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A new kinetic walk and percolation perimeters
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We introduce the smart kinetic walk (SKW), a new kinetic-walk model which is in a different
universality class from other such models. The SKW is strictly self-avoiding, yet is never forced to
terminate, because it never starts down a path which would lead to its being trapped. We show that
a ring-forming version of the model in two dimensions traces out the external perimeter of critical
percolation clusters. Using previous results on these perimeters, we find that the SKW fractal di-
mension is DsK~-1.75. The equivalence between the walk and percolation perimeters leads to a
scaling form for the number of ¹teprings. Finally, we see that the walk with a bias to turn to the
left more often than to the right (or vice versa) traces out the perimeter of clusters that are not at the
percolation threshold. This implies a maximum ring size depending upon the strength of the bias.

There- has been considerable interest in recently intro-
duced "kinetic-growth" models of geometric structure, as
distinguished from more traditional "equilibrium"
models. Equilibrium models such as percolation, lattice
animals, and the self-avoiding walk (SAW) are defined by
an ensemble of possible objects with statistical weights
determined by simple properties of the object. Thus,
field-theoretic solutions have been found for many of
these models. On the other hand, kinetic-growth models
such as diffusion-limited aggregation, kinetic gelation,
and certain kinetic-walk models involve explicit construc-
tion of the objects step by step, with a probability associ-
ated with each step. Therefore, the total weight of an ob-
ject is determined by the history of its construction.

This distinction between kinetic and equilibrium models
is not a strict one. For example, the normal random walk
can be viewed in both ways: as the path of a (drunk) trav-
eler who takes N steps, each in an arbitrary direction, or
as the set of all X-link chain configurations, each given an
equal weight. However, the so-called self-avoiding walk,
a model for linear polymers with excluded-volume in-
teractions, seems to be most naturally described as an
equilibrium problem: It considers the set of all N-link
nonintersecting chain configurations, with each given
equal weight.

There are a number of possible kinetic-walk models
which incorporate a se'lf-avoiding constraint. Amit
et al. introduced the "true" self-avoiding walk (TSAW),
which considers the path of a traveler who avoids his pre-
vious path if possible, but when he becomes trapped he
will step on his previous path in order to continue. On
the other hand, Majid et al. "very recently discussed the
kinetic-growth walk (KGW), which differs from the
TSAW in that a trapped walker terminates his walk rath-
er than revisiting any site. Thus, the KGW is strictly
self-avoiding, unlike the TSAW. In this paper we study a
new model, the "smart" kinetic walk (SKW). In our
model the walk is strictly self-avoiding, but it is never
forced to terminate because it never starts down a route
which would lead to a trapping situation.

It appears that these three kinetic-walk models are all

in a different universality class than the "equilibrium"
SAW, and also that they each define their own universali-
ty class. ' ' For example, in two dimensions the fractal
dimensions D of the various models are all different. The
fractal dimension is defined by X-R, where N is the
number of steps and R is the (average) size of the result-
ing paths. For the SAW, DsAw ———,, while the true SAW
is at its upper critical dimension (above which the self-
avoiding constraint is irrelevant) and DTs~w ——2. Com-
puter studies "of the KGW give DKGw-1. 5, and by re-
lating our SKW to the external perimeter of percolation
clusters we shall find DsKw -1.75.

These results for the fractal dimensions are suggested
by noting that the TSAW can be expected to be the most
"dense" since it intersects itself. Moreover, the SAW.
weighs all configurations equally, while the SKW and
KGW tend to give a greater weight to a walk which ap-
proaches itself so that the self-avoidance and "smartness"
constraint come to bear. The reason that the SKW is
more dense than the KGW is again because the SKW
weighs more heavily configurations which come close
where the "smartness" becomes relevant; this point will be
discussed more fully below.

We have found that Kremer and Lyklema have in-
dependently introduced a model, their smart growing
self-avoiding walk, which is apparently equivalent to our
SKW model. They have studied the walk on the square
lattice by explicit enumeration of the walks up to X =22
steps, and find R —X with v~Kw ——0.57+0.01.
The resulting value for the fractal dimension, D
—:(vsKw) '=1.75 is in excellent agreement with our re-
sult.

We believe in "universality" for this problem, in that
the large-distance behavior, such as the fractal dimension,
should be independent of the particular choice of two-
dimensional lattice. Considering the honeycomb lattice,
we shall show that the SKW is equivalent to the external
perimeter of clusters of the triangular site-percolation
problem at criticality. Thus, this apparently kinetic prob-
lem is, in fact, isomorphic to an aspect of the (equilibri-
um) percolation problem. (However, we have not
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developed a field-theoretic formulation of the problem. )

Despite the fact that many of the two-dimensional per-
colation critical exponents are known exactly, ' the
behavior of the external perimeter is known only from
computer simulations. "' In Ref. 13, the present authors
discuss a continuum percolation model which percolates
at zero area fraction of conductor, in which the perimeters
of percolation clusters play a major role.

