 =C23 =C13

C44 ——Css =C66 ——(Cii —Ci2)/2=]M .

TABLE I. Magnetoelastic field components h and elastic
constant corrections 4Cj for a cubic system

h„'= —[2b]e]a]+b2(e6Q2+e&Q3)]/M,
/

hy
'—— [2b]e2a2—+b2(e6a]+ e4a3) ]/M

h, '= [2b]e3—Q3+ b2{e3a]~e4Q2)]/M,

where m; =M, a; are the components of m.
The magnetic part of AE has the same dependence on

the rotation of M calculated in the case of a magnetic per-
turbation. The expression for the corresponding energy
variation has been given in Eq. (12). We can then write

b, CII —— [4b]X {—a]) ]/M,

EC22 —— [4b]X—~(Q2) ]/M,

EC33 — [4b]X (Q3)2]/M,

AE = ——m. h +—C"e eme
2 2 V I J (14)

EC44 ———b2[X (a2) +2Xy, a2Q3+Xyy(a3) ]/M,

b, C&3 ———b2[X (a3) +X (a]) +2X a]Q3]/M,

The response of in to h ' can be written as I=ah ',
where X is an appropriate susceptibility tensor. For low
frequencies it coincides with the one calculated for a mag-
netic perturbation and given in Eq. (11). At higher fre-
quency, dynamic screening effects are present. They will
be considered in the following paragraph. Substituting
m=gh ' in AE, one obtains

yjJp j hJ + 2 Cgjejej ~

EC46 —— b2[X~(a2)—+Xyy(a]) +2Xxyala2)/Mz

—4b~~ ~ +y~ a]a2) //M

5C)3 ———(4b )g a]a3)/M,

6C23 — (4b ]Xygaqa3) /M, '

LaL C
& 4 2b

&
b 2 (Pzy a ~a3 +X~a ~a2,) /iV,

b C]3 ———2b]b2[X a]Q3+X (a]) ]/M,

b, C,J
——(1/Mz )b~, b~qXqzay a„. (16)

Equation (15) i'ndicates that the magnetoelastic interaction
can be ignored in the study of the elastic properties of
these systems, provided that the elastic constants CJ are
corrected by the b C;J terms. One must note that the AC,J.

can reduce the symmetry of the system: an isotropic one
can be reduced to an uniaxial, a hexagonal to an
orthorhombic, etc.

Being h ' linear in the strains e;, according to the defini-
tion, one can finally write

b.E= —,
'

(C,q —b,C,q)e;ej,

where

5C24 ——

6 C25 ——

6C26 ——

5C34 ——

6C35 ——

6C36 ——

5 C45 ——

~C46=

~Cs6=

—2b] b2[X a]a2+X„y(a]) ]/M,

2b]b2[Xyya2Q3—+Xy, (Q2) ]/M,

2b
& b2(+zya2a3 +Pyza ~a2 ) /M,

—2b]b2[X„y(a2) +X~QIQ2)/M,

2b I b 2 [Xyz (a3 )
' +Xzz a2Q 3 ]/Mz

—2b]b2[X (a3) +X a]a3)/M,
—2b a b2(X a2a3+Xy, aqa3)/M,

b2[Xxy(Q3)'+X Q2Q3+Xyza]Q3+Xzza]Q2]™
2 0 0 0 2 0 0 0 0 2b2[X„ya2a3—+X„,(a2) +Xyya]Q3+Xy, a]a2]/Mz

b2[Xxxa2Q3+X ya]Q3+xXxza]Q2+Xyz(a~]) )™z
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TABLE II. Same as Table I, for a hexagonal system.

