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Thermal conductivity and charge imbalance in superconductors
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We use the quasiclassical Green-function formalism to derive kinetic equations describing thermal
transport and charge relaxation in superconductors. The effects of pair-breaking processes due to
magnetic impurities or phonons are fully included, allowing the case of strong electron-phonon cou-
pling to be considered. We calculate the temperature-dependent thermal conductivity of a supercon-
ductor by solving numerically the kinetic equation for the distribution function. In the strong-
coupling case we solve in addition the nonlinear Eliashberg equations for the renormalization and
gap functions. The resulting thermal conductivity shows a pronounced maximum at low tempera-
tures in the case of pure Pb, and a gradual disappearance of the maximum with increasing amounts
of impurity scattering. The charge-relaxation rate in the strong-coupling case shows near T, the
same dependence on the gap function as in the case of weak coupling, but at lower temperatures
there are pronounced differences between the temperature dependence of the relaxation rates in the
two cases.

I. INTRODUCTION

One of the earliest applications of the BCS theory of
superconductivity was the explanation of the temperature
dependence of the impurity-limited thermal conductivity
in the superconducting state. The ratio between the
thermal conductivity in a superconducting metal and that
in its normal state at the same temperature was shown by
Bardeen et al. ' to obey a universal law, depending only on
the ratio between the energy gap 6 and kz T, where T is
the temperature. For sufficiently clean materials, the
electron-phonon scattering must also be taken into ac-
count. This was done by Bardeen et al. as well. The in-
elastic electron-phonon scattering leads to mathematical
complications in solving the Boltzmann equation for the
distribution function of the BCS quasiparticles, but they
are no worse than in the normal metal, where the inelasti-
city plays an important role at temperatures well below
the Debye temperature.

Within the quasiparticle model employed by Bardeen
et al. , the approach to thermal conduction is straightfor-
ward: One needs to consider the modification of the ener-

gy spectrum and the associated change of the group velo-
city in the superconducting state, as well as the coherence
factors modifying the normal-state collision probability.
The kinetic equation is formulated by separating the driv-
ing effect of the temperature gradient from the relaxation
due to collisions, as in the conventional Boltzmann ap-
proach to transport in dilute gases.

The validity of the Boltzmann equation in normal met-
als is restricted by the condition R/~ &&@+, when ~ is the
collision rate and ez the Fermi energy. The supercon-
ducting state is characterized by an energy gap 6 in the
excitation spectrum. The criteria for the validity of the
Boltzm ann-equation approach in the sup erconducting

state depends on the nature of the collisions. For elastic
collisions against nonmagnetic impurities with scattering
rate ~; ~ there is no restriction on A/7'

p compared to 6,
but for inelastic collisions with scattering rate ~;„,the va-
lidity of the quasiparticle Boltzmann equation requires
A/r;„«b, . The inelastic scattering processes broaden the
quasiparticle states, and this broadening can only be
neglected when the condition A'/r;„«b, is satisfied. A
similar role is played by magnetic impurity scattering.
Both the electron-phonon and the Inagnetic impurity
scattering cause pair breaking, which must be taken into
account in a self-consistent manner. Ordinary impurity
scattering, however, does not change the character of the
quasiparticle states under isotropic conditions. In the
presence of anisotropy associated with supercurrents or a
momentum-dependent gap, the elastic impurity scattering
also gives rise to pair breaking and a consequent broaden-
ing of the quasiparticle states.

Near the transition temperature T„where the energy
gap b, is small, the quasiparticle approach must therefore
break down even in weak-coupling superconductors. In
materials such as Sn or In the relevant temperature region
is very small, of order 5T- T, /OD, where OD is the De-
bye temperature. The effect of collision broadening may
be neglected in weak-coupling superconductors, but in
strong-coupling materials such as Pb or Hg the effects of
pair breaking are much more pronounced.

It is an experimental fact that the temperature depen-
dence of the measured thermal conductivity of pure Pb is
very different from that of pure Sn or In. In the case of
pure Pb, the slope of the thermal conductivity ratio
x, (T)/K~(T), as a function of T/T„was found experi-
mentally to be approximately 9 near T„compared to a
slope of 1.6 for Sn. This was explained as being an effect
of strong coupling by Ambegaokar and Tewordt, who de-
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rived a kinetic equation valid for strong-coupling super-
conductors, and by Ambegaokar and Woo, who calculat-
ed the thermal conductivity in the relaxation time approx-
imation and found a slope of about 11 at T, .