A recent study by Ziff et al. ' bears a number of simi-
larities to our work here. He has introduced an algorithm
for constructing the perimeter of clusters of the two-
dimensional square site-percolation problem. His algo-
rithm creates (on the square lattice) a "kind of two-sided
self-avoiding walk" which is a realization of a perimeter
of a cluster. Since the walk of Ziff et al. and our SKW
are both realizations of the external perimeter' of percola-
tion clusters in two dimensions, we believe that at large-
distance scales the walks are equivalent. However, the
simple nature of the SKW is not apparent at short dis-
tances for the walk as constructed by Ziff on the square
lattice, both because of the nature of the lattice and be-
cause his walk is defined on the lattice on which the per-
colation clusters sit, while ours (see below) is defined on
the dual lattice. We shall discuss the case of the square
lattice using our approach somewhat more below.

We now more carefully define the SKW and show its
equivalence to percolation perimeters in two dimensions.
We then use known scaling laws for the percolation prob-
lem to derive relations for the number of rings construct-
ed from SKW's, and we briefly discuss the case when the
percolation problem is not critical (p&p, ) and the prob-
lem on a square lattice.

The rules which define the SKW model are as follows:
At each time interval the walker steps with equal proba-
bility to one of the allowed sites. An allowed site is, in
general, a nearest-neighbor site which has not been visited
previously. In addition, trapping sites are disallowed,
where a trapping site is one from which there is no al-
lowed path to infinity, so that the traveler would eventual-

ly be forced to terminate or step on a previously occupied
site. A variation of the rule, which forms rings, shall be
important below: The origin from which the walker starts
is an allowed site, and a trapping site is one from which
there is no path to the origin.

We believe that the fractal dimension of large walks
will be the same for both of these versions of the SKW,
much as the fractal dimension of the SAW and the self-
avoiding ring problem are the same. ' Far from the ori-
gin of the walk, the requirements that the traveler can re-
turn to the origin and that he can go to infinity are essen-
tially equivalent.

Note that in spatial dimension d =1 the self-avoidance
constraint forces the walk to be a simple line (DsKw ——1)
and the "smartness" is never applicable. For d =2 local
information is sufficient for the walk to be "smart. " As
illustrated schematically in Fig. 1(a), when the traveler ap-
proaches his previous path he can use the local configura-
tion plus knowledge of the direction of the old path to
determine which way to turn to avoid being trapped. The
direction of the old path can be provided by arrows on the
steps, or can be inferred from the coloring of the two sides
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FIG. 1. (a) Schematic view of a two-dimensional situation in
which the traveler must be "smart" and turn to the left rather
than to the right. (b) Three-dimensional case in which the trav-
eler must be smart. " He may enter the tube only if he can
escape at the other end. The travelers start at the dots and walk
in the direction of the arrows.

of the path defined by occupied and vacant sites of the
percolation problem. For d ~2, nonlocal information is
required in order to avoid traps; consider the d =3 exam-
ple illustrated in Fig. 1(b), where local information will
not suffice to determine whether the other end of the
"tube" is open or closed, and thus whether the traveler
may enter the tube or not. However, at each step a search
of only finite length is required to determine the allowed
moves, so that the walk is well defined even for d ~ 2.

In Fig. 2 we show a number of examples of smart kinet-
ic walks on a honeycomb lattice with their associated
weights. The model can be generalized to other lattices in
a transparent way, and we expect by universality that re-
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FICx. 2. Examples of smart kinetic walks on the honeycomb
lattice. The walk starts at the site with the large dot and the
weight of each step is indicated. The total weights of the walks
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Panel (d) illustrates two rings formed by the ring-forming ver-
sion of the SKW.
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leted rings formed by the ring-forming version of the
SKW model.

We have illustrated the SKW on the honeycomb lattice
because it is for this lattice that there is an equivalence'
between the walk and the external perimeter of clusters of
the site-percolation problem at its percolation threshold.
(The case of a noncritical percolation problem and the as-
sociated walks will be briefly discussed later. ) This
equivalence is only exact for the ring-forming version of
the walk which always maintains an allowed path to the
origin. However, as discussed above, we believe that the
distinction between the two versions is immaterial for the
fractal dimension of large walks.

