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Transfer-matrix methods for quantum spin systems are formulated and their limiting properties
are studied rigorously. The present formulation is applied explicitly to an exactly soluble transverse
Ising model. A computer implementation of the two-dimensional triangular antiferromagnetic
quantum Heisenberg model is also proposed to study Anderson's picture of the dynamic coherence
of the phase of singlet pairs.

I. INTRODUCTION AND SOME USEFUL FORMULAS

Analytical methods, particularly the transfer-matrix
method, ' have been very useful in rigorously studying
the statistical mechanics of classical systems such as the
Ising model. The purpose of the present paper is to ex-
tend the transfer-matrix method to quantum spin systems,
to investigate some general features of this "quantum
transfer-matrix method, " and to apply this method to the
one-dimensional transverse Ising model.

The basis of the quantum transfer-matrix method
comes from the following equivalence theorem.

Equivalence theorem (Ref, 3): A d-dimensional quan-
tum spin system is mapped into a (d + 1)-dimensional Is-
ing system with many-spin interactions as follows: The
partition function Z of a Hamiltonian A =A 0+~~
+ . . - +A& is expressed by

Z=Tr' 'e i' =Tr"+-"ex W'+" (1.1)

where. A,tt+" denotes an effective (d+ 1)-dimensional
Harniltonian.

An . explicit expression of the effective Hamiltonian
A,tt+" can be obtained by using the following formula.

Formula 1: For any set of operators I Al I in a Banach
algebra, we have

P 1
exp g A — g exp —A.J n J

.i =1

n

1 P

X 11~111 exp
j=1 j=1

(i.2)

where p is an arbitrary positive integer. Namely, for
bounded operators t AJ ) we have

1
lim + exp —AJ.

n~~
1

n
=exp g AJ . (1.3)

1
g =exp —g Al

j=l
then we obtain

JP

and h = ff exp
n

A little weaker upper bound than (1.2) was given in a
previous paper by the present author. Thus it will be in-
structive to give here a brief proof of (1.2). If we set

llg" —h "II & llg —hll(llg II" '+ llg II" 'llh II+ . + Ilhll" ')
r'

n —I
& n

I lg —h
I I

exp
j=1

Next, it is easy to show that
r

llg —hll &2 exp —2 Ii~1 II
— 1+—g ll~, II

j=1 j=1
r r

X ll~ II exp —g ll~ II2 J j=1
L

(1.5)

(1.6)

where we have used the mean value theorem. Thus we arrive at (1.2).
Qn the basis of the above equivalent theorem, Suzuki3'" proposed a systematic method of Monte Carlo simulation on

quantum systems, and then there have been published many papers, ' which applied the above Monte Carlo method of
quantum systems to the quantum Heisenberg model, the XY model, and fermion systems. It is also of interest to note
the following symmetry property of the approximant f (n) defined by

f'(n) Tr(e~&«)&e&«~&)~
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Evenness of approximants: The approximant f (n) defined by (1.7) is an even function of n .Proof: We have

—(1/n)A —(1/n)Bi —n ~ r I —(1/n)A —(1/n)B) —1]n

(1/n)B (1/n)A)n Tr(e(1/n)A (1/n)B)n (1.8)

This symmetry property suggests that the correction of the approximant f(n) to Trexp(A +B) is not of the order of
1/n, but of the order of 1/n I.n fact, we can show the following inequality.

n co-rrection law: For any operators A and B in a Banach algebra, we have

A+B T (
(1/n)A (lln)B)

I
( (IIAII+IIBII) (1.9)

311

where d denotes the dimensionality of the operators A and B, and the norm
I Ig I

in (1.9) is defined by the maximum
value of the absolute magnitude of the eigenvalue of a Hermitian operator Q.

