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Theory for the early stages of phase separation: The lang-range-force limit
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A systematic perturbation theory for the early stages of spinodal decomposition is developed for
systems with long-range forces. The small parameter in our theory is proportional to the inverse of
the range of the force. The Cahn-Hilliard-Cook theory for the structure factor results as the leading
term in the expansion. The first-order perturbative correction to that result, as expected, acts to
substantially slow down the evolution predicted by the earlier theory of Cahn et al. Coupling of
wave-number modes, not given in previous theories, is a natural consequence of our theory. We also
find that one cannot consistently define a spinodal curve for systems with a finite range of force:
The effective "critical wave number" which determines this curve becomes time dependent. The
theoretical results we obtain could be tested experimentally on systems with long-range forces, such
as polymer-polymer blends or some binary alloys.

I. INTRODUCTION

A disordered system quenched from a high initial tem-
perature to a final one, below its critical point, evolves to
its ordered equilibrium state in different stages. ' In spi-
nodal decomposition the system is initially unstable with
respect to long-wavelength fluctuations. Hence, an inter-
connected structure forms which coarsens during the early
stages. ' For later times, well-defined domains form
which evolve via interfacial dynamics. " In this paper we
study the early stages of spinodal decomposition.

The well-known Cahn-Hilliard-Cook theory of spinodal
decomposition describes some aspects of those early
stages. It consists of a linear stability analysis of the
initially disordered state, and correctly predicts the long-
wavelength instability. A sharp distinction between un-
stable and metastable states, given by the classical spino-
dal curve, is predicted by this analysis. Historimlly, the
theory of Cahn et al. has provided a useful guide for ex-
perimentalists. The theory, however, cannot account for
intrinsically nonlinear effects occurring in the later stages,
such as coarsening.

Many theories have attempted to incorporate nonlinear
effects into a theory of spinodal decomposition. Langer
and co-workers ' have presented the most successful
theories to date. They undertake physical (but uncon-
trolled) approximations which account for those non-
linearities. In particular, Langer, Bar-on, and Miller's'
theory quantitatively accounts for nonlinear effects which
result in coarsening during the initial break up of the in-
terconnected structure. Nonetheless, these and related
theories cannot be systematically improved bemuse they
involve no small parameter, since, for example, they con-
sider systems with short-ranged forces.

Thus an important issue is to determine the precise re-
gime of validity of the linear Cahn-Hilliard-Cook theory.
Patashinskii and Pokrovskii, ' and more recently,
Binder, ' have identified this through a modified
Ginzburg criteria. It is found that the theory of Cahn
et a/. is most valid for systems with a long range of force.

Explicitly, the time regime over whic x that theory is valid
is proportional to the logarithm of the range of the in-
teraction. Many systems with effectively long-range
forces exist in nature, for example, FeCr. ' ' Snyder,
Meakin, and Reich, ' and Russell and co-workers, ' have
recently studied phase separation in polymer-polymer
blends, and have found reasonable agreement with Cahn-
Hilliard-Cook theory over early times. ' Similar
early-time agreement has been found by Heermann ' in a
numerical simulation of a long-range-force kinetic Ising
model.

Our concern in this paper is with spinodal decomposi-
tion in systems with long-range forces. For such systems

-a small parameter exists: the inverse of the range of the
force. This allows us to construct a systematic perturba-
tion theory. A distinctive feature of our theory, compared
to previous work, is that it incorporates the coupling of
different Fourier modes of the order parameter. This
could be important for the description of the interconnect-
ed structure unique to the early stages of spinodal decom-
position. The first nonvanishing term in this expansion
yields the Cahn-Hilliard-Cook result for the structure fac-
tor. The next order contribution produces a qualitative
change to the result of linear theory, due to nonlinear ef-
fects. While the direct perturbative treatment is restricted
to the early stages of spinodal decomposition, we expect
that our results should be experimentally observable over
an important time domain for systems with effectively
long-range forces. For systems with an intermediate
range of the interaction, our analysis applies to a more re-
stricted time domain.

