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We present a detailed quantitative experifnental analysis of the soliton regime in a one-
dimensional (1D) quantum spin system. The experiments were performed on the 1D antiferromag-
net CsCoC13. As well as soliton fluctuations, a 1D antiferromagnetic mode was observed in both the
paramagnetic ( T& T» 21 K) and the partially disordered E', T & T~l ) phases. This result proves
that, below T~l, one third of the chains remains in a paramagnetic state with fluctuations governed
by solitons. In a semiphenomenological model the collisions between solitons are explicitly taken
into account in our description, yielding good agreement between theory and experiment over the
whole temperature range.

I. INTRODUCTION

In recent years, a great deal of work has been devoted
to the study of nonlinear excitations in one-dimensional
(1D) magnetic systems. Planar antiferromagnetic (AF)
chains with classical spins (S» 1) have been shown to
provide a good model for solitons, ' where they can be
viewed as Bloch walls extending over several lattice units
(10 to 30). In such a case of "broad" solitons, the com-
parison between theory and experiment is remarkably
good. For Ising AF chains (S=—,'), a soliton model has
also been proposed by Villain. In this case, the walls are
reduced to one lattice unit. Such "narrow" solitons
should exhibit propagating behavior. The compound
CsCoC13 is known to be a good realization of Ising AF
chains. Characteristic fluctuations centered at zero fre-
quency have previously been observed which agree with
the soliton picture. However, strong discrepancies
remain with the predictions of Villains model, which,
indeed, is restricted to the case of noninteracting solitons.
Recently, the compound CsCoBr3 has been shown to be
also a good candidate for studying narrow solitons. In
the compound to be studied here, CsCoC13, the 1D short-
range-order regime where the picture of moving 'solitons is
meaningful extends from T=75 K—this value corre-
sponds to the maximum of the susceptibility in the
paramagnetic phase Down to the Neel temperature
T~~ 21 K. At this temperature and below, long-range
order exists between chains. The magnetically ordered

phases in CsCoBr3 and CsCoC13 have been widely investi-

gated. In the c plane perpendicular to the chains the
spins form a triangular lattice which could promote frus-
tration effects. It is argued that at T & Ttt~, since the 1D
short-range order is already well developed, the magnetic
chains as a whole should behave like a single moment.
Then, with an AF coupling between chains, one can be 1ed

to the simplest situation for frustration: One third of
these "single" moments should remain "disordered. " The
magnetic structure observed below T&& in CsCoC13 (Ref.
6) agrees with this model which implies that one third of
the chains be maintained in a paramagnetic state. In oth-
er words, 1D soliton fluctuations should be observable
even below T~ j. Experimental1y, only one result seems to
agree with this description. This is the electron paramag-
netic resonance observed by Adachi below T~ ~ down to a
few degrees Kelvin.

In the present paper, we report an exhaustive neutron
investigation performed on the compound CsCoC13. Both
wave vector q and frequency to analyses could be made
with very high instrumental resolution. I.ow-frequency
fluctuations associated directly with the soliton excita-
tions as mell as those associated with short range order
have been investigated. The data are compared with a sol-
iton model which takes into account expli. citly the col-
1isions between solitons. The experimental study was per-
formed over a wide temperature range, in both the
paramagnetic and partially disordered (PD) phases, above
and below T~ &, respectively.
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II. SOLITON FLUCTUATIONS

In this section, we briefly sketch the theoretical descrip-
tion that we shall use for the interpretation of our experi-
mental results. Assuming the chain axis to be along z, the
1D antiferromagnetic Hamiltonian for CsCoC13 can be
written as

domains of length g. The mobility of these solitons is en-
sured by the second terms of Eq. (2.1). The corresponding
fluctuations are represented in Fig. 1. Depending on the
wave vector q to be considered with respect to I ~, name-
ly, q*=

~

n. q—
~

& I ~ or q*&&I ~, two different types of
fluctuations can be observed.

A = +2JS„'S„'+) +eJ (S„+S + ) +S„S++( ), (2.1) A. Antiferromagnetic (AF) mode (q m)

with S=—,, J=75 K, and @=0.12.
The thermodynamics being governed essentially by the

first term of Eq. (2.1), the static two-spin correlation
functions can be expressed in reciprocal space as

2n. e"(1—e ') +4cos (q/2)

with e "=tanh(J/2T), where T is the temperature. For
T&&J, we get

S2
(S,'S', )= 2~ x +4cos (q/2)

In these equations, the wave vector q is expressed in re-
duced units (the chain parameter c= 1). As a consequence
I

&
is dimensionless and the inverse quantity I

&
evalu-

ates directly the average number of correlated spins in a
chain. In the following, these units for q and I

&
are re-

tained except in some cases describing the experimental
values chosen for the scattering vectors Q which, as usual,
are expressed in reciprocal lattice units (rlu). This static
correlation function is centered at q =n.. Its width (half-
width at half maximum) I

&
gives a measure of the inverse

of the correlation length g;

I,=g-'=a-=2e -~'T . (2.2)

As shown by Villain, the dynamics are described at
low T by propagating elementary excitations associated
with domain walls (solitons) separating the ordered

~
—J/T

$ (2.3)

Concerning the dynamics, each time a soliton goes
through an ordered domain a flipping is induced which
makes the two AF sublattices exchange their spin orienta-
tion. The frequency broadening of the AF mode results
from these flippings. The frequency width I „measures
the corresponding flipping rate which for a "coherent"
motion is given by

I =2ns VO=I q~o ~ (2.4)

where Vo is the average velocity of the solitons. This
quantity is derived explicitly in Appendix C [Eq. (Cl)]:

2 sinh(2'/T) 4'
2FJ/T Io(2eJ/T) (2.5)

where Io(X) is the modified Bessel function. In the limits2' « T «J, we get from (2.4)

For q*(I z, the observed fluctuations concern essen-
tially the ordered domains, which can then be considered
as a whole. They give rise to the so-called (1D) AF mode
centered at q =m. and co=0 (Fig. 1). In the soliton model,
the width I ~ which measures the short-range order is
simply the soliton density n, . One has

I =g '=2n,

(the factor of 2 accounts for the two possible directions of
the spins in the 1D magnetic sublattices). For T « J, we
deduce from Eq. (2.2) the soliton density to be given by

~g
- —J/T16

7T
(2.6)

)

I

gl

J/

Qq=l4C

AF mode

soliton mode

The shape of the AF mode is also a characteristic of the
soliton mobility. Maki has suggested the following ex-
pression for the coherent model:

S r'„/I,
2~ [I „[1+(q') /I &]+co ]

which differs appreciably from the (simpler) Lorentzian
form (see Appendix C). In particular the widths full
width at half maximum (FWHM) are given by

b,„=1.531 „[1+(q') /I ]'
(2.8)

6 =1.531 (1+co /I )'

0
FICi. 1. Dynamical structure factor for the fluctuations

parallel to the chain axis as predicted by the description of Vil-
lain (Ref. 2). I

&
and I „are defined by Eqs. (2.2) and (2.4) and

Q~ by Eq. (2.12). ~ is the inverse correlation length.

Equation (2.7) is only a convenient approximation, but is
certainly sufficient for analyzing our neutron data (a simi-
lar discussion is given in Ref. 9). However it is worth not-
ing, as shown in Appendix C, that in the present case of
narrow solitons, the lower the temperature is compared to2' ( T « 2eJ), the better is the approximation.
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Qne purpose of the present work is to complete the in-
vestigation of the 1D AF mode. ' In particular, it is
essential to obtain quantitative information on I to
determine the soliton dynamics. At the Neel temperature,
T)v) —21 K, the physical frequency width for example,
can be evaluated from Eq. (2.8) to be only

I =0.023 THz (2.9)

at q =0 (q=vr) T.he investigation of this AF mode,
especially if it is extended to lower temperatures, T & T&1,
requires excellent instrumental resolution, in both wave
vector and energy.

co( k) =J+2m Jcos(2k ) . (2.10)

As shown in Appendix A, the calculation of the soliton
modes is performed entirely within E1 At an inte. rmedi-
ate stage we obtain for the spin component parallel to the
chains, for instance, the following expression:

S' 277 l +qS'(q, co)= 2
+g

1r 4cos (q/2) 2

B. Soliton modes (q =
~

m —q ~
&& I'~ )

The fluctuations observed for q' » I ~ are directly con-
cerned with the propagation of the soliton excitations.
The initial calculation presented by Villain is basically
performed in the subspace E1 of states containing only
one such elementary excitation. As a result the corre-
sponding fluctuations are weighted by an exponential ac-
tivation term, exp( —J/T) —simply the soliton density
[Eq. (2.3)]—since the energy needed to create one soliton
is actually E1—J. A similar but simplified derivation is
presented in Appendix A. Recently another calculation
has been made by considering the subspace E2 of two ele-
mentary excitations. " The weighting term is therefore
exp( —2J/T). However, the authors state that due to
transitions within all the excited-state manifolds, their
description should lead to the same result as the Villain
evaluation.

In subspace E1, the propagation of the solitons is en-
sured by elementary plane waves of vector k with the en-

«gy

a'( k)=n, g p(k')
~

V„—Vk ~, (2.13)

where the soliton velocity VI, is defined from Eq. (2.10)

VI, = = —4' sin(2k) .
de(k)

dk

Before going further, it might be worth comparing this
procedure to the result obtained by Allroth and Mikeska
for the case of collisions between classical solitons and
magnons in planar ferromagnetic chains. ' Any magnon
mode is expected to be broadened by the collisions with
the solitons. For a given magnon propagating with the
wave vector q the corresponding width is given by the col-
lision rate defined by

S 2v e co/(2, T)
S'(q, co) =

2n 4cos (q/2) 10(2&J/T)

coshIcot[q(Q~ —co )' /(2T)]]
( II2 2) 1/2

q
—CO

A very similar relation is obtained for the transverse spin
components [Eq. (AS)].

The square-root divergency at Qq is clearly unrealistic
and one expects the collisions with solitons and/or with
other excitations to "round off" the peak. As mentioned
by Villain, such a derivation is limited to short times be-
fore any collision takes place. We can try to evaluate the
characteristic time ~, associated with the collisions, or
equivalently the collision rate co'=~, '.

First we note that the predominant collision process
will be that between solitons. For instance, since the sub-
space E2 with two elementary excitations, which includes
also the spin waves (magnons), is defined at an energy lev-
el which is twice the energy of E1, the number of mag-
nons contributing to the collisions is comparatively small.

Second, extending a suggestion already outlined in Ref.
2, we consider the effects of collisions directly on each
state k of E1. The corresponding energy levels are ex-
pected to be broadened, the broadening is given by the col-
lision rate. For a soliton in a state k, we write it as

&&5[A~sin(l) —co], (2.11)

d COq

coq —ns Vo + (2.14)

0& ——4'
~

sinq
~

(2.12)

In Eq. (2.11) the energy conservation can be seen to be
guaranteed for each component l of the space E] through
the function 5(x).

A characteristic square-root divergency of the soliton
mode arises immediately from Eq. (2.11) yielding the re-
sult of Villain,

where p(k) is the distribution probability amongst the dif-
ferent elementary waves of E1..