This is a direct result of the following formula.
Formula 2: For any operators 3 and B in a Banach algebra, we have

exp(
I
A

I I+ I
IB I I

)
3 2

The proof is easily given in a way similar to (1.5) and (1.6), namely by noting that

(1.10)

1/n(A+B) (1/2n)A ((ln)B (1/2n)AI
I
(2 e )/n(/LA // [+L /B/) 1

I IA I I+ I IBI
I

(
I IA

I I+ I IB I I )'
n 2n

, (
I I

A
I I+ I

IB I I
)'e"p (

I I
A

I I+ I
IB I I

) .

This n -correction law on the trace of [exp(1/n)A exp(1/n)B]", not the operator itself, was pointed out to hold by
Hirsch et al. and by De Raedt et a/. , with the use of the properties that

Tr( e(1/n)Ae(lln)B)n Tr(e(1/2n)Ae(1/n)Be(1/2n)A)n

and that

eKA+B) e()/2)~Ae~B ()/2)~A 0(r3)

(1.12)

(1.13)

The inequality (1.11) is only a rigorous statement of (1.13). The above n -correction law has also been found numeri-
cally by many authors in performing Monte Carlo simulations of quantum systems. The present formulation gives
rigorous proof of this n -correction law for the partition function, namely for the trace of an exponential operator.

The above symmetry property, namely the evenness of the approximants, can be easily extended to any set of {AJ I by
the following.

Generahzed euenness of approximants: The symmetrized approximant f"(n) defined by f"(n)=TrF"'(n) with

(1/2n)A) (1/2n)A2 (1/2n)A
1

(1/n)A (1/2n)A
1 (1/2n)A)

(1.14)

is an even function of n.
The proof is quite the same as in (1.8). Thus the

correction of f"'(n) is of the order of n

Similarly to (1.9) and (1.10), the following generalized
inequalities hold.

Formula 3: For any set of operators {AJ I in a Banach
algebra, we have

exp g AJ F"(n)—

with F"(n) defined by (1.14), and

Trexp g AJ f"(n)—

d 2 I I" I I
~xp3' j=l

(1.16)

2 I IAg II3' j=1

(1.15)

wh"«h no m llgll 1n (1.16) is defined as in (1.9). It is
worthwhile to note the following formula.

Formula 2: For any operators 3 and B in a Banach
algebra, we have
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exp(
I I

~
I I+ I

&
I I

) ~

2n

(1.17)

Proof: If we set

F(x) =exp[x (A +8)]—exp(xA)exp(xB),

then we obtain the following expression:

F(X)= dt C& etAe(t s)B[g—g]esB (x —t)(A +B)
0 0

A. Real-space transfer-matrix method

The above classical representation (2.4) is rewritten as

Z = lim Tr( )(T~Tq)",
n~m

(2.6)

for k = 1 and 2.
Now, the transfer-matrix method can be applied to the

above equivalent effective classical Hamiltonian M,rt in

the following two ways.

(1.18) where t Tk J denotes the following transfer matrices:

using Kubo's identity, '

[g etB] e(t s)B—[g g]esBdS
0

Therefore, we obtain the following inequality:

I
IF«) II &

2 I
l[~»] llexp[« ll~ + ll~ II)] .

(1.19)

(1.20)

By combining (1.5) with (1.20) for x =1/n, we arrive at
(1.17).

Tk —— o, exp ——A k
n

(2.7)

See Fig. 1 for the direction of transfer. As was seen in
Onsager's celebrated paper,

' ' the symmetrized transfer-
matrix T =T& T2Tj can be diagonalized with eigen-
values IAJ J in some appropriate systems. In such lucky
cases, the partition function of such quantum spin sys-
tems can be obtained analytically in a classical way as

Z = lim TrT"= lim g AJ". .
n~oo n —+oo

(2 8)

II. TRANSFER-MATRIX METHODS
IN QUANTUM SPIN SYSTEMS

A —A $+cP (2.1)

where A
&

and A 2 are sums of commutable local opera-
tors:

A, = gA )(r), [~)(r),A, (r')]=0 (2.2)

As was mentioned in the preceding section, the
transfer-matrix method can be applied to a (d + 1)-
dimensional effective classical Hamiltonian equivalent to
the original system. This method was already used impli-
citly in a previous paper to solve the one-dimensional
transverse Ising model. ' ' We start with the following
Hamiltonian composed of two parts:

Here it should be remarked that the eigenvalues IA,J I
depend on n in a singular way, and consequently all the
eigenvalues IAJ I have to be retained in the summation
(2.8) in contrast to the ordinary transfer-matrix method in
which the maximum eigenvalue gives an exact result in
the thermodynamic limit.