The results of our calculation, for a symmetric quench
of a binary-alloy model, indicate, as expected, that the
correction terms to the Cahn-Hilliard-Cook theory con-
siderably slow down the growth of the unstable modes.
Coarsening, which is absent from the linear theory, fol-
lows from our calculation. Another interesting effect we
obtain is the "crossing of the tails" of the structure factor
for different times (Sec. V), which has been observed in
numerical and experimental studies of phase separa-
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$F
(r, t) =MV +g(r, t), (2.1)

where M is the (constant) mobility and P is related to the
concentration c through P=c —c„,where c,„ is the criti-
cal concentration. The "coarse-grained" free-energy func-
tional is assumed to be given by

tion. ~ Finally, we find that, for systems with a finite
range of interaction, there is no way to consistently define
a sharp spinodal curve. We find that the effective "criti-
cal wave number, " which gives the position of the spino-
dal curve, becomes time dependent. Thus the spinodal
curve only appears to be a useful concept for dynamics in
the limit of an infinite range of interaction. This result is
in agreement with experimental and theoretical studies
which find a gradual transition between unstable and
metastable states. '

The outline of the remainder of this paper is as follows.
In Sec. II we introduce the model used in our calculation
and briefly review earlier theories of spinodal decomposi-
tion. In Sec. III we identify the small parameter and out-
line our perturbation expansion. The calculation to first
order is given in Sec. IV. Section V contains a discussion
of our results.

II. MOTIVATION

In this section we briefly survey some previous well-
known work on the early to intermediate stages of phase
separation. This will serve to fix notation, and to provide
a background for the present work. Our starting point
consists of a simplified dynamical model of a binary alloy
which is called model B in critical dynamics, and is
commonly used in the study of spinodal decomposi-
tion. ' The time evolution of the scalar-conserved or-
der parameter P(r, t) is given by

0
at

= —M%V (V +q, )P+g,

where

(2.6)

r
q, =— (2.7)

is called the critical wave number. If we introduce the
Fourier transformation

P(q, t)= J d"r e'~'P(r, t),
then we obtain the two-point correlation function

(P(q, t)P(q', t)) =(2~)"&(q+q')(
~ P ~

')(q, t),
where the structure factor is given by

(2.8)

(2.9)

( i P i )(q, t)=(
i P i

)(q, 0)exp[2MKq (q, —q )t]

z I 1 —exp[2M' (q, —q )t]I .
AT 2 2 2

IC (q, q)—

where c is now, the volume fraction of one of the two
species. The chain lengths are given by Xz and Nz,
respectively, while U is the effective interaction parameter.
If one expands Eq. (2.5) about the critical point, Eq. (2.3)
is recovered, with specific values for r and u. We will
consider an instantaneous quench from a one-phase, disor-
dered state to an unstable state within the two-phase coex-
istence region. Our work deals only with the early stages
of phase separation following the quench.

The first theory of spinodal decomposition is due to
Cahn and Hilliard, ' later modified to account for
thermal fluctuations by Cook. Consider a symmetric
quench, where /=0 initially. In the Cahn-Hilliard-Cook
theory one linearizes around this value and obtains from
Eq. (2.1),

F[P]=f d r (VP)'+f(P)—
2

(2.2)

in d dimensions. Herein E gives the range over which
spatial inhomogeneities can persist, with E ~R, where R
is the range of the force. In the two-phase region, below
the critical temperature T„the bulk free-energy density is
given by

f(P)= ——P'+ —P + (2.3)

where r and u are positive constants ( r should not be con-
fused with the spatial position r). The Gaussian thermal
noise, g(r, t), satisfies the usual fluctuation-dissipation re-
lation,

(g(r, t)g(r', t') = 2k& TMV 5(r r')5(t t'—), — —(2.4)

f(c)= inc+ ln(1 —c)+Uc(1 —c),
Ng

(2.5)

where kz is Boltzmann's constant and T is the tempera-
ture. As discussed in the Introduction, we are primarily
concerned with systems which have relatively long-range
forces. One such example is essentially provided by
polymer-polymer blends, for which the Flory-Huggins
free-energy density is'

q'= ——34o . (2.11)

Thus q, can vanish for an off-symmetric quench (where
d fId/ =0) in the linear theory, and the long-wavelength
instability disappears. This sharp limit of instability
denotes the classical spinodal line which separates unsta-
ble states from metastable states.