h„'= —[b3u1(e1 e—z)+ bzaze6+ b4aze5) /M,

hy
' ———[b3az(ez e—

1 )+bza1e6+ b4a3e4] /M,

h, '= —[2b21a3(e1+ez)+2bzza383+b4ale5+b4a2e4)/Ms

QC11 —[ —b3[X {a1) +Xyy(a2) —X yalu2]+2b21b3a3{Xyza2 —X a1)—X 4b21(a3) j /

&C22 —{—b3[X (a, ) +X~(az) —X„ya1az]+2bz, bza3(X„,a1 Xy,a—z) X»4—bz1(a3) j /

aC» ——X 4b»(~', )'/M, '

b. C44= b4[X—(az) +Xyy(az) +Xy aza3]/Ms

b, C» — b4[X—(a3) +X (a1) +X ala3]/Ms

EC66 ———b3[X»(az) +Xyy(a1) +Xxya1az]/M,

b. C12 [3[X ——(a1) +Xyy(az) —X„ya1az] 4b 21
—(a3) X» j /M,

6 C'13 = [ bzzb3 (x a1a3 —
Xyzazoaz }—4X bz1bzz{ a3} ]™

AC, 4= —
z b4[b3[ —2Xyyaza3+X„ya1a3+X»a1az —Xy, (az) ]+b21[4X»a2a3+X3+2Xyz(a3) ) j /Ms

hC» ———
z b4 [b3[2X»a1a3 X„yaza—z Xyza1a—z+X»(a1) ]+bzi[2(a3) Xxz+4a1a3X»] j / s

~C16 2 b3 [2b3ala2{Xxx Xyy )+b3Xxy[(al ) (a2) ]+2bz]a3(azXxs +a1Xyz ) j /Ms

23 —[bzbzza3(a1X —azXys ) 4b21 bzz(—a3) X ]/M,

6 Cz4 ———
z b4 [b3[2Xyy aza3 X„ya,a—z Xxza1a—z+Xy, (az) ]+bz1 [4X»aza3+2X~(a3) ] j /M,

b, C25= —
z b4[b3[ —2X„„a1a3+X„yazaz—X„,(a1) +Xy,a1az]+bz1[4X a1a3+2X (a3) ] j/M,

b. C26= —
z b3[b3[ —2a1azX +2a1azXyy+(az) X„y—(a1}X„y]+b21(2aza3X +2a1a3Xy, )j/M,

6C34 — 6$2b4cx3(2m& +mQ~ ) /hf,

6C35 — bppb4a3(2aiX +aQ )/M,

5C36 = —62263tX3(+~CX2+gy, ai ) /M,

AC45 ———, b4[2a1azX +—(a3}Xxy+aza3X +a1a3X~]/ M,

~C46 2 b3b4[2ala3Xyy+a2a3Xxy+{a2} Xxz+alazXyz]/Ms

~C56 2 b3b4[2aza3X +axx1a3Xxy+a1azX»+(a1) Xy, ]/M,

For the magnetoelastic constants,

b] ——bp ——b

starting from cubic, and

bzi —— b/2, bzz b3 —b, b4 ——b/2————
starting from hexagonal.

Moreover, one must take into account the fact that the
driving field h ' is not a true magnetic field but only a
description of the internal coupling between M and e.

These dynamic effects can be calculated by solving the
Maxwell equations for the general case of a magnetic con-
ducting media, having conductivity o.. In the cgs system
assuming the dielectric constant to be e= 1 and having no
free charges, one has

SCREENING EFFECTS ON THE
SUSCEPTIBILITY TENSOR

To have a complete description of the elastic properties
of a magnetostrictive material, vrithin the approximation
of the linear magnetoelastic theory, a further analysis of
the susceptibility tensor is necessary. P has already been
calculated for the low-frequency limit, where the screen-
ing effects can be ignored. For higher frequencies, the
dynamic effects have to be taken into consideration.