With the percolation problem defined on a triangular
lattice, we define the perimeter of a cluster to be bonds of
the dual (honeycomb) lattice which separate occupied
from unoccupied sites (see Fig. 3). Now we imagine
building up the edge of a percolation cluster in a stepwise
fashion by choosing the occupations of the sites which
determine the perimeter as we go along. ' The resulting
rules for growth of the perimeter are exactly those of the

(b)

FIG. 3. Equivalence between the SKW and percolation per-
imeters. We show the site-percolation problem on the triangular
lattice, where solid and open circles indicate occupied or vacant
sites, respectively. The perimeter of the percolation cluster, and
the equivalent SKW, are defined on the dual honeycomb lattice.
(a) The two basic steps, to the right and to the left, are deter-
mined by the occupation of the upper site. Thus, they have
weights 1 —p and p, respectively, where p is the probability that
a site is occupied. (b) Example of a walk which displays the
"smartness" constraint, and the corresponding percolation site
occupations. The occupation of the site labeled (ii) was chosen
at random and was found to be occupied, which determined the
second-to-last step of the random walk. The final step was then
automatically determined, because site (i) was previously deter-
mined to be vacant.

suits for the critical behavior (such as the fractal dimen-
sion of large walks) will be independent of the detailed lat-
tice structure.

The two walks of Figs. 2(a) and 2(b) have different
weights even though they have the same number of steps;
this is due to the kinetic nature of the model and is in
contrast to the equal weighting of all legal configurations
in the usual SAW model. In Fig. 2(b) the traveler has
stepped away with probability unity from revisiting a pre-
viously visited site.

Figure 2(c) shows the first walk for which the smart-
ness of the traveler is relevant. Here the traveler has
stepped away with probability unity to avoid a path which
would eventually lead to his being trapped. This behavior
is different from that of the KGW model, which could
enter the trap, but would then be eliminated at the next
step. Thus, the KGW weight of Fig. 2(c) would be
—, ( —, ). Finally, in Fig. 2(d) we show examples of comp-

SKW model. At each step a decision is made as to
whether a single site is occupied (with probability p) or
vacant (with probability I —p). This decision exactly
determines whether the perimeter turns left or right at
that step. For triangular site percolation, the critical
probability is p, = —,', and so, in general, the walk turns
left or right with an equal probability of —,. Moreover, as
demonstrated in the example of Fig. 3, when the perime-
ter approaches itself it realizes the self-avoidance and
smartness character of the walk because the occupation of
sites has previously been determined, so that the traveler
steps with unit probability. Because the perimeter
separates occupied from vacant sites, by its very nature it
cannot cross or enter a trap which would force it to even-

tually cross.
With probability one, every perimeter will eventually

close. If it closes one way it encloses occupied sites, while
if it closes the other it encloses vacant sites. However, for
triangular site percolation, p, = —,', so that occupied clus-
ters and what we have labeled "vacant" clusters are both
critical. It is convenient to redefine an internal perimeter
of an occupied cluster to be, instead, the external perime-
ter of a vacant cluster. Then the set of all clusters (occu-
pied and vacant) is in one-to-one correspondence with the
set of all perimeters, with each cluster associated with its
external perimeter.

In this way the SKW on a honeycomb lattice traces out
the external perimeters of critical percolation clusters.
Considering a configuration of occupied and vacant sites
in the percolation ensemble, we must choose a perimeter
site at random as the origin of the SKW. The traveler
then proceeds to follow that perimeter. Thus, the average
spatial extent of an ¹tepSKW ring is the same as the
average extent of a percolation perimeter of length X, so
that the fractal dimension of the SKW is identical to the
fractal dimension of the external perimeters of critical
percolation clusters. Because we can choose any of the X
sites of a particular perimeter as the origin of the walk, a
given perimeter in the percolation ensemble corresponds
to % distinct walks. Thus, below, we can relate the num-
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ber of ¹ tep rings produced per walk to known percola-
tion scaling behavior.

It has been proved, ' in general, that for a percolation
cluster the total perimeter (external and internal) is pro-
portional to the number of sites of the cluster, and thus
the fractal dimension of the total perimeter is the same as
that of the cluster, D, . However, in two dimensions it ap-
pears that for large critical clusters the external perimeter
is a vanishing amount of the total perimeter, and that its
fractal dimension D~ is less than that of the cluster.

Despite the fact that many of the critical exponents are
believed to be known exactly' for d =2 percolation, there
is relatively little known about the fractal dimension of
the external perimeter. With computer studies, Leath and
Reich" have measured the way that the length of the per-
imeter of a cluster (which we identify with N the number
of steps of a SKW ring) scales with the cluster area s,
finding

sx

D D
with x=0.93+0.02. Noting that N-L ~ and S-L,
where L, measures the spatial extent of the cluster, we see
that x =Dz/D, . Thus D~=1.76, where we have used
the exact' D, = 4, . More recently, Voss, ' who calls the
external perimeter the "hull, " has measured

Dz ——1.75+0.02. Thus we find the fractal dimension of
the SKW,

g but still large compared to the lattice spacing are similar
to the critical clusters which occur at p =p„while finite
clusters larger than g are exponentially rare. There will be
an infinite cluster of "occupied" or "vacant" sites if
p &p, or p &p„respectively. However, the infinite clus-
ter will not be relevant for the walks because it has no
external perimeter. Instead, the walks will trace out the
edges of the smaller clusters, some of which correspond to
holes in the infinite cluster.