The spinodal curve has been the subject of a great deal
of study. ' ' It is usually presented as part of the
equilibrium phase diagram, although it is associated with
far-from-equilibrium dynamical processes. In dynamical
studies, experimentalists search for this quantity by plot-

(2.10)

As discussed below, (
~ P ~

) (q, t =0) is well approximat-
ed by the Ornstein-Zernike function in the high-
temperature phase. Note that the system is unstable for
wave numbers q (q, . Thus the linear stability. analysis al-
lows one to identify the existence of the instability, and
predicts exponential growth for long wavelengths. This
instability results in an interconnected structure which is
characteristic of spinodal decomposition. It should be
noted that if we linearize around an off-symmetric initial
condition (where /=$0 at t =0) then the critical wave
number becomes
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ting (1/q t)ln(
~ P ~

) versus q . In the absence of the
Cook term [the last quantity on the right-hand side of Eq.
(2.10)] Cahn-Hilliard theory predicts that this plot will
give a straight line. The intercepts of this line determine
the position of the spinodal.

As is well known, the Cahn-Hilliard-Cook theory has
some serious deficiencies. These are all related to the fact
that it does not describe the correct two-phase equilibrium
solution. In particular, the one-body distribution function
(which determines the spatially averaged order parameter)
remains Gaussian centered on /=$0, with a variance
which grows exponentially in time. We will discuss the
domain of validity in time of the theory of Cahn et al. in
the following section.

To go beyond this theory obviously requires considera-
tion of nonlinear effects. We now turn to the equation of
motion for the structure factor. From Eq. (2.1), one ob-
tains

+2MuV (P (r, t)P(r', t))

—2M' TV 5(r —r'), (2.12)

which is formally exact. Clearly this equation of motion
is coupled to that for (P (r, t)P(r', t) ) so that Eq. (2.12) is
the first of a hierarchy of equations of motion. There are
two types of coupling present in this hierarchy, one due to
the nonlinearities and one due to the gradients.

Several attempts have been made to obtain approximate
solutions of the hierarchy of equations corresponding to
Eq. (2.12). ' Most of these have dealt with the issue of
the nonlinear coupling and its role in the coarsening
mechanism. One approach, due to Langer, is to factorize
the nonlinear terms by a Gaussian approximation so that

V (P (r, t)P(r', t)) =V [3(P (r, t))(P(r, t)P(r', t))],

deals with the coupling arising from gradients in the
equations of motion: both theories lead to an equation of
motion for the structure factor of the Cahn-Hilliard-Cook
form, with a time-dependent wave number A (t) replacing
q„but with no coupling between different Fourier com-
ponents of the order parameter. In the next section we
identify a small parameter for systems with a long range
of interaction, and show how the coupling of wave-
number modes arises in our theory.

1/2
rx= — r,K

(3.1)

(3.2)

and

III. PERTURBATION EXPANSION
IN THE RANGE OF THE FORCE

We now present a theory of the early stages of spinodal
decomposition. This involves a systematic solution of the
hierarchy of equations of motion, of which Eq. (2.12) is
the first, by an expansion in the inverse of the range of the
force. The perturbative treatment enables us to make
several connections to previous work: the leading term
gives the Cahn-Hilliard-Cook theory; the next order term
in the expansion yields a time-dependent one-point Gauss-
ian distribution function. This Gaussian form is the re-
sult of the theory, rather than an ansatz as in Langer's
factorization approximation [Eq. (2.13)] (Ref. 9) and,
indeed, the Gaussian distribution we obtain differs from
that of Langer. The expansion itself is closely related to
Kawasaki's formal expansion in the nonlinear coupling
parameter u in Eq. (2.3).

\

A. Scaling, expansion parameter, and initial conditions

It is convenient to scale the equations in the following
manner:

for example. The result of this is an equation of motion
for the structure factor with the same spatial dependence
as the earlier Cahn-Hilliard-Cook theory but with q, in
Eq. (2.12) replaced by a time-dependent quantity A(t).
Thus, roughly speaking, wave numbers q & 2 (t) are again
unstable, but since it turns out that A (t) decreases with
time, the equilibration process is more physical than in
the linear theory. The most important result of this ap-
proximation is a qualitative explanation of coarsening. It
should be noted that the distribution function, by assump-
tion, remains a time-dependent Gaussian.