DUring the last decade there has been renewed interest
in nonequilibrium superconductivity. Most of the atten-
tion has focused on phenomena such as charge or gap re-
laxation, which have no counterpart in normal metals.
The use of quasiclassical approximation schemes has
proven a powerful tool in establishing kinetic equations of
more general validity than the Boltzmann equation. Such
an approach was pioneered by Eilenberger, Eliashberg,
Larkin and Ovchinnikov, and by Schmid and Schon.
The quasiparticle approach has been described by Aronov
and Gurevich, ' by Betbeder-Matibet and Nozieres, " and
by Pethick and Smith. '

In this paper we shall reconsider thermal conductivity
from the more general quasiclassical point of view. Our
aim is to derive and solve kinetic equations describing
both charge imbalance and thermal conductivity without
making any assumptions on the magnitude of the inelastic
scattering rates. We shall also be interested in comparing
our approach with the less general one based on the BCS
quasiparticle concept, and for that purpose we find it par-
ticularly convenient to employ the projection-operator
method introduced by Shelankov. '

As we shall see, the kinetic equations that describe elec-
tronic thermal conductivity and charge imbalance possess
identical electron-phonon collision operators at tempera-
tures well below the Debye temperature. Only the driving
terms differ in their dependence on energy. The energy-
dependent driving terms have opposite parity, as in the
case of electrical and thermal conductivity in normal met-
als. The two properties therefore involve eigenfunctions
of the collision operator that are either even or odd with
respect to the energy variable.

The kinetic equation derived in the next section is based
on a simple spherical approximation for the one-electron
energy bands. The effective phonon density of states,
a F(co), however, may exhibit a complicated dependence
on frequency co. This frequency dependence is important
in determining the temperature dependence of the thermal
conductivity or the charge-relaxation rate. In a Debye
model, one has o. F~ co, but if low-lying transverse pho-
nons are important, as in the case of Pb, the effective pho-
non density of states develops considerable structure.
Such a frequency dependence has a strong influence on
the temperature dependence of the thermal conductivity
in the superconducting state. In fact, as we shall see in
detail later, most of the pronounced differences between
weak- and strong-coupling superconductors are due to the
frequency dependence of o. F, although renormalization
and lifetime effects will also contribute to the difference.

The quasiclassical kinetic equation forms a general
starting point for realistic calculations of the transport
properties of superconducting materials. The mathemati-
cal difficulties in solving the kinetic equation are not
greater than with the quasiparticle approach. For strong-
coupling materials it is, in addition, necessary to solve the
nonlinear Eliashberg equation for the frequency depen-
dence of the gap and the renormalization function. Once

this equilibrium problem has been tackled, the solution of
the kinetic equation proceeds as in the case of weak cou-
pling.

We shall now briefly indicate the connection between
the present work and that of previous authors. The
charge-relaxation rate was obtained by Tinkham' and by
Schmid and Schon in the temperature range near T,
where the gap is small compared to k&T, with electron-
phonon scattering as the dominant relaxation mechanism.
At lower temperatures, within the BCS quasiparticle ap-
proach, the charge-relaxation rate associated with tunnel
injection was calculated by Chi and Clarke. ' Beyer Niel-
sen et al. ' determined the temperature-dependent rate of
charge relaxation by solving the general quasiclassical ki-
netic equation with pair breaking fully included under
conditions where the generation of charge was due to tun-
nel injection or to the application of a temperature gra-
dient in the presence of superflow.

In the present work we extend these calculations to the
strong-coupling case and also consider the thermal con-
ductivity. A brief account of our work has been published
previously. ' Near T, we find a similar dependence on
temperature for the charge-relaxation rate as in the case
of weak coupling, but at lower temperatures there are pro-
nounced differences. The thermal conductivity of a pure
material depends very differently on temperature in the
weak- and strong-coupling case. In the case of pure Pb,
we find that the thermal conductivity drops rapidly below
T, but increases again at lower temperatures, showing a
pronounced maximum at T=O.3T„ in qualitative agree-
ment with recent experiments.

In the following sections we derive the kinetic equation
from first-principles theory by including different relaxa-
tion processes, scattering against ordinary impurities as
well as magnetic impurities and electron-phonon scatter-
ing. Electron-electron scattering could also be included,
but we leave it out of consideration since it is expected to
have a negligible effect on our results.

The paper is organized as follows: In the following sec-
tion we derive the kinetic equations within the quasiclassi-
cal approximation, with full account of the pair-breaking
processes due to electron-phonon and magnetic impurity
scattering. Section III treats the thermal conductivity of
weak- and strong-coupling materials and compares the
calculated transport coefficients to experiments on Sn and
Pb. Finally, Sec. IV contains calculations of charge im-
balance and compares the results of the strong-coupling
theory to experiments on Pb. Further details of this work,
including its generalization to time-dependent situations,
are discussed by Beyer Nielsen. '

II. DERIVATION OF KINETIC EQUATIONS

The basic ingredient of the microscopic approach to a
kinetic equation describing nonequilibrium properties of
superconductors is the Nambu Green function, which is a
2 & 2 matrix representation for Green functions in
particle-hole space. The nonequilibrium properties are
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conveniently described using a formalism developed by
Keldysh, who introduced a further 2 X 2 matrix repre-
sentation where the Green functions and self-energies are
arranged in the form of matrices,

GR GK

0 GA

where G, G, and
are defined by

yR yK
(2.1)

G are matrices in Nambu space and

[g,( I ),g„(2)]+ [g, ( 1),g, (2)]+
—[Wi( I »li(2) j+ —[Wi(i »fi 2)]+ (2.2)

/ [Pg(1),41(2)j+ [4~(l»fi(2)j+

[g)(1),4&(2) j

(2.3)

(2.4)

In Eqs. (2.2)—(2.4) f(1) and gt(1) denote the electron field
operators g(r &, t~ ) and P (r &, t, ). In the following we use
units such that fi=kz ——c = 1.