In the case when the transfer matrix cannot be diago-
nalized analytically (as in most cases), direct numerical
calculations of the product ( T~ T2)" are useful for small
finite lattices and Monte Carlo simulation is also practi-
cal ' for larger finite lattices, as was mentioned in Sec.
II. We have the following theorem concerning the limit
of the free energy per spin f „defined by

—AT
0 ln Tr[T(m)]", 0—:m d (2.9)

and

A p ——yA p(r), [A 2(r),A 2(r')]=0 . (2.3)

where T(m) denotes the transfer matrix for the lattice
size m, and d denotes the dimensionality of the system.

Theo~em 7: For spin systems described by the Harnil-
tonian (2.1) with (2.2) and (2.3), the following limit exists:

The partition function of this system is expressed as

Z=Tre ~ = lim Tr exp ——A ~ exp
n~oo n n

= lim g exp g [A ~(aj,a~)+~2(aj, aj+~)]

exp@,fr,
I. aj. I I aj. I

(2.4)

in terms of some appropriate representation
~ aj ) with

~
a„+))=

~
a)), where 1 2

x «(a, a')=tn(a exp ——x a &'l.
n

(2.5)
REAL SPACE

FIG. 1. Transfer matrix T in d-dimensional real space.
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lim f „=f-
n~oo

(2.10) Tr[ T'(n)] =Tr[T(m)]", (2.17)

lim f —=f (2.11)

The proof is easily given for formula 1, (1.2). The ex-
istence of the thermodynamic limit

from the definition of fm „, though it is not easy to con-
firm this relation for explicit expressions of T(m) and
T'(n).

An important question concerning the above two limits

has been proved by Griffiths. ' Therefore, we have

lim lim fm „=f
m~ce n~oo

B. Virtual-space transfer-matrix method

(2.12)

lim lim f „=f and lim lim f „=f,
m~op ll —+op n~oo n~oo

and concerning the double limit

lim f „=f,
m —moo

(2.18)

(2.19)

The second formulation is to apply the transfer-matrix
method to the virtual space, as shown in Fig. 2. The par-
tition function is expressed by

Z = lim Tr[T'(n)] (2.13)

where the transfer matrix T (n) is easily obtained explicit-
ly from the classical representation (2.4). The dimen-
sionality D' of T„' is given by

D 2lgm (2.14)

where another extra factor of 2 may appear owing to the
structure of T'(n), while the dimensionality D of the
real-space transfer matrix T(m) is

2m" (2.15)

(2.16)

The following relation should hold:

Thus we have D' «D when n «m. As was seen in Refs.
5—15, a small value of n might be enough to obtain reli-
able results for the partition function except at very low
temperatures. In such a situation, this second formulation
will be more useful for numerical calculation by a high-
speed computer. It will be possible to perform numerical
calculation for a very large (practically infinite) value of
foal .

The free energy per spin f „ is now given by

—k~Tf „= ln Tr[T'(n)]

~fm', n fm, n & n =
i rrn' n Pl

(2.20)

where m ' =2m and J denotes a typical strength of in-
teraction. Consequently, we have

~f „f „~ & ~J—, m"=2~m
f72

(2.21)

for any positive integers m, n, and p. Thus we arrive at
the inequality

I fm, n fm', n (2.22)

for any m, m'&X& ——d
~

J
~

le, irrespectively of n. This is
Cauchy's condition on uniform convergence. That is, we
have

is, do they exist? If they exist, do they agree with each
other?