A subsequent approximation scheme was given by
Langer, Bar-on, and Miller. ' By assuming a form for the
two-body distribution function, they were able to close the
hierarchy relating the many-body distributions. Their
theory yields a bimodal distribution (rather than a single
Gaussian), and is the most successful "early-time" theory
yet available. Discussions of its limitations have been
given elsewhere.

Neither of these nonlinear theories is systematic, since
there is no smallness parameter. As well, neither theory

(0—40)r
(3.3)

The resulting Langevin equation for P is

d'r
= —,

'
V ( —V g %g+3gog +g—)+Wep

where the intensity of the noise is given by
' d/2

k~ Tu rE:—
r2 K

(3.4)

(3.5)

and we have introduced

q,:—1 —3/02 2 (3.6)

1/2

(3.7)

Note that tPo
——0 corresponds to a symmetric quench while

$0= + 1/V 3 yields the classical spinodal curve. The
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Gaussian noise is now determined by

&p(x, r))M(x', r') & = —V 5(x—x')Sir —r') . (3.8)

The theory now involves only two parameters, p0 and e.
These can be related to the order parameter at the coex-
istence curve P„, the susceptibility X, and the thermal
correlation length g, as follows. ' From mean-field theory
(recall that we quench from far above T, to far below T, )

we have

, (x', r') = —,V' ( V—' f+p)+ 3/e')M, (3.16)

d/2 —1X(T') g( T)
X( T) g( T')

d

(3.17)

where x' and r' are defined as. in Eqs. (3.1) and (3.2) with
r~r', K~K', and P defined as in Eq. (3.3). The param-
eter e' can be shown to be related to e via

y„=(r/u)'/2
7

ATX= da0' (a2f/ay2),
k~T

a() 2T

and
r

1 ()2f 2r
K ()y2 d, K

where ao is the underlying lattice spacing. Thus

(3.9)

(3.10)

(3.11)

d/2

&g„,P, , &=(2 ) 5(q+q')
g'/2 rK''

rK' 2 r'K
q +1

(3.18)

which is the Ornstein-Zernike function. Thus, at r=0, we
have

i.e., e'=O(e). One then straightforwardly obtains the
high-temperature equilibrium solution

and

40=00/(t'

ao
2d/2 —1 y2

(3.12)

(3.13)

q +B
where B =2(' (T)/g (T'), and 2/8= —,X(T')/X(T).

(3.19)

Note that e is the parameter normally used in the
Ginzburg criterion to determine the validity of a mean-
field theory in critical phenomena. Near the critical
point, if we assume hyperscaling, we obtain e ~ (a0/g0)"
where $0 is the amplitude of the correlation length. Thus
e~R ", where R is the range of the force. Alternatively,
this result follows directly from Eq. (2.5) since K is pro-
portional to R . It is worth noting that, in the notation of
Langer et al. , ' e-f0 ', where f0 is related to the range
of the force. For the particular case of the Flory-Huggins
free energy for polymers, Eq. (2.5), it can be shown that

B. Perturbation expansion

The structure of the perturbation can now be obtained
by assuming that

i(0)+e1/2q(1)+. . . (3.20)

A similar expansion for &
I g I

& is then implicit. The
equation of motion satisfied by f( ' is from Eq. (3.4),

(0)
1 V2[ V2y(0) 2y(0)+3q (q(0))2+(y(0))3]

O'T

(3.21)

2d

3 K Nd/2 —
1(U/U 1)(4—d)/2Ucr—

(3.14)

the solution of which is of the form g( '(q, r)
=P(q, &=0)f(q, r). Therefore, since g(r=0)
—[& I g I

&(r=0)]', which is of order v e from Eq.
(3.19), we obtain

for %z ——Nz ——X, where U„ is the critical interaction pa-
rameter. Thiis for d ~2 and N large we find that e &&1
for polymers. It should also be noted that, from the defi-
nition of e, Eq. (3.5), the perturbation theory can also be
interpreted as a low-temperature or weak nonlinear cou-
pling expansion.