( 1 1 e 2EJ cos(2k/—T) ~ —2sJ cos(2k/T)

k

and where Qq defines the soliton dispersion frequency

where Vo is the average velocity of the solitons and
du&/dq is the velocity of the magnon itself. Equation
(2.13) is very similar in form to Eq. (2.14).

Expression (2.13) is evaluated in Appendix B. Within
the condition 2'/T «1, one can use the following ap-
proximation:

b;(k) =n, Vo[1+a sin (2k )],
with a=+/2 —1=0.57. In Ref. 2, Villain took into ac-
count only the velocity Vk of the soliton k: The velocity
of the other solitons Vk was ignored. Equation (2.13) will
therefore lead to a different result. In particular, the col-
lision rate will never be zero: It will remain at least the
contribution n, Vo given by the collisions induced by the
other solitons, because of their own velocity.



3018 J. P. BOUCHER et al. 31

As discussed in Appendix B, this broadening effect al-
lows us to relax the condition for energy conservation
which occurs explicitly in Eq. (2.11) through the function
5(x). This function can be replaced by a Lorentzian, the
width of which is evaluated (see Appendix B) to be of the

I

order of
co~(1)=n, VOI 1+0.5a[1—cos(2q)cos(2l)]] (2.15)

in the limit 2'/T « 1. Equation (2.11) can now be writ-
ten as

z
)

5 ns
~( l +q 1 ~q(~

4cos (q/2) o 2 ~ [A&sin(l) —co] +co&(l)

For the transverse spin components, we get

(2.16)

s (q, m)= +q 1 coq (I)
n, dl cos (l/2)p2+ ' 2 ~ [u —A~sin(l)) +co~(l)

(2.17)

In these equations, which will be used for the analysis
of our data, there remain no adjustable parameters. A
preliminary check of this model can be performed on the
data which were presented in Fig. 5 of Ref. 3 as giving the
first evidence for soliton fluctuations in CsCoC13. This is
done in Fig. 2. The effects of collisions are at first ig-
nored. The dashed curve displays the square-root diver-
gency of the Villain mode. The dotted-dashed line takes
into account the instrumental resolution by a simple con-
volution of the previous curve with a Gaussian function
of width 5„=0.36 THz, evaluated from the peak
(FWHM) which can be attributed to the incoherent
scattering in Fig. 3 of Ref. 3. The solid line is obtained
with the same resolution but results from Eq. (2.16),
which'takes into account the collisions between solitons.
The agreement with the data is rather good. The same
model will be used in Sec. IV to explain the data for the
soliton modes observed at much lower energy and for
much smaller values of q*=

~

n. q~ . —

III. EXPERIMENTAL

A powder of CsCoC13 was prepared from a 1:1 mixture
of CsC1 (2N) (Alfa Inorganic) and of CoC13.6HqO. This

I—

C)

100—

l

T =50K

0.5 1.0
z(THz)

FIG. 2. Neutron data for CsCoC13 obtained for 5'(q, ~) at
T=50 K with q =0,4 (rlu) by Yoshizawa et al. (Fig. 5 of Ref.
3). The dotted-dashed line shows the prediction of Villain
(characterized by a square-root divergency as illustrated by the
dashed curve) after an instrumental resolution in energy
(FW'HM b„~0.36 THz) is taken into account. The solid line
displays the effect of collisions between solitons as described by
our model [Eq. (2.16)].

I

mixture was slowly heated to 120'C under an argon atmo-
sphere and the chlorination was achieved under an anhy-
drous HC1 gas flow. The resulting powder was sealed in a
1.6-cm diameter quartz tube. An Astro carbon furnace
heated at 622.0+0.5'C was used to grow the crystal by a
Bridgman method. In the crystallization zone, the gra-
dient of temperature was about 25'C/cm and the sample,
fixed with Mo wires was lowered at a speed of 0.25 cm/h
in a graphite tube fitted in a water-cooled pedestal under
an upflow of argon of 6 1/min. A very pure single crystal
of about 5 cm was thus obtained, a part of which (-1
cm ) was used in our neutron experiments.

The crystal structure of CsCoC13 is hexagonal with
chains of magnetic Co + ions along the c axis. There are
two formula units per unit cell. The structural parame-
ters are c=5.986 A and a=7.127 A (see Fig. 6) at 10 K.
The magnetic properties of CsCoC13 have been widely in-
vestigated. Down to the Neel temperature (T~I—21 K),
they are quite well described by the 1D Hamiltonian of
Eq. (2.1). Below T» —21 K, specific behavior is expected
from the triangular structure in the a bplane pe-rpendicu-
lar to the chains (inset in Fig. 6). As discussed above, a
partially disordered phase is observed which can be under-
stood if the coupling between nearest-neighbor chains is
antiferromagnetic. Below T&2—9 K, a two-sublattice fer-
romagnetic structure occurs which can result from the
presence of a small second-neighbor ferromagnetic cou-
pling in the a-b plane. A possible intermediate three-
sublattice ferrimagnetic phase has also been suggested to
develop below 13 K. In the PD phase, one expects one
chain out of three to remain disordered, hence in a
paramagnetic state. This situation should allow us to ob-
serve fluctuations associated with solitons below T~ I.

Our neutron inelastic scattering measurements have
been carried out using the three-axis spectrometer IN12
situated on a cold-neutron guide tube at the reactor of the
Institute Laue-Langevin in Cxrenoble. Due to the high
flux of long-wavelength neutrons, this instrument allows
measurements to be made under conditions of very good
instrumental resolution. Pyrolytic graphite was used as
monochromator and analyzer; a cooled beryllium filter
was placed in the incident beam to reduce higher-order
contamination. Horizontal collimations after the mono-
chromator, the sample and the analyzer were 30'.