7'.K=0,

T.8=0,

vxs= —1 aB
c at

V~8= —4m'.s+ +4+V&M .aE
C at

(17a)

(17b)

(17c)

(17d)
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In B=H+4+M we have to consider that H=Hp+h'
where Hp is the static field and h is the screening field to
be calculated. h ' does not contribute to H bemuse it is
not a true magnetic field. In M=Mp+m, we have to in-
troduce the response of M to the perturbation:
m=X (h'+h '), where the susceptibility tensor X, for
frequencies well below the ferromagnetic resonance, can
be assumed as equal to the static susceptibility calculated
in Eq. (11); all the dynamic effects can be considered as
being described by the screening field h . Simplifying the
4n V X M in Eq. (17d), taking the curl of both the terms of
this equation, and then substituting Eq. (17c) in it, one ob-
tains

(ho K)K—
I
K

I
'ho— co . 4K—l 0 CO2 2

X [(I+4~Xo)ho+4~Xoh '] .

This vector equation can in general be solved for the three
components of hp. Then from hp, using the simple ex-
pression

Xho"——X (ho+ho '),
one obtains the effective dynamic susceptibility X.

If one chooses a reference system with the z axis paral-
lel to M, then the susceptibility tensor is simply

1 8 B 4m.o. BBVX(VXH)=-
c Bt c Bt

Assuming plane-wave solutions for h
' and m,

h'=hoexp[i(K r —cot)] and m=moexp[i(K r —cot)],
propagating at the same frequency and with the same
wave vector

~

K
~

=co/u as the elastic perturbation, one
has

0 0
XP= 0 Xyy 0

0 0 0

when the orientation of the x and y axes is properly
chosen. If, moreover, K is parallel to one of the principal
axes, so as to have K;KJ ——0 if i&j, one then obtains
X,J

——0 if i &j;X =0 and

[1—i(co, /co) ]4mX;;+ Egg

(c /u )(1 K; ) —[1 i(co—,—/co)](1+4+X;;)

for i =x,y, where one has defined co, =4mcr and K =K/
~

K
~

.
Separating the real and imaginary part of X;;, using p;; = 1+4mX,; and

~

K =co/u, one obtains

(c /u )(1—K; ) —(1+co, /co )p;;

[(c /u )(1 K; ) —p;;] +(co,—/co )(p;;)

(co, /co)(c /u )(1—K;)
Imp;; = — 4m+, ;

[(c'/u')(1 —K,') —p,;]'+(co,'/co')(p, ; )'
p

+El

The susceptibility for given directions of the wave vector K can now be calculated. If K~~M(~Z the transverse com-
ponents of X are modified as follows:

c /u —(I+co, /co2)p, ,
RCXgg. —— 4'+,; ' " +

(c /u —p;;) +(co, /co )(p;;)

(co, /co)(c /u )

(c /u —pg, ) +(co, /co )(p, )

(20)

If K is perpendicular to M, for the components of X per-
pendicular to both K and M, one obtains the same correc-
tions for g;; as above. On the other end, for the com-
ponent parallel to K one obtains

1 pRe+()g ——

1+4mX;;p
Xjg

(21)

The above results indicate a dependence of the suscepti-
bility tensor on the propagation direction. This effect will
allow us to give a more complete interpretation of the
available experimental data. More specifically the differ-
ence in the transverse susceptibility components, parallel
and perpendicular to K, will allow us to explain both the
presence of an attenuation only in the case of the K~ ~Mt. u
configuration and the difference in the ultrasonic shear
wave velocities between the K~~M&U and the KlM~~U
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TABLE III. Comparison of the theoretical and experimental data for nickel single crystal. Shear
waves at 10 MHz propagating along [110] at H;„,=8 Koe. We have assumed A, ~~&

———19)&10
1100=—50X 10 M =484 emu/cm, C44 = 1.235 X 10 dyn/cm ( C11—C12)/2=0. 504 X 10
dyn/cm, and o =15X 10' sec '. Experimental data are from Ref. 2.

ull[11o]

ul I
[0011

Ml
l
[110]

(~V/Vo )Mi I[11o]—(~V/Vo )M[ )[110]
Ml

l
[110]