As we will see, a crucial ingredient in the expansion in e
concerns initial conditions. By construction, 1t(r=0) =0.
The fluctuations around this value are given by the fol-
lowing. Let the initial temperature be T'& T, . Then the
coarse-grained free energy can safely be linearized to ob-
tain

q(0)(q ) 0 (3.22)

Furthermore, the expansion for the structure factor is

& I/I'&=e&
I

@I'&"'+e' '& I@I'&"'+ (3.23)

z &
I @ I

' &"'(q r)=q'(q' —q')&
I 0 I

' &' "(q,r)+q'

in Fourier space, or

(3.24)

Let us now obtain the leading contribution to the struc-
ture factor in the expansion. From Eq. (3.4) we obtain

F[P,T']= f d"r (VP) +—P (3.15) e'" ''—
q 2++

q(q —q )~
1 —e

where r' is positive. The Langevin equation valid before
the quench is (3.25)
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Thus to leading order in the expansion in the range of the
force we reobtain the result of Cahn-Hilliard-Cook theory,
Eq. (2.10).

Before proceeding with the formal expansion, given in

the next section, it is useful to reconsider the nonlinear
contributions entering the equation for the structure fac-
tor, such as (g g ) . The exact equation for this can be
shown to be

(]t (xli'r)]jj(x2i'r) ) 2 (0 (xl)[V](ge +V] W(x] )N'(x2) ~ 2 V2('ge +V2)(f (xl)4(&2) )
7

+ (q'(x])[V]]I('(x])]y(x2))+ V2(q'(x])y'(x2))
2 2

+ —,
' (g (x])[V]g (x])]tP(x2) ) + —,

' Vp(f (x])(t' (x2) )

—3e( g (x] ) )V]5(x]—xz) —3e( f(x] )f(x2) ) lim V]5(x]) .
xi —+0

(3.26)

The important thing to note here is that, despite the ex-
pansion in e, one cannot disentangle the gradients from
the correlation functions in terms like (f (V g )g). This
is essentially because these terms involve coupling to a
higher-order distribution function in the hierarchy (the
gradient explores the region x+dx, as well as the point x
itself). As noted at the beginning of this section, we be-
lieve that this subtle coupling is not adequately handled in
earlier theories. This coupling is accounted for in our cal-
culation below. Indeed, although our treatment (to order
e ) is essentially equivalent to a factorization decoupling
of higher-order moments, a careful analysis of the many-
body correlation functions is necessary to consistently ef-
fect this decoupling. (The systematic calculation is given
in the next section. ) It should be noted that the result
does not reduce to that obtained by Langer, ' precisely
because of that coupling which is absent from Langer's
treatment.

Finally, let us consider the time domain of validity of
our expansion. Firstly, we recover the estimate of the re-
gion of validity of the linear theory, ' ' Eq. (3.25).
Roughly speaking, this result will be incorrect when the
next term in the series is important. If we ignore the
Cook term for simplicity, the maximum time r,„for the
validity of the linear Cahn-Hilliard-Cook theory is given
by

theory for late times, where each term in the series has the
same importance. Thus, to be conservative, we would ex-
pect the expansion in e to be accurate over the early-time
regime given by Eq. (3.28). ' We speculate that if
~,„=ClnR, then by calculating an increasing number of
terms in the series we increase the value of the prefactor
C, without changing the essential dependence of w,„
upon R.

IV. FIRST-ORDER CALCULATION

We will now obtain a relation for the n-body correla-
tion function within the perturbation expansion. Al-
though we only wish to obtain the structure factor, it is
necessary to consider the more general case. It will prove
convenient to introduce a diagrammatic representation,
similar to that used by Kawasaki.

The scaled Fokker-Planck equation for the probability
density, corresponding to Eq. (3.4), is

(4.1)

where the operator D is given by

2 2 —2~(g —lj )
O ( 3y2) (3.27) D= —V — ( —q, —V +3fpg +f )+—I 5 2. 2 2 3

2 5g 5/2

where O(e ) is the next term in the expansion. Thus we
have, recalling that e ~ R

~,„-lnR . (3.28)

A more convincing demonstration of this result is given in
Binder's papers. '

The validity of an expansion in thermal noise intensity
has been discussed in analogous dynamical problems,
where spatial inhomogeneities are irrelevant (laser prob-
lems, or well-stirred chemical reactions). There it is
known that the expansion becomes a singular perturbation

(4.2)

Thus the n-body equal-time correlation function is given
by

O'T
( g(x],r) . g(x„,r)) = (Dg(x], r) . . P(x„,r)),

(4.3)

where D denotes the adjoint of D. After some algebra we
obtain
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(g(x(, r) . g(x„,r))= —,(yv, +yv, + . )(g(x), r) f(x„,r))+ V)(g (x„r).. . P(x„,r))

+ ' ' ' + z V ((1/J (x))7 ) ' ' Q(x(, 7) ) + ' ' ' + —eV]6(x& —xz)(1//(x3, T) ' ' f(x(,r) ) +

(4.4)

where

yv= —V' (q, +V' ), (4.5)

and the sums in the first three terms consist of n terms, while the sum in the last term consists of , n —(n —1) terms (with
no double counting).