The crystal was mounted in an aluminum can in an at-
mosphere of helium gas and placed in a cryostat allowing
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the temperature to be varied between 2—300 K. The sin-
gle crystal was oriented with the chain axis in the hor-
izontal plane so that scattering vectors Q=(h, h, l) could
be surveyed. The one-dimensional magnetic correlations
give rise to scattering concentrated in (001) planes with l
taking only odd values. Therefore to examine the fre-
quency and q widths of the 1D magnetic scattering, fre-
quency and wave-vector scans have been performed
around different scattering vectors: Qp

——(0.9,0.9,1),
(1.1,1.1,1), and (1.2,1.2, 1) (expressed in rlu).

In order to obtain the scattering cross section S(Q,co)
an accurate determination of the resolution function of
the spectrometer is needed. We have used the same pro-
cedure as developed in our study of "broad" solitons
in the "classical" chains of the antiferromagnet tetra-
methylammonium maganese chloride (TMMC)
[(CD3)4NMnC13]. In the case of a 1D system, one can use
an "effective" one-dimensional resolution function R ~D
which depends only on the scattering vector
Q=Qp+qc". The observed intensity can be written as

with

1(Qp+qc', ~)=f f&1D(Qp, q

XS(Qp, q', co)den'dq', (3.1)

AiD ———(CqqC„—C „)'~z .

The CJ coefficients (i,j =q, co) are related to those of the
conventional three-dimensional resolution matrix. ' The
latter have been determined from scans in (Q, co) per-
formed through the Bragg peaks (0,0, 1), (1,1,1), (1,1,1),
and (1,1,0). In the case of an incoherent scatterer, one has
to perform the q integration in Eq. (3.1), and the corre-
sponding energy width (FWHM) is given directly by

=2[in(2/D„„) '~

with D„=C~~—C&„/Cqz. The values of the CJ coeffi-
cients and of the corresponding instrumental resolution
widths h~ and b,q=2[ln(2/C~~)]'~ as a function of the
incident neutron wave vector kr for the momentum
transfer Qp(1, 1,1) are listed in Table I.

&iD(Qp q" ~")
= 3~D(Qp)exp I [C&&(q"—) +C„„(co")+2C~„q"co"]I,

I(Qp, q, co) =B(Qp)[(1+cos P)I"(Qp, q, co)

+sin PI*(Qp, q, co)],

with
+00 +oo

I"(Qp q ~)= f f &iD(Qp q q' ~ ~—')

XS' (q', co')dq'de',

(3.2)

(3.3)

where S' (q, co) are given by Eqs. (2.7) for the 1D AF
mode or (2.16) and (2.17) for the soliton fluctuations.

IV. NEUTRON SCATTERING RESULTS

A. Antiferromagnetic mode: q

Energy and wave-vector scans centered around co=0
and q =m were performed at several temperatures between
13 and 60 K, covering both the 1D paramagnetic and PD
phases, for T) T»—21 K and T(T&&, respectively
Some typical energy scans at two temperatures are
presented in Fig. 3. The scattering vector was

Qp ——(1.2, 1.2, 1) or (1.1,1.1,1) in the paramagnetic phase
and Qp

——(1.1,1.1,1) or (0.9,0.9,1) in the PD phase. These
latter values have been chosen so as to minimize the con-

The background I~6 and the incoherent nuclear
scattering have been measured for the same Q and the
various kr and fitted by the Gaussian form

I(co) =IaG+IpexpI —41n[2(co/b, „) I .

For each scan, this contribution has been subtracted from
the experimental data. The remaining contribution to be
discussed in the following is therefore expected to result
only from the magnetic scattering.

For a 1D spin system, the scattering law to be inserted
in Eq. (3.1) can be written as

S(Qp, q, co) =B(Qp)[(1+cos P)S (q, co)+sin PS'(q, co)],

where P is the angle between Qp and the c axis. S (q, co)
describes the fluctuations perpendicular to the chain axis.
The coefficient B(Qp) is given by

B(Qp)=N(e y/mc )f (Qp)

where ki and kF are the incident and final wave vectors,
respectively, and f(Q) the magnetic form factors of the X
Co + ions involved in the scattering process.

Finally, the experimental intensity defined by Eq. (3.1)
can be rewritten as

TABLE I. Parameters CJ (i,j=q, co) of the 1D resolution matrix and instrumental widths Ace and
hq observed for Qp=(1, 1,1).

Cqq (rlu)
C (THz)
Cq (rlu THz)
a (THz}-'

(THz)
hq (rlu)

1.15

24 000+4000
54 000+5000
21 000+4000
36000+4000

0.0090+0.0005
0.011+0.001

kI (A ')
1.55

25 000+4000
18000+2000
17000+3000
7000+600

0.020+0.001
0.011+0.001

1.70

30000+5000
15 000%2000
20 000+4000

3000+300
0.037+0.002
0.010+0.001
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1000-

500-
Qo=(1.2,1.2,1)

k =155A
1

I'(q, ro). The curves shown in Fig. 3 are a fit to the data
obtained from the simplified expression

I(Qo~qiio)=B(Qo)sin Ir)I (Qo q~io)

(0I- Iz
81000-

T= 26K

~ ~ ~ 4 ~
J

600-
Q =(0.9,0.9,1)

k1 =1,15A

T=14 K

0 ~ II %I I e

I

-o06 +0,05 0 +0.05
WAVE VECTOR qg rlu ) ENERGY (THz)

FIG. 3. Central peak in CsCoC13.. typical wave-vector and
energy scans performed at q =0. The solid lines are theoretical
curves fitted to the data as described in the text. The horizontal
line shows the instrumental resolution.