An answer to the above question is given by the follow-
ing theorem.

Theorem 2: For the free energy defined by (2.16) with
the Hamiltonian (2.1) of short-range interaction, the three
limits (2.18) and (2.19) exist and they are all equal, namely

f=f=f.
Proof: We divide the proof in the following three steps.
Step 1: First we prove the uniform convergence off

for m ~ ac . Similarly to Griffith's arguments ' on the or-
dinary thermodynamic limit, we separate the whole sys-
tem into 2" parts as shown in Fig. 3, where d denotes the
dimensionality of the system. It is easily shown that

n II lk

li

ll

ik

lk

2tl
4E aE

1
REAL SPACE ol =2m

FIG. 2. Transfer matrix T' in virtual space and (d —1)-
dimensional real space.

FIG. 3. Separation of the (d + 1)-dimensional system into 2
subregions, ' m ' =2m.
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lim f „=f„(uniformly) . (2.23)

lim a „=am for all m and lim a„=a (2.24)

exist and the limit

11m Om n Pn (2.25)

converges uniformly, namely irrespectively of n, then the
limit of p„exists and it is equal to a, namely

lim P„=a . (2.26)
n~oo

Proof ofLemma: From (2.24), for m fixed, we have

Step 2: First, we prove the following lemma on the
double series I am „I. Lemma: If the limits

tain f=f from (2.10) and (2.11).
Step 3: From (2.30), with

a=f =f, we obtain
ttm, n =fm, ni Pn =fn~

If,. f I

—& lf,. f' I—+ If.—f I
«/3+e& —", e

(2.31)

III. DEMONSTRATION OF THE TRANSFER-MATRIX
METHOD IN AN EXACTLY SOLUBLE TRANSVERSE

ISING MODEL

for m, n &N. Therefore, we arrive at the conclusion that
the double limit f exists and that f=f=f. Theorem 2 is
the basis for the virtual-space transfer-matrix method for
quantum spin systems.

I
a „—a

I
&(e/3) for n &N1 . (2.27)

In the present section we study the following one-
dimensional transverse Ising model:

From the second condition in (2.24), we also have

I
a —a

I
&(e/3) for m &N2 .

The condition of uniform convergence yields

I
o „—P„ I

&(e/3) for m &N3 .

(2.28)

(2.29)

A = —J g ojoj+1—I g oj, 4 m+1=+1

where OJ- and o.J denote Pauli matrices

(3.1)

Thus we obtain

I p. —a
I

&
I p. o..I+—lo,.—a I+ la —a

I
«

0 1

10..j
1 0

and o.~= 0 —1 .J
(3.2)

(2.30)

for n &N1 [and for m&max(Nq, N3)]. This completes
the proof. If we apply this lemma to our problem, we ob-

being located at the jth lattice point. Equivalence
theorem (1.1) yields the following classical expression of
the partition function:

Z=Tre ~ =Trexp X g ojoj+1+y g oj
j=1 j=1

mn
m n

~n TreXp y y ajk J+1k n jk Jk+1
Pl —.+ to '=1k=1

(3.3)

where oj„——+ 1, K =I/ke T, y = I /kz T, and
1/2

—sinh
1 2y
2 Pl

and J n
= —,

' lncoth(y/n) . (3.4)

We apply here the two kinds of transfer matrices, T(m) and T'(n), introduced in Sec. II.