A useful change of variables, after Fourier transformation, is given by

(r +r + . )«2
(P(q„r) . P(q„,r)) —=e"~ e ' ' S„(q,, . . . , q„,r) .

Again, after some algebra, we obtain
7

, q. ,0)+ «'[Vz(ql qz )S —z(q3 ' 'q r')+ ]

(4.6)

dk, d'k,+~'" f ar ff, „[V,(q„k„k„r')S„+,(k„k„q„.. . , q„,r')+. ]0 (2~) (2m )"

r d k] d k2 dk3
+e f d ' f f f „„„[V4(q&,k„kz, k„')S„+z(k&,kz, k3, qz, . . . , q„,v')+ . . ],

0 (2')" (2m. )" (2m. )"

(4.7)

which gives a formal solution for S„(t). The second term
on the right-hand side involves a sum over ,'n(n ——1)
pairs, while the last two terms involve a sum over n
terms. The "vertices" are given by the following:

Vz(q~, qz, r) =2q ~e
' (2m')"5(q~+qz),

which is due to thermal noise,

2
—(rq, —rk, —rk, ] ~

V3(q), k), kz, r) = 3lt pq )e

(4.8)

X (2')"6(qi —ki —kz),
which is the "three-rayed" interaction, and

-(rq -rk -rk -rk ]«2
Vg(q ),k), kz, k3, r) = —q )e

(4.9)

S„(r)=S„' '(r) +e' S„"'(r) +. . . (4.11)

where we have suppressed wave-number dependences for
simplicity. From Eqs. (3.3) and (3.19), the initial condi-
tions are such that

)(, (27r) 5(q] kj kz k3) (4 10)

which is the four-rayed interaction. The expansion in e
for S„(t)can be written as

Gaussian distribution, exp( —I'/k~ T), given by Eq. (3.16).
Thus we finally obtain the equations

S„' '(&)=S„(0)+f dr'[Vz(r')S„' 'z(r')+ . ],
S~ (r) = f dr [Vz(r )S —z(r ) q ' ' ' ]

+f dr'[V3(r')S„'+, (r')+ . . ], (4.14)

and, for m &1,
S~ '( )= f d '[V, ( ')S„' ', ( ')+ . . ]

+ f ar'[V, (r )S„'+, "(r)+ -]
+f dr'[V, (r')S„'+z "(r')+ . ] . (4.15)

These equations naturally lend themselves to a di-
agrammatic representation for Sz(t), from which the
structure factor is obtained in Eq. (4.6). In Fig. 1 we
display the diagrams corresponding to Sz '(q&, qz, t).
These should be compared to Eq. (4.13). The diagram
shown in Fig. 1(a) is due to initial conditions, while the di-
agram in Fig. 1(b) has a two-rayed vertex at a time r&.
From the definition of Vz, we obtain

Si(q, r=0) =0
(4.12)

Sz(q ),qz, r——0)=(2'�)6(q)+ qz)
vi+&

while the higher-order moments are determined by a FIG. 1. Diagrams giving Sz '(q~, q2, z).
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S2 (q, ,q2, r) =(0)

—y 'r

1 —e+
&&+B

(2n. ) 5(q~+qz) .

(4.16)
I&=p

[Note that So(t) =1, by normalization. ] Thus Fig. 1 cor-
responds to the Cahn-Billiard-Cook theory, in a rather
abstract form.