-0.06

tribution from the magnetic Bragg peaks which, below
T//I occur at ( —,, —,, 1) and ( —,,—,,1) as shown in Fig. 4. At
t'hese values of Qo, the scattering intensity, apart from the
small background and incoherent contributions, can be at-
tributed to an underlying magnetic plane associated with
chains remaining possibly in a paramagnetic state.

To perform the analysis of data such as shown in Fig.
3, only the scattering law S'(q, ro) needs to be considered
in Eq. (3.3). A possible contribution from S (q, co) to the
observed intensity I(q, ro) is expected to be negligible. As
discussed previously, for q*=m, the parallel fluctuations
result from the flipping of the'sublattices in the ordered
domains. The number of spins involved in this scattering
is given by the average number of spins In the domains.
This number is simply the inverse of the soliton density:
n, '=exp(+J/T). This number is large (»1) at all
temperatures and increases exponentially as T~O. Qn
the other hand, the perpendicular fluctuations would be
associated only with the spins in the walls, namely the sol-
iton density itself, n, =exp( —J/T), which is small ((& 1)
and decreases exponentially. Therefore, taking into ac-
count the instrumental resolutions, we expect any contri-
bution from S (q, co) to be negligible compared to

I(Qo) ~I,„5q5 (4.1)

10'

used together with Eqs. (3.3) and (2.7). In the fitting pro-
cedure, the widths I

&
and I have been considered as ad-

justable parameters; the resulting values are plotted in Fig.
5. Also shown are the values obtained previously for 1

&

by Yoshizawa and Hirakawa. ' In fact, their values have
been corrected by a multiplicative factor 1.53/2 [Eqs.
(2.8)] in order to account for the characteristic non-
Lorentzian shape of S'(q, co) [Eq. (2.7)] (Ref. 9). In Fig. 5
the curves correspond to the theoretical predictions of Sec.
II. The solid lines are given by Eqs. (2.2) and (2.6). The
dashed line shows the influence of the temperature on I ~
at T (2eJ=18 K by using the exact expression (2.5) for
Vo. Since no adjustment of any physical parameters was
made, the agreement between the soliton model and the
experiments is extremely good over the whole temperature
range, i.e., above and beloto TIv 1-21 K (1/T~1-0.048).

The full scattering intensity which would be obtained
after a double integration in both q and ro is performed
over I(Qo, q, co) [Eq. (3.2)]:

+OO +00
I(Qo) = I J droI(Qo, q, ro)-B(Qo)-N

is an interesting quantity to be known as it gives an
evaluation of the number N of spins involved in the neu-
tron scattering. In the present case, it can allow us to
determine the relative number of chains contributing to
the paramagnetic fluctuations observed above and below
T~i. When the scattering law is such a smooth decreas-
ing function as given by Eq. (2.7), a straightforward
evaluation of I(Qo) is given by the product

400-

c300-
Ci
O

+200 r

I
I

/
/o

/
/

CsCp QI3
(h.h. &)

jT= 17K[

I
I I

I
I

I I

I I

I I

I I

I I

I I

I

100 I

1.21.0
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FIG. 4, %ave-vector scan along the l =1 magnetic plane for
CsCoC13 at T=17 K. The arrows show the positions chosen for
the energy scans performed on the magnetic plane below
T~)—2f K.
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FICx. 5. Experimental values of I ~ and I plotted on loga-
rithmic scales as a function of 1/T. I ~ is a number which gives
the soliton density according to Eq. (2.2). The crosses are ob-
tained from Ref. 10. The solid lines are the theoretical predic-
tions [Eqs. (2.2) and (2.6)]. The dashed line takes into account
the temperature dependence of Vo [Eq. (2.5)].



31 SOLITONS IN THE PARAMAGNETIC AND PARTIALLY. . . 3021

o spltl Up

Co
~

~ Spin down
'

t;1 diSordered

I

Cs Co CI3

50—

jg ~il
L ~ ~ ~E

~ I

l l 1 I

k, =1 7E.
I

il il
~

T —. 30-0 K

q =0.15rlu

T =26.0 K
.~q= 0.15

x=4
N2,

10 20
T (K)

30

FIG. 6. Intensity "integrated" over q and ro [Eq. (4.1)] of the
AF Inode as a function of T, above and below T~~-21 K. The
inset indicates schematically the frustrated triangular spin struc-
ture below T~~.

C3
0

0
50

I
il~

il
.~l.

'
I

l

T = 21.8K
q = 0.11
x = 5.6

where I,„, 5q, and 5~ are, respectively, the experimental
maximum intensity, the widths in q and in co of the mode
observed in the measurements. The values obtained for
I(QO) at different temperatures are shown in Fig. 6. As
expected they are temperature iridependent but different
below and above T». The average intensity below T~& is
approximately —,

' of that above T~i.
This result agrees completely with the relative number

of chains expected to remain disordered in the PD phase.
From this study of the AF mode we can conclude first
that the disorder is dynamic Secon.d, due to the good
agreement between the data of Fig. 5 and Eqs. (2.2) and
(2.6), we conclude also that the dynamics are governed by
moving solitons.

