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The ground-state properties of a superconductor containing intermediate-valence impurities are
analyzed. The impurities are described by a degenerate Anderson model in the infinite correlation
limit. We consider two accessible configurations, one nonmagnetic and one magnetic with a degen-
eracy factor Ny. The 1/ N, expansion is formulated. With the assumption that no correlations exist
between impurities, the gap parameters and critical fields at zero temperature are calculated. A
brief discussion of the excitation spectrum and the existence of bound states near the gap edge is in-

cluded.

I. INTRODUCTION

The effect of Ce impurities on the superconductive
properties of metallic matrices has been extensively stud-
ied.! Depending on the matrix or external pressure, the
Ce impurities can behave as Kondo or mixed-valence im-
purities. It is currently believed that with external pres-
sure the impurities suffer a continuous demagnetization
and the crossover between the Kondo-like behavior and
the intermediate-valence (IV) region has been studied in
LaCe and (La, Th,_,) Ce alloys.>?

In the Kondo limit (Ce3* impurities), the physics of the
system is dominated by the spin fluctuations of Ce ions.
A characteristic feature of these systems is the shape of
the curves T, versus impurity concentration. Three dif-
ferent regions can be distinguished according to whether
the Kondo temperature of the impurities is smaller, of the
order or larger than the critical temperature T,y of the
pure matrix. For Tk << T,q, the local-moment region, the
curves T, versus concentration bend downwards accord-
ing to the Abrikosov-Gorkov theory.* If Ty ~T,., the
so-called reentrance phenomenon occurs as predicted by
Miiller-Hartmann and Zittartz® and studied in Refs. 6 and
7. For Tk >>T,o, the strong-coupling Kondo limit, well
above the critical temperature, the spin of the impurity is
screened by the conduction electrons and its effect on the
superconductive properties of the matrix is weaker than in
the former cases. In this case,*° the curvature of the
curve T, versus concentration is positive in similitude
with that obtained from nonmagnetic impurities.

This problem of IV impurities in superconductors has
been studied theoretically in different approximations.
The Hartree-Fock approximation of the nondegenerate
Anderson model has been used to describe the effect of
impurities on the superconductivity.!®!! This approxima-
tion is valid for small Coulomb repulsion and thus is more
appropriate for transition-metal impurities than for rare-
earth ions.

The critical temperature and specific-heat jump has
been calculated by Wiecko and Lopez® using a decoupling
procedure in the Green’s functions for an Anderson im-
purity in the limit of infinite correlation. The atomic lim-
it has been used to give a qualitative description in both
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the IV region and the Kondo limit.'?

Finally, a more realistic description of the impurities is
given in Ref. 13. The effect of impurities is studied by
calculating the self-energy of the Green’s functions in
second order in the hybridization parameter V. For the
models of IV impurities in a normal metal, exact results
have been obtained by using the Bethe-ansatz technique'*
and numerical renormalization-group methods.!> Because
of the difficulties of extending the above two methods to
describe IV impurities on a superconducting matrix, new
techniques are to be developed.

The 1/Ny expansion'® has been used to study the de-
generate Anderson model and the results obtained for the
ground-state energy and the average of the 4f shell are in
excellent agreement with the Bethe-ansatz results.!” In
this paper we generalize the method to study the problem
of impurities in superconducting matrices.

As pointed out in Refs. 17 and 18 this method provides
an exact result for the ground-state wave function in the
limit Ny— o and Ny V?=const and for the ground-state
energy in the limit of infinite-conduction bandwidth.
Thus, the Kondo and IV regimes can be studied.

In this limit, the Kondo region corresponds to the prob-
lem of a classical spin coupled antiferromagnetically with
conduction electrons. In a more realistic model, where
Ny is taken as the real degeneracy factor of the 4f shell,
the results are approximate and the method can be used
only to study the IV region. In what follows, we present
the method and the results for the ground-state properties.

II. MODEL AND CALCULATIONS

The degenerate Anderson model for a single rare-earth
impurity is described by the following Hamiltonian:

H=T eclociot+ S E; | M){(M|
ko M

+ 2 (VkMaClIor [O)<M| +VI:M0 |M><0|Cko) ’
kMo
(1)

where c,:r(7 creates an electron with crystal momentum £,
spin o and energy €; measured from the Fermi level,
| M) represents the impurity state with n 41 4f electrons
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and quantum number (J,M), and |0) the state with n 4f
electrons and J=0. Ej is the energy difference between
the two ionic configurations.

