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Collective excitations and retarded interactions
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We study the dynamics of many-body systems with retarded interactions and show how their
non-Markovian character can lead to nonergodic behavior. This nonergodicity is characterized by
the appearance of long periods or chaotic wanderings in phase space. We construct the phase dia-
grams for Ising-type systems with delayed interactions, and show the emergence of non-Gibbsian
measures as a function of both interaction strengths and delays.

The dynamics of many-body systems has traditionally
been considered in a framework where retardation effects
play an insignificant role. Since for Coulomb interations
this approximation seems to work well, the results ob-
tained by using either Boltzmann equations or master
equations are considered to be an accurate representation
of the time evolution of real systems. There are, however,
problems where interactions are mediated through slower
fields, such as phonons and magnons, and where these de-
lays can play a significant role. This is, for example, the
case of systems such as plastic crystals, superionic con-
ductors, and ferroelectrics. In all these situations, the
coupling between pseudospin degrees of freedom and pho-
non fields leads to anomalous phenomena in their critica1
dynamics, and a strong renormalization of the excitation
spectra. ' Moreover, the dynamics of many other diverse
systems such as neutral nets and computing structures
makes it necessary to include the effect of retardation in
their asymptotic dynamical behavior.

It has recently been shown that in the limit of large de-
lays such as those encountered in computer simulations of
many-body systems, the appearance of discrete dynamics
can have a profound influence on the asymptotic dynam-
ics of statistical-mechanics systems. In particular, the
time evolution of such systems can be strongly nonergod-
ic, leading to either very long cycles or chaotic wandering
of expectation values. Since natural systems are bound to
lie in between the extremes of negligible delays and large
retardations, the question arises as to the role played by
retarded interactions in determining the excitation spectra
of many-body systems.

This paper reports results of a first attempt at address-
ing this issue in analytic fashion. We first consider the
dynamics of a spin system where interactions can be
mediated with arbitrary delays and show the non-
Markovian nature of the resulting master equation. We
next solve the dynamics of an Ising model in the one-
dimensional case and obtain explicit formulas for the time
evolution of observables as a function of the interaction
delays. We then treat the higher dimensional case using
local-field corrections to mean-field theory, and show how
the interplay between delays and interaction strengths can

lead to nonergodic behavior. Finally, we construct a
phase diagram displaying these features and provide some
conjectures as to the existence of chaotic regimes in the
asymptotic dynamics of the system. We believe that our
results are of relevance to a number of statistical-
mechanics systems. , as well as providing analytic bounds
for the breakdown of ergodicity as a result of retardation.

We consider a system of X sites the states of which are
represented by binary variables s; = + 1 (i = 1,2, . . . , N).
The state of the whole system can then be characterized
by the X-tuple number (s~,s2, . . . , st�)=—a. Each site in-
teracts with its neighboring sites and makes transitions be-
tween the two states according to conditional probabilities
that depend on the states of neighboring sites as well as on
the influence of an external world. If the interaction be-
tween sites is instantaneous, the conditional probabilities
of the individual sites depend on the momentary states of
neighboring sites (but not on the past states). The time
evolution of the system can then be described by a Mar-
kov process in which the system has no memory except
for its immediate past.

In the more realistic case of retarded interactions, how-
ever, the individual sites see the past states of neighboring
sites. This in turn leads to a non-Markov process in
which the system does have memory. To describe it we
introduce the conditional probability

p(P, t+b, t
~
a, t;a„t—r„a„t—r„.. . ;a„,t r„)—

for the system to be in state P—= (s'P', sz ', . . . , s~') at
time t+At given that it is in state a at time t and in
states a&, u2, . . . , a„at corresponding times
t —7(~t —'rp. . . ~ t —rn (0(7] ('r2 ( (rg) ~

It is straightforward to derive a non-Markov master
equation for the joint probability

P(a, t;a~, t —~,'art 2''. . . Q t —7 )—
of the system being in state a at time t and in states
e&,n2, . . . , 0.'„at corresponding times t —~&, t —z2, . . . ,

7
yg

~
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P(a, t+At;a»t r—&', . . . ', a„,t —r„) P—(a, t;a&t —r&,'. . . ,a„,t —r„)
= —g [p(P, t+b T

~

a, t;a„t—r&, . . . ', a„,t —~n )P(a, t;a»t —r„.. . ;a„,t —r„)
P

p(—a, t+bt
~
P, t;a„t ~,—;.. . ;a„,t r„—)P(P, t;a„t r,—;.. . ;an, t —rn)1.