T ='l8. 0 K

q =0.092
x =9.7

p

0 0.2 O.O

~ITHz j

FIG. 7. Energy scans performed at Qo ——(0.0,0.9,1 —q*) (rln)

for kI ——1.70 A ' for different temperatures above and below

T~ j =2 1 K. The solid lines are theoretical curves which take
into account both the collisions between solitons and the instru-
mental resolution. The dotted-dashed, lines ignore the instru-
mental resolution. As T decreases, so does the soliton-mode in-

tensity [Eqs. (2.16) and (2.3)]. To observe the soliton mode at
lower temperature, it is necessary to move to smaller q

B. Soliton mode: q =
~

n q~ &&I'—
To observe the soliton fluctuations, the value of the as-

sociated wave vectors q'=
~

m —q ~

must be larger than
the inverse of the correlation length v=t q. Our investi-
gation of the soliton mode has been made with the scatter-
ing vector Qc ——(1.1,1.1,1 —q ) and with x=q"/I z &3.
Some data obtained for various values of q* (or x) and
temperatures are shown in Figs. 7 and 8.

First, we notice that the same type of fluctuations are
observed over the whole temperature range 13 & T & 30 K,
i.e., above and below T~~-21 K. Second, we observe that
the inelastic intensity is rather flat up to frequencies close
to the theoretical value Q~ =4' sinq (displayed by the
dashed vertical lines) after which the intensity starts to de-
crease smoothly. No maximum is observed despite the
high instrumental resolution used in these measurements.

So that we can compare data obtained with different in-
cident wavelerigths we have followed the normalization
procedure described in detail by Dorner. ' The essential
feature of this procedure is that for data collected at dif-
ferent wavelengths, but with the counting time controlled
by a monitor detector, the intensity defined by Eq. (3.2)
must be multiplied by factors of the form:

k~cotOq,
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FICx. 8. Energy scans performed at Qo ——(0.9,0.9,1 —q ) for
kI ——1.55 A for different temperatures below TN&

——21 K.
The curves are defined as in Fig. 7.
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where 8& is the relevant analyzer angle.
Finally for a quantitative comparison between theory

and experiment over the whole temperature range, the in-
tensity of the curves has been adjusted to the data at only
one temperature, arbitrarily chosen to be T=26.0 K [Fig.
7(b)]. A good agreeinent is obtained; the intensities, the
frequency widths and the shapes are reasonably well
reproduced. The dotted-dashed lines shown on the same
figures ignore the instrumental resolution and are derived
directly from (2.16) and (2.17). They show that for
T & T»—21 K, the absence of peak results more from the
damping due to the collisions between solitons rather thari
from the instrumental resolution.

This good agreement, which we emphasis, is in fact a
surprising result. As the temperature is lowered through
T~i—21 K, we expect the observed intensity to decrease
by a factor of 3 since we know from Sec. IVA that the
number of chains remaining uncorrelated is three times
smaller below T~I. Since no apparent change is observed
experimentally, this suggests that fluctuations associated
with solitons persist even in ordered chains. This may be
a result of the particular conditions of small q* and sniall
energy chosen in our experiments. It could mean that sol-
iton excitations maintain relatively rapid motions even in
presence of magnetic ordering. This is an important point
which should be examined in more detail, experimentally
and theoretically, in future work.

V. CONCLUSION

Several important results have been established in this
work. One relies on the good agreement between all the
experimental data and our "completed" soliton model:
the collisions between solitons play an essential role and
cannot be ignored in a description of the soliton fluctua-
tions. Another gives an experimental proof that in
CsCoC13, one third of the chains remains uncorrelated
below T~] and that the chain dynamics is governed by
moving solitons. Finally, it is suggested that f1uctuations
associated with solitons persist in the ordered chains.

The good agreement mentioned above is obtained when
a careful description of the fluctuations is used. From the
analysis of the AF mode, we have checked firstly that in
such pure crystals, "narrow" solitons in "quantum"
chains move coherently as do "broad" solitons in classical
chains. ' This is established by the relation between the q
and co widths of the AF mode (I =Vol ~) [Eq. (2.4)],
which has been verified over the whole temperature range.
This means that after they have been created the solitons
retain their initial velocity both in amplitude and direction
(x=vt). Despite their narrow width (one lattice unit) the
moving walls seem to be no more affected by local defects
than are broad solitons. The approximation given by
Maki [Eq. (2.7)] is also important. It leads to good quan-
titative agreement with the soliton model, obtained
without adjustment of any physical parameter. Unfor-
tunately, and despite the exceptional instrumental resolu-
tion used here, the characteristic shape of the AF mode
[Eq. (2.7)) could not be checked experimentally. Within
the experimental uncertainties, a simple Lorentzian form
would reproduce just as well the observed line shape.

~'(n/2) .=n, Vo I 1+a[1+0.5 cos(2q ) ]I,
one sees that the narrowest peak is obtained for q =n./2,
where the soliton dispersion frequency Q~ [Eq. (2.12)] is
the largest. The observation of such a peak, at relatively
high energy (Q /z —0.63 THz) with a sufficient instru-
mental resolution will be difficult. Qn the other hand, for
q~m. the collision rate is larger (by a factor 1 + 2a=1.9)
and the damping of the soliton modes become more pro-
nounced preventing us from observing any peak.
Nevertheless the good agreement obtained with the data
under so many conditions of temperature and wave vector
confirms the realistic feature of our collision model.
Finally one obtains a fully self-consistent description for
these fluctuations in terms of solitons alone.