For the walks, the p&p, case translates into a bias for a
given walk to step left more often than right, or vice versa
[see Fig. 3(a)]. Thus, if p &p, the walks will tend to form
clusters of "occupied" sites, while for p &p, they will
tend to form clusters of "vacant" sites. Because of the
bias, the walks will close more quickly than for the un-
biased walk, forming smaller rings. The percolation
equivalence gives the scale of the largest rings, which is
the correlation length g. Walks smaller than g are essen-
tially the same as unbiased walks and will have the fractal
dimension DsKw found above. Thus, the number of steps
in the largest rings can be written as

SKw
I

SKw (6)

The scaling arguments leading to Eq. (4) can be easily
generalized to the case p&p, in order to relate the distri-
bution of ring sizes to the percolation-cluster-size distribu-
tion function. We find

DSKw =Dp 1.75 (2) N (. ()txF(
I

— —
I

N~(x)

ns s (3)

with ~= 9,
' in two dimensions. Because of the one-to-one

correspondence between a cluster and its external perime-
ter, and the (N-to-one) correspondence between SKW
loops and external perimeters, we find

(4)

where we have used Eqs. (1) and (3).
Up to this point we have only considered the case that

the percolation problem is at its percolation threshold:

p =p, = —, for triangular site percolation. If p&p, there
is a correlation length

4-
I p —p. I

(5)
I

(with v= —', in two dimensions' ) which sets the scale of
the largest finite cluster. Clusters which are smaller than

This result is in good agreement with the above-
mentioned computer series of Kremer and Lyklema for
the SKW on a square lattice: They find DsKw
=(0.57) '= 1.75.

Improved computer simulations for percolation will
give Dz, and hence DsKw, more accurately. Alternative-
ly, improved values for D& may be obtained if, as seems

likely, the SKW proves to be easier to study than the per-
colation problem.

We now derive a scaling relation for n&, the number of
X-step rings produced per walk. ' For percolation at its
critical point the number of clusters (per unit area) with s
sites scales' as

where the percolation scaling exponent o.= —,", in two di-
mensions, and F(z) falls off rapidly for large z. This im-
plies, for example, that the average number of steps in a
ring can be written as

with g=(1 —r+2x)/a=2. 0. This result is in excellent
agreement with the computer study of Ziff et al. '" of per-
colation perimeters which gave /=2. 0+0.1.

While we expect that the two types of SKW (which
keep available an allowed path to the origin or to infinity)
are essentially the same when there is no bias, we do not
believe that this is the case when a bias is imposed. As
just discussed, the biased ring-forming walk is equivalent
to percolation perimeters with p&p, . Thus there is a
maximum ring size g, with smaller rings the same as un-
biased ones. However, the walks formed by the model
which requires a path to infinity will never terminate, and
thus will have no maximum size. When small compared
to g, these walks will be equivalent to the ring-forming
walks and will have fractal dimension DsKw. We exPect
that for larger walks there will be crossover to new
behavior, in which the traveler basically spirals around a
central core. It appears that this spiral will fill some fi-
nite fraction of space, and thus that the fractal dimension
of large walks will be 2, the same as the spatial dimension.

It is tempting to apply the methods of this paper to the
square lattice. Considering site percolation on the square
lattice, we can define the perimeter of clusters on the
dual (also square) lattice exactly as for triangular site per-
colation. However, while the SKW is easily defined on
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more complex walk, which may, in certain cases, self-
intersect at single sites (see Fig. 4). Thus, while we believe
that at large distances the SKW and the perimeter of per-
colation clusters are the same independent of the lattice,
this equivalence is not manifest at short distances.

In summary, we have introduced a new kirietic-walk
model which is in a distinct universality class from other
such models. The smartness of the walker rarely comes to
bear, yet it leads to new asymptotic behavior. We have re-
lated our kinetic problem to the equilibrium percolation
problem, and thus identified the fractal dimension DsKw.
The equivalence to percolation implies a scaling relation
for the number of ¹tep rings, and for the effect of a
bias in the walk.

FIG. 4. Walk generated by the perimeter of square site-
percolation clusters which self-intersects.

the square lattice, this walk is not generated by the per-
colation problem. Rather, due to the lack of symmetry
between occupied and vacant sites at the percolation
threshold p, =0.59, the percolation problem generates a
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