In Fig. 2, the diagrams giving S2 '(q, q2, t) for a sym-
metric quench (Po——0) are displayed. (The additional dia-
grams needed for an off-symmetric quench are given in
the Appendix. ) Consider the second diagram. It has two
vertices, one of which is the V2 thermal noise vertex at
time r~, while the other is the V4 interaction vertex at
time ~2. All the "extra" lines, labeled k~, k2, and k3 cor-
respond to integrated wave numbers. For example, this
diagram gives a contribution

FIG. 2. Diagrams giving S2 '(q&, qz, ~) for a symmetric
quench, $0——0.

f dk dk dk ~2

dr, f f f „'„'„v,(q„k~,k2, k3, 1$) f dr]V2(qp k37j)Sp(k„k2, 0) .
(2m. )" (2m. )" (2m)"

(4.17)

The Sz(k&, k2, r ——0) factor comes from the two dangling lines at r=0. The symmetry factor of 6 gives the number of
"topologically equivalent" ways one could create this diagram. The remainder of the analysis involves only considerable
algebra. The eventual result we obtain is

3 2 2
2 2 2 dS2 (q~, q2, r)= » I,+, I, +Aq, I~+q&I4+q&I~ (2m) 5(q&+q2), (4.18)

27T g i+B g i+B

where for d =3 the integrals are given by (A is the ultra-
violet cutoff)

I, =f
I,=f

1
I3 ——

'Yq,

kdk 1 —e
k'+B Xk

k4dk ~k+
z

—(1+ygr —e ),
3 k

r

q&

f kdk 1 —eI)—
k +B 'Vk —3'q,

= 1 k dk
I4 —— I2-

Xq, Xk+Xq,

1 —e
T

1 —e+
7q&

and

1 f" kdk
I5 ———

Xq,

Pq
'[&A;+Xq

(1—e '
)

Vk+ Vq)

1
(1—e

3'k —
Xq,

( 3'g —'Y

)

These integrals were evaluated numerically to obtain the
results given in the following section. Thus from Eqs.
(4.6), (4.16), and (4.18) (we note that S2"——0) we obtain

our main result, namely the structure factor (
~ P ~

) to
order e .

Before presenting those results, given in the following
section, we have some final comments on the expansion in
e. Since we have only obtained results to order e, our
treatment corresponds to a time-dependent Gaussian form
for the probability distribution function. Thus we obtain
coarsening in the initial stages, but the distribution func-
tion does not become bimodal. Since the series is ap-
parently alternating, we would have to go to order e to
obtain a bimodal distribution. We note, however, that an
analysis to order e" requires approximately 10" ' dia-
grams. We also note that it may be possible to undertake
a singular perturbation theory for late times and sum an
infinite class of these diagrams. Thus was done for the
nonconserved case (in a certain weak-coupling, long-time
limit) by Kawasaki, Yalabik, and Gunton.

V. RESULTS AND DISCUSSION

We have numerically evaluated the result for the struc-
ture factor, derived in the previous section, for different
times following a symmetric quench (Po——0). The ultra-
violet wave-number cutoff was chosen to be'
A= [(8f/BP )

~

/=1]'~, while the initial conditions, Eq.
(3.19), were chosen to be 2 =B=1. Before discussing
our results, it is worth relating e to the range of the force
more explicitly. In three dimensions, as discussed above,
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In Fig. 6 we plot the effective Gaussian width, o (t), of
the one-body distribution function for both e=0 and 0.04.
The width is given by the sum rule

d3
~'(~) =f q, &

~
1t

~

')(q, r) .
(2m )

This shows the coarsening given by the correction term to
the theory of Cahn et al. Note that in 'the linear theory
o (r) increases exponentially, so that the one-body distri-
bution function never equilibrates. The coarsening can
also be seen in Fig. 7 where we plot the positiori of the
maximum intensity versus time.

As discussed above, we expect the valid time regime for
this perturbation theory to be r(ln(1/e). This is in
agreement with what we find by deterinining the time at
which the Cahn-Hilliard-Cook theory differs significantly
(more than approximately 10%) from the result of pertur-
bation theory. Binder' s' estimate of a maxiinum timer,„ for the validity of linear theory is r,„=—41n3e in

C&0
0 F 40 0 80 1-20 F 60

our uiiits, for a syminetric quench. For @=0.02, 0.04, and
0.1, these times are ~,„=11,8, and 5, respectively, which
are in agreement with our results.