In the partially disordered phase soliton fluctuations
have also been observed. One third of the chains remain
uncorrelated with free solitons moving along them. In the
ordered chains, low-frequency fluctuations persist which
could be attributed also to solitons, and it is interesting to
compare this result with the EPR signal observed previ-
ously by Adachi. The PD phase should extend down to a
certain temperature T~2 below which a complete three-
dimensional (3D) ordering is expected. In Ref. 6, the
value T&z-9.2 K was given. Tg 2 can be also determined
by following the evolution of the intensity of the 1D AF
mode as a function of temperature (Fig. 9). When the 3D
ordering occurs, the 1D correlations must vanish. T&2 is
determined from the maximum of the intensity. We find
T&2——8.5+0.2 K in agreement with Yoshizawa and
Hirakawa. ' In this figure, the solid line is a theoretical
curve obtained from the soliton model. Again it describes
the data well. No departure from the model of freely
moving solitons is observed. We would have expected
some effects below 13.5 K, in this intermediate phase, as-
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g 300-
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FIG. 9. Temperature dependence of the intensity of the mag-
netic planes measured at Qo ——(0.9,0.9,1}below T~~=21 K. The
maximum gives an accurate evaluation of the ordering tempera-
ture T~2 ——8.5+0.2 K. The solid line is a theoretical curve cal-
culated using the soliton model.

Concerning the soliton modes, the semiphenomenological
derivation that we propose for describing the effects of
collisions between walls is able to answer the puzzling
question why no sharp finite-energy peak is observed in
this compound. From Eq. (2.15) taken at the value 2l=~
at which the divergency occurs (co=Q~ ), i.e.,
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sociated with new interchain correlations, as suggested by
Yelon et al. This would have been consistent with a
slowing down of the solitons. Rather, the full ordering
seems to occur sharply at T~2, below which a two-
sublattice ferrimagnetic structure occurs. The present in-
vestigation has shown finally that in such compounds the
soliton regime can now be studied over an extremely wide
range of temperature, from T=75 K down to 8.5 K.
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APPENDIX A

As in the paper of Villain, the derivation of the soliton
fluctuations outlined below is performed in the subspace
Ei of states containing one elementary excitation. For an
open chain of N spins such a state is defined as

These expressions are used to calculate directly the corre-
lation functions defined as follows:

S (q, t) = y n, (k
i S, (t)[S,(0)]*

i k),1
(A2)

n(k)=n, p(k), (A3)

where n (k) is the soliton occupation number for the state
ik):

im+ —, &= i+ —+ —+ ——+ —+ —+ —
& .1

s ~ o yg

The first spin of the chain ( n = 1) has been fixed arbitrari-
ly to be S'=+ —,'. Hence, at a site n the different spin
components S„', S„—=S„+iS„aregiven by

( m'+ —,
'

i
S„'

i
m + —,

' )

with the soliton density,

n, =exp( J/T), —
and the occupation probability,

( k) —2sJ cos(2k jt) g —2sJ cos(2k/T)

k

Using the operator unity,

1=g ik')(k'i

(A4)

=( —1)"— 5 ~„—5„5
2 in —mi

(m'+ —,
' iS„-+

f
m+ —,

' )

= —,
' [1+(—1)"](5~,~ (5,,~+5~,m+i5n, m+i) .

nd ~
I
k & =~k

I
k & with

cok =J+2eJ cos(2k),

the diagonal elements in Eq. (A2) can be written as

(k
i S, (t)[S,(0)]'

i
k)

(A5)

Defining the spin operators in the reciprocal space of
wave vectors q as

Sq —— g S„eq + n Since

=g(kiS ik')(k'i(S )'lk)e
k'

the corresponding matrix elements are evaluated for an in-
finite chain to be

(m'+ —,
'

~S« ~

m+ —,')

cok q cok=cok q
—mk=4eJsi—nq sin(2k q), —

one obtains from (A2)

= 1 &s +11

Ss(q t) — dk p (k) i4 Je& isqssinn(2k —q)
4m. 4cos (q/2)

(m'+ —,
'

iSq* im+ —,
' )

—iq
1 m, m' 1+e —i (q +m)m

2cos (q/2)
(Al)

+ 1 +&S-(q t)= n dk cos k —+ p(k)e' ' '""q""" q'—
21r —m 2

e 'q (1+e' ) ,'(5 —i+e '«5 ~ +i) .
1V

To obtain Eq. (Al), use has been made of the following
relation:

e i( +1r)q—k 1/(1+eiq)
A, =+1

In subspace Ei, the eigenvectors of the Hamiltonian A
given by Eq. (2.1) are

yielding, for instance,
1 +s

S'(q, co) =
4m 4cos (q/2)

2s' ( +q
)& J dl p 5[Q«sin(l) —co], (A6)

The spectral density is obtained by Fourier transforming:

+ 00

S (q, co)= dte ' 'S (q, t),
2&
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with 0 =4'
l
sinq l. After integrating, we obtain for

—Qq &cu&Qq

g 2 - 2K ~/(2T)
S'(q, co) =

2m. .4cos q/2 Io(2FJ/T)

X
coshI cot[q(Q —co)' /(2T)] I

( II2 2
)
1/2

where Io(X) is the modified Bessel function,

+7r —X cos(2k 1

27T

and for the transverse spin component,

(A7)

S (q, co) = —,
' [S+(q,co)+S (q, co)]=S"(q,co)=S (q, co)

coshI cot[(A~ —co )' /(2T)] I

(2~)2 Io(2'/T) 2)1/2

sinh I cot[q(A~ —co )' /(2T)])
Qq

(A8)

with the inverse correlation length,

K=2n =2e

In the limit eJ « T «J, we obtain

1
I(rI) =—I dx exp[( —2'/T)cosx] .

The parameter g depends on the range of the k values:

and

S'(q, co)= S 2K 1

2H 4cos (q/2) (Q~ —co )'

j 1 1
2 2 2 1/24m (Q~ —co )

0&k &~/4~g =2k,
rr/4& k & 1r/2~2) =1r—2k,
m /2 & k & 31r/4~2) =2k —~,
3m/4&k &7r~ri=2m 2k . —

In the limit where the temperature is not small compared
to 2' (2EJ/T«1), since Io(2EJ/T)=1 [Eq. (A7)] and
Vo —SeJ/1r [Eq. (2.5)], Eq. (B3) becomes

APPENDIX 8
b (k)=n, Vo[21 l

sin(2k)
l
+

l
cos(2k)

l ] . (B4)

As already mentioned in Ref. 2, the collisions between
solitons are expected to round off the divergency predict-
ed by the theory described in Appendix A. In the follow-
ing we try to describe in a semiphenomenological way the
effects of such collisions. This procedure can be con-
sidered as an extension of what was suggested by Villain.