A. Real-space transfer-matrix method

This was discussed in the previous paper. For convenience, we review briefly our previous result. Since the above
classical representation (3.3) is nothing but the two-dimensional ordinary Ising model, the transfer matrix T(m) corre-
sponding to (3.3) has been already diagonalized by Onsager' and Kaufman, and consequently we obtain

m

Z = lim A„"—,[2sinh(2K„)] " Q 2cosh —y k
8 —+ 0O k ='1 2

T

m
P1

2 cosh —
y2k

k=1 2

where yk is given by

m n+ + 2 sinh —
y2k

k=1 2

m n+ + 2 sinh —
y2k

k=1 2
(3.5)
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2y 2L
coshyk ——cosh cosh

n n

t
2y . 2E—siIlh sinh
n n

cos (3.6)

Therefore, we obtain

llm yk =pEk = (I +J ) —21 Jcos
n~oo 2

(3.7)

Thus the partition function of the quantum system (3.1) for m spins is expressed by the sum of the following products:
T

m m m m

Z = — @[2 oh(/3 )]+ +[2 i h(P )]+ +[2 oh(P )]+ +[2 i h(P )]m
k=1 k=1 k=1 k=1

In the thermodynamic limit m ~ oo, we obtain

(3.8)

f= lim f =—lim
—k~T j ln [ 2 cos[Pe(q) ] I dq, (3.9)

where

e(q)=(J +I 2JI cosq)—'i (3.10)

This is a well-known result. ' '
It will be instructive to discuss here the other limit f„=lim~ f~ „by using (3.5) in order to exemplify theorem 2.

By taking the limit m ~ ce in (3.5), we obtain

k~T nf„=— ln 2cosh —y„(q) dq,
2m

n (3.11)

where

2y 2K
coshy„(q) =cosh cosh

n n

2y . 2K—sinh sinh cosq .
n n

(3.12)

Consequently, we arrive at

lim f„=f=f .
n~ oo

Therefore, theorem 2 yields the relation f=f=f, which can be also confirmed directly from (3.5).

(3.13)

B. Virtual-space transfer-matrix method

The transfer-matrix T' of the present method is easily obtained and it has the same structure as T with different pa-
rameters. From the exact solution by Onsager' and Kaufman, we obtain again

1 1
lnZ = — ln Tr[T'(n)]

m m

mn /2
l 1 . 2y . 2E

ln —sinh sinh
m 2 n n

n

cosh y2k ~ + + 2 sinh y2k
k=1 k=1 2

n

+ + 2 cosh
k=1 2

n

+ Q 2sinh
k=1

(3.14)

where

coshyk ——coth coth2y 2K
n n

2y 2K ~k—csch csch COS
n n n

(3.15)

~e have to be careful in taping the limit gpss ~ before the limit n ~. It is a key point «o««purpose to n«e the
following formula:
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cosh( nx) =2" g coshx —cosn —1 (2j —1)n

j=l 2n

With the help of this formula, we have

y„=2I «q ~
~ (2j —1)m.

j=l2 Pl

The first product in (3.14) can be expressed by a double product

n m/2
=2 " + + coshy2k ) —cos

k=1 j=l
r

n

2 cosh
IG =1 2

(2j —1)m.

e""
~ -» I

coshy21, —cos
k=1 =1

2 csch csch2y 2K (2k —1)m

n

2 cosh
k=1 2

2y . 2K
sinh sinh

J

This form of double product was obtained first by Fisher and later by many authors. ' Thus we arrive at
mn/2

(3.16}

(3.17)

(3.18)

m/2 n . (2k-
coshy2' —1

nj=l k=1

m/2
4cosh

j=l
n

2 V2j —1 (3.19)

where we have assumed here, for simplicity, that I and n are both even.
the case of odd m or n, but it is a little more complicated.

Thus we obtain, from (3.14) and (3.19),

—kgT nf„= lim f ln 2 cosh —y„(q) dq,
m~oo 2& 0 n

The above argument can be easily extended to

(3.20)

which is an even function of n and satisfies the n -correction law. This agrees with (3.11), though it is logically trivial
if we start from a symmetric double product of the partition function. Therefore, we arrive again at the desired re-
sult

lim f„=f=f .
n~oo

The above calculation gives a typical example of theorem 2.