This formulation has some similarity to that of Van Hove's, where quantum interference results in a non-Markovian
process which is negligible in the weak perturbation limit. We should remark, however, that in our case the non-
Markovian character of Eq. (1) results from the retardation effect in interactions, an effect which is purely classical.
Multiplying Eq. (1) by sk and summing over a,a,, . . . , a„we obtain the equation for the average value,

(sk ),—:g g. . . g skP(a, t;a»t —~~, . . . ,an, t ~n )—,
a a& ~n

(sk )t+ht (sk )t 2 g g ask g p(p~t+At
~

a~ti alit 7» . ~ ian~t rn )P(a~t~al~t rl~ &a tnrn ) ~ (2)
a a& a„P

where the prime in the summation over p implies the restriction sk
' = —sk.

We now assume that the conditional probability of the whole system can be expressed as a product of the conditional
probabilities of the individual sites

(3)
N

p(P, t+bt
~
a, t;a„t r, ;.. .—;a„,t —r„)= g p(s;, t+bt

~
s;, t;a„t—r„.. . ;a„,t —r„),

i=1
an assumption which can be shown to be correct for the kinetic Ising model with retarded interactions. Equation (3) al-
lows Eq. (2) to take the simple "single —spin-flip" form

(sk), +~, —(sk), = —2g g . . gskp( sk, t+—bt ~sk, t;a&, t —rl', . . . ', a„,t —rn)P(a, t;a»t —r». . . ', a„,t —rn),
a a& ~n

where we used the fact that

(4)

gp(s;, t+bt
~
s;, t;a»t r&, . . . ,a„,—t —~„)=1 .

s(
t

We further assume that each site can change its own state instantaneously, and that the golden rule holds, which allows
us to write the conditional probability in the form (b, t +0)—

P( Sk, t+ht —jSk, t;al&t —7 ~', . . . ', an, t —rn)=wk(sk, al', . . . ', a )Ant,

where wk(sk, a~', . . . ', a„) is the transition rate. Equation (4) then becomes

d
(sk )t —2(skwk(skial~a2i an ) ) tt —r), . . . ,, t

where it is understood that the time arguments of the
averages of a,a1, . . . , a„are t, t —~1, . . . , i —~„, respec-
tively. We thus obtain a difference-differential equation
with time lags ~1,~2, . . . , z„.

We can similarily obtain the equations for correlation
functions, which will not be attempted here. We should
also note that it is straightforward. to derive the linear-
response theory for this system, which turns out to be en-
tirely similar to that for systems with instantaneous in-
teractions.

As an example, we will now consider the kinetic Ising
model with retarded interactions, whose energy is given by

N
E(a;a') = —g Jjs;sj Hg s;, —

where a'= (s ) is the configuration of the system at time
earlier than the time of the configuration a—:js; j by r.
We will also consider the case of nearest-neighbor interac-
tions, and retain just one time lag r=d/U, where d is the

distance between nearest neighbors and U is the propaga-
tion speed of interactions. In true equilibrium, the state
of the system does not obviously change with time, and
Eq. (8) becomes identical to the Hamiltonian of the ordi-
nary Ising model. To describe the time evolution of the
system, however, we need to consider the nonequilibrium
situation in which the state changes with time.