In the subspace E], one expects each energy level asso-
ciated with the wave vector k to be broadened by the col-
lisions. The characteristic width is given by the collision
rate to be

The k dependence of this quantity is displayed in Fig. 10
where it can be seen that Eq. (B4) is well approximated by

b;(k)=n, Vo[1+a sin (2k)], (B5)

with a =m./2 —1=0.57.
In the calculation of the spectral densities as given by

(A6), for instance, one has to consider all the possible
transitions between two different states k and k' such that
k'=k —q+m. The broadening of the corresponding ener-

gy level as introduced above allows us now to relax the

k)=n. g P(k')
l

Vk' Vk
l

k' (~k)
(B1)

where Vk is the velocity of a soliton in the state k. This
-quantity is defined Eq. (A5) as 1.5

dQ)k
Vk —— ———4' sin(2k) .

dk
(B2) 0)

V)

In (Bl) the sum runs over all k's except the value k'=k.
However, to within a good approximation it can be ex-
tended to all values of k. This leads to the following ex-
pression:

with

b;(k)=n, t4eJ
l
sin(2k)

l
[1 I(2))/Io(2'/T)]-

+ sinh[(2'/T)
l
cos(2k)

l ]/Io(2'/T]I,4T .

(B3)

TT 2TT

2 k (radians)

FICx. 10. Rate of collisions between solitons as a function of
k defining the plane waves of subspace E&, as given by Eq. (84)
(solid line). The dashed curve is an approximation correspond-
ing to Eq. (BS).
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energy-conservation condition represented by the function
5(x) in (A6). This function 5(x) is better replaced by a
Lorentzian having a full width of the order of

2coq(k, k') =5'(k) +b'(k')

Using the same parameter I =2k —q, as in Eq. (A6), one
obtains from (B5),

coq(l) n& Vo I 1+et[1—cos(2q)cos(2l)] I

Equation (A6) now reads

1 ns 2m I +qS'(q, co) = dip4n4. cos (q/2)

co~(l)

[Qqsin(1) —co] +coq(I)

and Eq. (A8) can now be written as

S+-(q, co) = z n, f dl cos'(l/2)p
2K 0

coq(l)

[Qqsin(l) —co.] +coq(l)

APPENDIX C

The validity of the previous calculation for S'(q, co) in
Appendix A is limited to wave vectors q «

I
m —Ic

I

. For
q=m. , we are actually dealing with ordered domains of
length /=le '. The dynamics results from the motion of
the solitons which induces flippings of the magnetic sub-
lattices. The time dependence from the correlation func-
tion

1 +

k= —m

with the probability p (k) given by Eq. (A4), we get

2 4' sinh(2'/T)
m Io(2'/T) 2'/T

and, with X=2eJ/T:

(Cl)

S'(z, t) = (S„'(t)S„'+,(0) ) =S exp[ —2N(z, t)]

is assumed to decrease exponentially with the number
N (z, t) of solitons present at time t in the interval

I

z —Vkt I, where Vk is the soliton velocity given by Eq.
(B2). We can write

=1N(z, t) =—g I
z+4eJt sin2k

I
n(k),

X arcsing
N(z, t) =n, Vo

I

t
I

. g f dl cosh(Xcosl)
sln4X

+ sinh[X cos( arcsing ) ]
sinh(X)

For g) 1, the soliton velocity remains too small to allow
any flipping at the site n+z during the time interval t:

with n (k) given by Eq. (A3). Depending on the value of
g=

I
z/4eJt I, two regimes must be considered. For

0 & g & 1, the solitons may have'time to flip the spin at the
position n +z, thus reducing the correlation which existed
initially with the spin at the site n. Defining the average
soliton velocity by

N(z t) =ns
I
z

I
=n, Vo

I
t

I

V()t

The quantity

f(y) =N(z, t)/n, Vo
I

t
I

(C2)

is plotted as a function of y =
I
z/Vot

I

in Fig. 11 for dif-
ferent temperatures: X=2'/T « 1, 1, and 2 corre-
sponding to T«18, T=18, and T=9 K, respectively,
for the case of CsCoC13. In the same figure the curve for
the approximation suggested by Maki is shown also:

f(y) —(1+y )

This has the advantage of yielding an analytical expres-
sion for the spectrum S'(q, co),

r'„/r,
2n II „[1+(q*)/I q]+co I

0
0

FICx. 11. The function f(y) which is defined by Eq. (C2) is
represented for different values of X=2'/T. The approxima-
tion given by Maki (Ref. 8),f (y) =(1+y )'~, is also shown.

with I ~ =2n, and I =2n, Vo.
Since we have already discussed in a similar problem,

Eq. (C3) is an approximation sufficient for analyzing our
neutron data. The limitation introduced by the instru-
mental resolution will prevent us from observing any
difference from the exact result which would require a nu-
merical (and rather cumbersome) procedure to calculate
S'(q, co).
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