In order to describe a superconducting metal, we add an
J

C. R. PROETTO AND C. A. BALSEIRO 31

attractive electron-electron interaction to Hamiltonian (1),
which is treated in the BCS approximation. The complete
Hamiltonian can be written in terms of the quasiparticle
operators in the following way:

H=Us+ 3 Exlalar+BLBi)+ D Ep MM | + 3 [ Vagy | MO | (upay +vieBE) + Vi (ua +viBi) | 0) (M |
k M kM

Here, U, is the energy of the BCS ground state:
Up=3 (ex—Ex)+A2/A, 3)
k

where
Ep=(e; +A7)"?
and

A, — Aif || <wop

0 otherwise .

A is the superconducting order parameter and, as we show
below, is also the gap in the quasiparticle spectrum even
in the presence of IV impurities, wp is a characteristic fre-
quency of phonons and A an effective electron-electron
coupling.

The operator a}: and [3’1 are Bogoliubov creation opera-
tors, and the coherence factors u; and v, are

€k

1___._
E;

€
1+—k andv;f:% (4)

2
U =
Ey

2

In (2) we have taken Vi, = Vs, independent of k.
Following the diagramatic expansion developed for im-
purities on normal metals;'®!8 we assume for the ground

state the many-particle wave function given by:

|pY=a|¢)+ 3 (bra) | 6, M) +diBL | $,M)), (5
kM

where | @) represents the BCS ground state with the im-
purity in the |0) configuration and a}, | ¢,M ) describes a
state with one quasiparticle and the impurity in the | M)
configuration.

In this approximation, the energy of the state |¢) is
given by

Eg:U0+ES > (6)

where E; is given by

2
Uk
E,=N;V?y ————
¢ NfV},:'Es—E,—Ek

with

NV2=3 Vito -
Mo

In the limit Ny— 0 and N;V?=const, the wave-function

+ Vs | MO | (—vgak +ugB)

+ Vi (—vpap +uBL) | 0)(M | ] . 2)

l B

(5) is the exact ground state of Hamiltonian (2). If Ny is
taken as the real degeneracy factor of the 4f shell, the ap-
proximation is valid only for the intermediate-valence re-
gion, that is, if E;>0. In Ref. 16, a discussion of the
range of validity of the approximation for a normal metal
is given. In the present case, the same analysis can be
made. The systematic expansion in 1/N; developed for
normal metals can be extended for the present case.

In what follows, we restrict ourselves to the study of IV
impurities. In Eq. (6), E; is the impurity contribution to
the total energy. Assuming that correlation between im-
purities can be neglected, the total energy per atom of a
system with N; impurities and N atoms is given by

1
Ey=~ Uo+cE, , . (8)

where the impurity concentration ¢=N; /N is taken as a
small parameter. The justification of this approximation
is also given in Ref. 16, where it is shown that correlations
are of the order 1/Ny.

The gap parameter A is obtained by minimizing E,. It
is convenient to write E; in terms of E,, the impurity en-
ergy in the normal phase. We take

E,=E,+6E , 9)
where E, is given by the solution of the following equa-
tion:

1

E,=N;V* ¥ —F7——. (10)
Y <k, En—Es+e

In the intermediate-valence region, (E, —E;) is a large
quantity and we calculate the correction 8E using an ex-
pansion in terms of A/(E, —Ef) which gives

(€2+A2)1/2—€

~ @n
SE=T de €,
fo (En—Ef——f)Z

(11)
with

F=I/{1+T[(E,—~E;~D)"'—(E,—E;) ']} .
(12)

Here, I'=pNy V% and we have taken a constant density of
band states p of width 2D.

Finally, the total energy referred to the energy of the
normal state is given for wp >> A by
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A? 2 A?
Eg=+7—p A ln(2wD/A)+7 +c3E . (13)

The superconducting order parameter A at zero tem-

perature is then taken as the one that minimizes E,. In

the next section we show the results.