We choose the transition rate as (P= I /k~ T)

Ek = g Jklsl +~ ~

I
(10)

If we use Eqs. (3), (5), and (6), it is straightforward to
show that the choice given by Eq. (9) satisfies the princi-
ple of detailed balance. Equation (9) then allows one to

wk(sk'a )= [1 sktanh(pEk )], —
26

where e is the relaxation time of a single spin in the pres-
ence of a heat bath, and Ek is defined to be
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write Eq. (7) in the form

e (sk ),= —(sk ),+ (tanh(pEk) ).dt

dt
(sk ),= —a (sk ),+a ( tanh( pEk ) ), (13)

where t has been rescaled in units of w, and a =~/e deter-
mines the dynamic processes of the system. The formal
integration of Eq. (13) then leads to the integral equation

(sk), =a f e " ' '(t ahn(pE )k), ,dt', (l4)

which, in the limit of infinite delays (r~oo or a~op)
takes the digital dynamics form

( sk ),= (tanh(PEk ) ),
Equation (13) is known to have a unique solution for

t & 1 if the initial condition is given in the form

(s„),=pk(t), 0&t&1.
%'e first consider a one-dimensional ring in the absence of
external fields with JJ- ——J for nearest neighbors. Equa-
tion (13) then becomes linear and takes the form with
xz(t)—:(sk), [y=tan(2pJ)]

xk(t)= —axk(t)+ —,ya[xk )(t —1)+xk+)(t —1)] (17)

x(t)+ax(t) —, yaBx(t —1)=0, —

where x(t) is the column vector consisting of xk(t), and B
is a ("cyclic" ) matrix given by

0100 . . 001
1010 -. 000
0101 . 000
0 0 1 0 . . . 0 0 0

0000 -- 10 1

1000 . . . 0 10
The solution of Eq. (18) with the initial condition
x(t) =P(t), 0 & t & 1 can be expressed as a series

x(t)= g e "p„(t), t) 1 (19)

z
where e "p„(t) is just the residue of e"H '(z)p(z) at a
zero z„of detH(z), and the vector p(z) and the matrix
H(z) are given by

where time arguments are shown explicitly. In the limit
of zero delay (r~0, instantaneous interactions), Eq. (11)
becomes the continuous dynamics form —an ordinary dif-
ferential equation —familiar in studies of the kinetic Ising
model with instantaneous interactions, i.e.,

(s„),= —(s„),+ ( tanh(pE„) ), .d
dt

In the case of retarded interactions (v&0), we rewrite Eq.
(11) in the dimensionless form

1

p(z)=P(0)+ f [P'(t)+a/(t')]e "dt',

H(z) =(z+a)I — e 'B,
2

(2n ——,
'

sgny)mz„=—ln +~'(2& ——,sgny)~+ 01 inn

n

(22)

Since all zeros of h(z) have negative real parts for y&1,
(i.e., at finite temperatures) x(t) as given by Eq. (21) de-
cays to zero as t increases. This is to be expected since the
two limiting cases [r~0, continuous dynamics given by
Eq. (12) and r~ oo, digital dynamics given by Eq. (15)] in
one dimension display the same asymptotic behavior at
finite temperatures. In fact, it has been shown that for
sufficiently small delays, the solutions of difference-
differential equations have the same asymptotic behavior
as those of corresponding ordinary differential equations
(r=0)."

In order to treat higher-dimensional systems we use a
mean-field approximation together with local-field correc-
tions. As with the corresponding case for digital dynam-
ics, we obtain Eq. (13) in the approximate form

x(t) = ax(t)+f[x(t ——1)]

with

f( x ) =a tanh [ [J—(J') ]x + (J') x I

where J=Pg J;J and (J'):P.g JJ are as—sumed to be
the same for all sites. If the solution of the linearized
equation of Eq. (23) around x =0 approaches zero as r in-
creases, which is the case for