(~V/Vo )M( I[11o]—(~V/Vo )M/ /[001]

5V/Vp
6 (Np/cycle)

6V/Vp
5 (Np/cycle)

Theoretical

11.35 X 10-4
10.95 X 10-4
3.03 X 10-4

3.07 X 10-4
1.7 X 10-4
0.12X 10-'

Experimental

13.5 X 10-4
10.4 X 10-4
2X10-4
5.3 X 10-4

(3.0X 10
(0.3 X 10

cases. We can also note that this difference increases with
decreasing conductivity.

DISCUSSION

Our approach to the magnetoelastic effects, within the
approximation of the linear rnagnetoelastic theory, makes
it possible to calculate the correction to the elastic con-
stants, without fixing a priori the direction of propagation
and without solving the relative coupled equations of
motion. The resulting corrections to C have the form

Q2

Although the susceptibility tensor in this expression
differs from the static susceptibility X for dynamic
corrections, these can at first be ignored for a qualitative
analysis of the elastic properties of the system. Then,
once the applied field and consequently the orientation of
M and P are known, one can immediately predict the
symmetry of the elastic properties of the system. The na-
ture of the normal modes of acoustic wave propagation as
well as their degree of magnetoelastic coupling can direct-
ly be calculated. Moreover, also peculiar observed effects,
such as the acoustic birefringence' or the resonance and
polarization rotation, '" can be easily predicted. It must
also be noted that the hC reported in Tables I and II are
consistent with those reported in literature, ' which are
calculated, for specific cases, by solving the coupled elas-
tic and magnetic equations of motion.

To obtain correct quantitative values for the variation
of the velocity of the elastic waves and of their attenua-
tion, one must calculate the dynamic susceptibility tensor
following the procedure described in the above paragraph.
For the two main cases of propagation, parallel or perpen-
dicular to M, one can distinguish two dynamic effects on

The first is the occurrence of a term 4n M to be added
to the applied field (and eventually to the anisotropy) in
the denominator of the susceptibility. This effect occurs
in the component of X parallel to the propagation direc-
tion, and it has been attributed to a dynamic demagnetiz-
ing field. The second effect is due to the electron con-
duction screening; it is frequency and conductivity depen-
dent, and it shows up both as a reduction of the real part
X' and in the appearance of an imaginary part 7" in the
susceptibility components perpendicular to the propaga-

pu =(Ct~ —Ct2)/2 for K
l i
[110],ul

i
[110],

pu =(C44+Css+2C4&)/2 for K ll[110], ull[001],

TABLE IV. Comparison of the theoretical and experimental
data for Pr2(Co Fe1 „)17 polycrystal; V are the shear wave ve-

locities at 5 MHz. We have assumed A,
~~

—k& ———572X10
po ——pVo ——6.19X10"dyn/cm, b1 ———(A.

~~

—A.q)2pp, M, =1158
emu/cm, o.=1.997X10' sec ', H=10 KOe, and x=0.81.
Experimental data are from Ref. 8.

ulMIK
ul lMLK
ulMllK

V(expt)
(cm/sec)

2.73 X 10
2.704 X 10
2.69 X 10'

V{calc)
(cm/sec)

2.704 X 10
2.695 X 10

tion direction. The presence of X" results in an imaginary
part hC" in the elastic constants and hence it gives rise to
a logarithmic attenuation (in units of Np/cycle) for the
elastic waves:

AC"6=2~
2C'

It is this difference between the susceptibility components
parallel to the propagation and perpendicular to it that
makes it possible to explain the experimental data relative
to both the different velocity of the KllMlu and the
KlMl lu cases and the different attenuation of the various
modes.

A comparison between the theoretical predictions and
some available experimental data ' is reported in Tables
III and IV. The comparison has been made for shear
waves in nickel single crystal and in Pr2(Coo stFeo t9)t7
polycrystal for values of the internal field (8 and 10 KOe,
respectively) high enough to have complete magnetic
saturation.