(3.21)

IV. MONTE CARLO METHOD FOR THE TWO-DIMENSIONAL TRIANGULAR
ANTIFERROMAGNETIC HEISENBERG MODEL

Our classical representation of quantum spin systems is not unique and the separation of the Hamiltonian is rather ar-
bitrary, as in (2.1). By making use of this property, it may be possible to optimize the separation of the Hamiltonian.
That is, we separate now the Hamiltonian into the following local operators:

A =+A(r). (4.1)

By applying formula (1.3), the partition function of the system is expressed as

n

= lim g exp%, rr,
n~oo

Z=Tre ~ = lim Tr +exp — A(r)—
n~oo r n

(4.2)

where

~,rr gg Irr rr, r exp — A=(rI re, I+,)—j—1 n (4.3)
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Here it should be remarked that the above local operator
A (r ) is not necessarily the original local interaction itself,
but it may be some cluster '" of local Hamiltonians. If
we take a larger cluster as A (r), then the noncommuta-
tivity (or quantum) effect can be taken into account more
appropriately for a smaller value of n. It becomes, how-
ever, more difficult to calculate the equivalent classical in-
teraction (4.3), because the diagonalization of A (r) be-
comes more complicated as the cluster size increases.
Thus some optimization between the cluster size and the
value n will be necessary. First we discuss a quite in-
teresting example of the two-dimensional triangular anti-
ferromagnetic quantum Heisenberg model

A (r) A ~jk= —J(cr; crj+crj crk+ crkcr;), (4.S)

n

as shown in Fig. 4.
In order to study such dynamical coherence of the

phase of singlet pairs as was suggested by Anderson, we
separate the whole lattice as in Fig. 5, namely we consider
the following elementary local operator

~ijk 2 J(cr; crj+crj crk+crk cr;) . (4.6)

Thus the partition function of this system is expressed by

Z=Tre "=Trexp —P g ~zk
( 'J'k )

A „=—J g o; o, = —J g (0.";o,"+0;o,+o';crj), (4.4)
(ij) (ij)

= lim Tr + exp
oo (ijI )

(4.7)

where crj denotes a vector of Pauli matrices crj~, crj, and cTj

located at the jth lattice. If we are interested in the quan-
tum frustration in the triangular lattice, then it seems to
be essential to take, at least, three-spin clusters as the local
operator A (r ), namely

According to our general procedure or the equivalence
theorem (1.1), the partition function Z is expressed by
that of the corresponding three-dimensional Ising model
with the following six-spin partial Boltzmann factor:

I I Iq(cr;, oj,crk', cr;,oj,ok)= o;,oj,ok exp — ~cjk—cr( crj crk
n

(4.8)

in terms of the representation
~

cr~, cr2, . . . , cr~ ) which diagonalizes I oj I, where

q(0;,oj,crk,'0,', crj, crj, ) =5(0;,cr,' )5(crj,crj )5(ok, crj, )cosh(3K)

+ —,
' sinh(3K) cr;o j5(cr;,o,' )5(crj, crj )

(1 o;cr,')(—1 —cr o') —(o; —cr,')(0 —o' )+ 5(0 k, crk ) + (cyclic) (4.9)

FIG. 4. Elementary triangular cluster.
FIG. 5. Separation of the two-dimensional triangular lattice

into each elementary triangular cluster.
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with the Kronecker delta 5(x,y), where K =PJln A. ppli-
cations of this method are planned to be published else-
where.

V. SUMMARY AND DISCUSSION

We have discussed the transfer-matrix method in quan-
tum spin system and studied the relation among the three
different limits of the partition function. This method
has been applied to the exactly soluble one-dimensional
transverse Ising model in order to show how our formula-
tion works.

The real-space renormalization-group method can be
also applied ' to quantum spin systems by transforming
them into equivalent Ising systems. This is also planned

to be discussed somewhere else.
Computational implementation of the triangular anti-

ferromagnetic quantum Heisenberg model is also pro-
posed. The present arguments on the transfer-matrix
method will be also extended to boson and fermion sys-
tems in the future.
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