(J') —
~
sec@

~
&J&(J') +1

with p giveri by the equation

p= —a tanp, —(p &~
2

then the zero solution of Eq. (23) is also asymptotically
stable (see Fig. 1). If, however, Eq. (24) is not satisfied,
the zero solution can be unstable, which is both the most
interesting and the poorly understood case. In that case it
is possible for a nonzero constant solution of Eq. (23) to

respectively. The explicit computation of z„s, the zeros
of detH(z), is complicated and will not be attempted in
this paper. Ef the system is translationally invariant, how-
ever, i.e., xk(t)=x(t), Eq. (19) takes the exp1icit scalar
form

1

, , p(0)+ f [p'(r')+ap(r')]e "dt'
x(t)= g e"

n=1 1. +/ac
(21)

where z„'s are zeros of h (z) =z+ a —yae '. These zeros,
which can be computed numerically for given a and y,
asymptotically take the form



31 COLLECTIVE EXCITATIONS AND RETARDED INTERACTIONS 2865

0

( ~sec p~ = -sec p )

I I

I
I

I

I

I

I
I

I

I

I I

I I

I I

I I

I I

I I

A, 8

(- p/a)

FIG. 1. Graphical solution of Eq. (25), displaying the
behavior of the functions tanp and seep.

become asymptotically stable. The corresponding condi-
tion can be obtained in a manner similar to Eq. (24). For
some ranges of parameters a, J, and J', however, the
solution of Eq. (23) can display periodic behavior. If the
linearized equation is unstable, i.e., Eq. (24) is not satis-
fied, and in addition, J&0, then Eq. (23) has a (noncon-
stant) periodic solution. Furthermore, it can be shown
that the periodic solution is asymptotically stable if f(x)
is monotone decreasing, " i.e., J & —2J' .

If f(x) has both a decreasing part and an increasing
part, which would be the case for —2J' &J &J', and
the constant solution is still unstable, then it is likely that
the solution will display even more complicated behavior.
Though there does not exist a complete analysis for this
"mixed-feedback" case, an der Heiden, Walther, and
Mackey have shown the existence of chaotic behavior for
a rather particular type of f(x), and conjectured the ex-
istence of similar behavior for a larger class of f(x) as de-
lay increases from 0 to oo. ' This conjecture has been
indeed supported by several numerical experiments. '

Therefore, it is very likely that Eq. (23) will display chaot-
ic behavior as ~ increases since the corresponding differ-
ence equation (r~oo limit) has been shown to exhibit
such behavior. This expectation leads to the phase dia-
gram shown in Fig. 2.

In conclusion, we have used joint probabilities to write
a non-Markovian master equation for many-body systems
with retarded interactions. The derived equations take the
form of difference-differential equations similar to those
studied in the literature. ' ' It should be emphasized,
however, that our formulation takes explicitly into ac-
count the interaction between the elements of many-body

FIG. 2. Phase diagram of an Ising-type system with compet-
ing interactions as a function of interaction strength and delay
times. Phase A denotes a periodic solution which may or may
not be stable, B is the stable periodic solution, and C is the
chaotic asymptotic phase.

systems, and therefore describes cooperative phenomena.
We have also applied this formalism to the kinetic Ising
model with retarded interaction, and obtained exact solu-
tions to the dynamics in one dimension, which, at finite
temperature decay to zero as time increases. In higher di-
mensions we have used the mean-field theory together
with local-field corrections to obtain an approximate
equation of motion, which can have a periodic solution.
The explicit condition for the existence and stability of
this periodic solution was also obtained. This regime is in
sharp contrast to the ordinary differential equation which
results from the kinetic Ising model with instantaneous
interaction. We therefore conclude that systems with re-
tarded interactions can exhibit behavior which is qualita-

tively different from that exhibited by systems with in-
stantaneous interaction. This theory interpolates smooth-
ly between the continuous dynamics and digital dynamics.
From the standpoint of applications, this formalism will
be relevant to any many-body systems in which the delay
in the propagation is comparable to the relaxation time of
the single element. This is the case for many systems,
which appear in physics, biology, and geology such as su-
perionic conductors, ' neural networks, propagation of
disease, and fault systems. '
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