In Figs. 8 and 9 we compare Cahn-Billiard-Cook
theory, our theory, aiid the Lang er—Bar-on —Miller
theory' for the structure factor, at two different times,
v= 1 and 10. (We have used the same initial conditions
for all three theories, and the same range of the force,
a=0.04, for our theory and the theory of Langer et al. )
For r= 1, in Fig. 8, our theory and the theory of Langer
et al. practically coincide. The reason for this is as fol-

FIG. 9. Structure factor (
~
i{

~

2){q,r) vs q for v=10. Top
curve is Cahn-Hilliard-Cook result. Next curve is Langer-
Bar-on —Miller result (@=0.04). Bottom curve is our result
(@=0.04).
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FICr. 8. Structure factor (
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~

){q,v) vs q for v=1. Top
curve is Cahn-Hilliard-Cook result (@=0). Indistinguishable
bottom two curves are our result and that of Langer —,Bar-
on —Miller for @=0.04;

FIG. 10. R/q vs q for ~=10 where the amplification fac-
tor is R ={1/w) 1n(

~
1{

~

2){q,~). Curves from top to bottom are
a =0, 0.02, 0.04, and 0.1.
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FIG. 11. R/q vs q, where the Cook term has been set to
zero. The amplification factor is R =(1/r) 1n(

~ g ~
)(q, r).

Top curve is Cahn-Hilliard result |,'@=0). Bottom curves are our
result from @=0.04, for times ~=5, 10, 15, and 20.

lows. If one expands our equations of motion in time, one
obtains a decoupling of wave-number modes for very ear-
ly times similar to that assumed by Langer et al. For
later times, however, the coupling of modes becomes im-
portant and so our theory yields results which are dif-
ferent from those of Langer et aI , as can .be seen in Fig.
9. The coupling of modes in our result is seen more easily
in the plots given in Figs. 10 and 11 discussed below. A
careful experiment, on a system with long-range forces,
could, we suppose, distinguish between our theory and
those of Cahn et al. and Langer et al.

In Figs. 10 and 11 we plot the logarithm of the struc-
ture factor, divided by q r, versus q . This is a standard
plot used in the metallurgical literature to test the Cahn-
Hilliard-Cook theory. In Fig. 10 the plot is for ~=10,
with e=O, 0.02, 0.04, and 0.1. In Fig. 11 we have sub-
tracted the Cook term from the scattering intensity so
that the plot will give a straight line with no time depen-
dence, for the Cahn-Billiard theory, @=0. The plot is for
e=O and @=0.04, for the times ~=5, 10, 15, and 20. In
the context of the linear theory, the critical wave number

q, is determined by the intercepts of that straight line,
and so (for off-symmetric quenches) one obtains the clas-
sical spinodal curve. We find two noteworthy differences
from linear theory for nonzero e in Fig. 11. Firstly, as
time increases, there is a departure from the straight line
as q increases. This is a consequence of the coupling of
wave-number modes in our theory, as discussed above.
The bending in Fig. 11 would be absent from a similar

FIG. 12. Additional diagrams, for an off-symmetric quench,
for Sz '(q&, q2, ~) in Fig. 2 or Eq. (4.18).

plot of the result of the Langer —Bar-on —Miller theory.
Secondly, we find that the q =0 intercept is clearly time
dependent. (This also follows in the analyses of Langer
and co-workers. '

) Thus if one insists on defining an
effective critical wave number by this criterion, it must be
time dependent.

The implication of this result is clear. If one extends
our numerical calculation to off-symmetric quenches
(which we have not done) one would obtain a time-
dependent spinodal. %'e do not believe that this has phys-
ical significance: The result is a consequence of forcing a
pseudo-equilibrium quantity, the classical spinodal line,
onto a dynamical problem. Thus, in our opinion, one can-
not consistently define a sharp spiriodal line. Only sys-
tems with an infinite range of interaction will have this
sharp transition between unstable and metastable states.
Some ways to characterize the gradual transition, which is
observed experimentally, have been given by other au-
thors. ~

To conclude, we have presented a perturbative analysis
for the early stages of phase separation in spinodal decom-
position. Our treatment should be valid for systems with
long-range interactions. An experimental or computer
simulation study of such a system would be of consider-
able interest.
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APPENDIX

In this appendix we report the results of the additional contributions to S'2 '(q~, q2, &) in Eq. (4.18) for an off-
symmetric quench. The eight nonvanishing diagrams are shown in Fig. 12. En the same manner as the evaluation sum-
marized in Sec. IV, we obtain (where q =q~ —k)

S' = (2n. )"5(q)+q2)9$oq )I',
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