For nickel crystal we have considered the case of propa-
gation K along the [110] direction, polarization u along
[110]or [001], and magnetization either parallel to K or
to u. Considering all the effective elastic constants that,
due to the magnetoelastic corrections, can result different
from zero in our cases, we have the following expressions
for the shear wave velocities:
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in the cases we considered one has to take the susceptibili-
ty from Eq. (20) when M~~K and from Eq. (21) when M
is parallel to u. As sho~n in Table III, the prediction
made using a reasonable set of parameters are in very
good agreement with the experimental data.

For the case of Pr2(Coo s&Feo ~9) ~7, in which the magne-
toelastic coupling reduces the symmetry from isotropic to
uniaxial, we have considered the three cases of M being
parallel to the propagation, to the polarization or perpen-
dicular to both. The last case, in the simple approxima-
tion of considering a polycrystal as an isotropic single
crystal, resulted unaffected by the magnetoelastic cou-
pling, the velocity being given by pu = ( C» —C

& z ) /2 =po.

When M is parallel to K or to u, the shear wave velocity
is given by pv =po b—4X /M, . When M~ ~k, the suscep-
tibility is given by Eq. (20), while for M~ ~u, one must use
Eq. (21). Again the agreement between theory and experi-
ment is very good (see Table IV). For this sample we have
also made the comparison between theory and experiment
at different values of field, in the range 4 to 12 kOe, ob-
taining always a good agreement.

We can finally also note that the peak in the softening
observed, at low field, in nickel single crystals' ' and
films can probably be explained by the present model if
one takes into account that the transverse susceptibility
has a strong peak at H =H, .

S. Rinaldi, J. R. Cullen, and G. V. Blessing, Phys. Lett. 61A,
465 (1977).

2G. A. Alers, J. R. Neighbours, and H. Sato, J. Phys. Chem.
Solids 9, 21 (1958).

K. Ligner, J. Heil, and B. Luthi, J. Appl. Phys. 52, 2270 (1981).
4S. Ishio, A. Isomura, T. Ikeda, M. Takahashi, and S. Ka-

dowaki, Physica 119B+C, 119 (1983).
5J. Rouchy, E. Du Tremolet de Lacheisserie, F. C. Genna, and

A. Waintal, J. Magn. Magn. Mater. 21, 69 (1980).
6M. H. Seavey, Solid State Commun. 10, 219 (1972).
7N. Tsuya, K. I. Aray, M. Yamada, and T. Masumoto, IEEE

Trans. Magn. MAO-13, 43 (1977).
G. Turilli, S. Rinaldi, F. Leccabue, and A. Deriu, in Proceed-

ings of the International Conference on Magnetism of Rare
Earths and Actinides, Bucharest, 1983, edited by E. Burzo and

M. Rogalski (Central Institute of Physics, Bucharest, 1983), p.
104.

9G. Simon, Z. Naturforsch. 13a, 84 (1958).
T. Ikeda, Jpn. J. Appl. Phys. 21, 1249 (1982).
J. Rouchy and E. Du Tremolet de Lacheisserie, Z. Phys. B 36,
67 (1979).

A. E. Clark, in Ferromagnetic Materials, edited by E. P.
Wohlfarth (North-Holland, Amsterdam, 1980), Vol. 1, p. 531.
J. R. Cullen, S. Rinaldi, and G. V. Blessing, J. Appl. Phys. 49,
1960 (1978).

S. Rinaldi and J. Cullen, Phys. Rev. B 18, 3677 (1978).
P. A. Fedders, I. Wu, I. G. Miller, and D. I. Bolef, Phys. Rev.
Lett. 32, 1443 (1974).
B. K. Basu, M. J. Metha, and S. M. Pattalwar, J. Magn.
Magn. Mater. 23, 241 (1981).