III. RESULTS AND DISCUSSION

The numerical results obtained are shown in Fig. 1. We
have taken I'=100 K, E; varying from —200 to 500 K
and D=10.000 K. If Ny=6 as it would be for Ce ions,
in this range of parameters the approximation is very
good. :

We calculate the critical field as the energy difference
between the normal and superconducting states. For the
sake of comparison we have calculated the mean number
of 4f electrons in the normal phase. For the parameters
used we obtain (n,) <0.4. In Fig. 1(a) (ny) is plotted as
a function of E; in Fig. 1(b) the results for A/A(0) are
shown for different concentration, A(0) is the supercon-
ducting gap for the pure matrix. Similarly, H ., /H .;,(0)
is shown in Fig. 1(c).

By making an expansion in terms of A in Eq. (6) we ob-
tain analytical results for the superconductor order pa-
rameters

1/pA—cA(B+7+)

A=2wpexp | — 1 od , (14)
where
1 T T T T T T T
<n,>. (a) J
0.8 4
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FIG. 1. (a) Occupation of localized state, (b) energy gap, and
(c) critical field as functions of E;. Impurity concentrations are
indicated in (b) and (c).

T
= (15)
Z(E,,—Ef)p
and
E,—Ef+3 E,—E
B—_—n—Er30p Zn 2t (16)
Z(En—Ef+CL)D) En“—Ef

For the whole range of parameters studied numerically,
Eq. (14) gives an excellent approximation.

The critical concentration at which superconductivity is
destroyed, is given by ¢ =1/4 and it can be large, how-
ever, in concentrated systems, impurity-impurity correla-
tion can be important and we expect deviations of Eq.
(14). Similarly, the critical field is given by

Hcrit _ A

_ Tt 12
H._.(0) ~ Ay LA (17)

The square root in Eq. (17) comes from the energy
correction of the impurities and in general is a small
quantity. In Fig. 2, A/A(0O) versus c is shown. These
curves resemble the curves T versus ¢ obtained by oth-
er authors.

As we mentioned, a systematic expansion in terms of
1/N has been developed for the energy of the impurity in
the normal metal. Extending this method to the present
problem, a systematic expansion of A in powers of 1/Ny
is obtained.

We also studied the excitation spectrum as it would be
obtained in a tunneling experiment, i.e., adding a quasi-
particle to the superconductor. We constructed many-
particle wave functions starting with a;rc |#). In the pres-
ence of impurities, k is not a good quantum number and
the quasiparticle is scattered from the state |k ) to states
| k'). Thus, we assume the following wave function:

1Y) = Satal |6)+ 3 (ctemaral |$,M)
k kk'M

+demBhal | ,M))
+ ety | M) . (18)
kM ’

The difficulty here is that the coefficients ay are given by
an integral equation. Solving this equation in an approxi-
mate way, a secular equation for the energies E, of the
states | ,) is obtained. It can be shown that these ener-
gies form a continuum with a sharp edge at Uy+E;+A

A/4(0)
0.8

0.6

04

0.2

FIG. 2. Superconducting gap vs concentration for different
values of Ej.
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and a bound state occurs near this edge. In concentrated
systems, impurity correlations can split these states and a
band would appear. The details of this calculation will be
published in a separate paper.

IV. SUMMARY AND CONCLUSIONS

We have calculated the ground-state. properties of su-
perconductors with IV impurities. We considered the case
of impurities fluctuating between two ionic configura-
tions, say 4" and 4f"%!, the 4f" configuration being
nonmagnetic and the 4" *! state having a total angular
momentum J. Superconductivity is treated in the BCS
approximation and the effect of the IV impurities on the
ground state of the BCS Hamiltonian is calculated exactly
in the limit J— co.

For the range of parameters which give IV behavior
and for finite J(J=5/2), the results obtained are a very
good approximation. Analytical expressions are found for
the gap A, the critical field H .y, and the critical concen-
tration c.i. The gap decreases linearly with concentra-
tion for very dilute samples and exponentially for concen-
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tration near c.;. The same behavior is obtained for H ;.
Similar results have been obtained by Schlottmann.!?

The excitation spectrum is a continuum with a sharp
edge at an energy A above the energy of the ground state.
An impurity bound state is obtained near this edge.

The systematic expansion of A in powers of 1/Ny is
straightforward. The generalization of the theory to cal-
culate the critical temperature and the thermodynamics of
superconductors with IV impurities can be formulated by
expanding the partition function of the system as was
done by Keiter and Kimball for a normal metal.'®
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