The matrix Green function (2.1) satisfies the Dyson
equation

which defines the associative dot product O. The inverse
of the nonvanishing Green function Go is within the
same approximation given by

G 0
' ——I i''d,

, g(p)+—ivy [—,V- ieA(R, t—~)r3]

(Go ' —X)G=5(1 —2), (2.5) ep(R, t, )—}5(t,—t2), (2.9)

where (3 implies integration over internal variables
(AB)(1, 2)= f d3 3 (1,3)B(3,2). The operator Go

' is
the inverse of the noninteracting Green function. A con-
venient equation for G, more closely related to a kinetic
equation, is obtained by subtracting the conjugate of Eq.
(2.5) from Eq. (2.5) itself:

(G, ' —X)eG —Ge(GD ' —X)=0. (2.6)

The Green function is a function of two sets of spatial
coordinates, but it is more convenient to transform to the
center-of-mass and relative coordinates and then perform
a Fourier transformation, so that the Green function de-

pends on the center-of-mass coordinate R and the
momentum variable p,

G(R, p, t„t2)= f dr e ' ''G(R+ —,r, R——, r, t„t2) .

(2.7)

The reason for doing this transformation is that the Careen
function is a rapidly varying function, of the relative coor-
dinate (length scale p~ ', where pz is the Fermi momen-
tum), but a slowly varying function of the center-of-mass
coordinate with a length scale characterized by the wave
vector of the external perturbation. The wave vector and
frequency of the external perturbation is assumed to be
small compared with the Fermi wave vector and the
chemical potential, respectively. This allows us to simpli-
fy the Dyson equation (2.6) because we can make the fol-
lowing approximation:

[t v~ V'-, 6] =ivF VG(R, p.,E), (2.10)

then we may, within the quasiclassical approximation,
write the Dyson equation as

[H, G] =0,
where

(2.11)

M= [Er3+i v~. V - —ep(R)] —X(R, p, E)=g 0 —X .

where r3 is the third Pauli matrix, g(p) =p /2m —p is the
normal-state quasiparticle energy measured with respect
to the chemical potential p, and vF is the Fermi velocity.
The vector potential is denoted by A and P is the scalar
potential. The approximation defined by Eqs. (2.8) and
(2.9) is called the quasiclassical approximation. As writ-
ten, (2.9) applies to a free-electron model with m being the
electron mass and vF = pF/m. We may, with no loss of
generality, replace m by an effective mass m*, thus tak-
ing into account some of the effects of the electronic band
structure. The key assumption, however, in using (2.9) for
a real metal is that the effects of band anisotropy may be
neglected.

In the following we only consider time-independent
external perturbations in situations where the vector po-
tential A may be set equal to zero. If we perform a
Fourier transformation with respect to the relative time
t = t

&

—t2, the dot product then reduces to an ordinary
product. If we adopt the convention

= [X(R,p)O G(R, p)](t„t,), (2.8)

d r3dt3X(r &t„r3t3)G(r3t3 r2t2)

= f dt3X(R&ppt~yt3)G(R, p;t3it2)

(2.12)

A consequence of the quasiclassical approximation is that
the only momentum-dependent terms in (2.11) are the
self-energy and the Green function. In the following we
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g(R,p, E)=—f dgG(R, p, E) . (2.13)

The equation of motion for the quasiclassical Green func-
tion (2.13) is found by integrating (2.11),

assume that the self-energy depends only on the direction
of the momentum P= p/

~ p ~, with its magnitude fixed
at the Fermi momentum pF. This allows us to integrate
the Green function in Eq. (2.11) over the magnitude of the
momentum, corresponding to the variable g'(p)
(=p /2m —p), and to introduce the quasiclassical Green
function

= —,(PiF,P, +P&F2Pz ), (2.22)

where F~ and F2 are arbitrary distribution matrices and
P ~~2] and P &~2~ are defined by

RP)
P2R

=1+g (2.23)

completely in separating the density of states and the
quasiparticle distribution function. An alternative way to
make the separation is described by Shelankov, ' who in-
troduced the following solution to (2.19):

[II,g] =0 . (2.14) P2~
.=1+g (2.24)

gg=& ~ (2.15)

because (2.14) is homogeneous and hence does not deter-
mine g uniquely. Equations (2.14) and (2.15) are the fun-
damental equations in the derivation of a general kinetic
equation for superconductors. The diagonal part of the
equation of motion (2.14) determines the retarded and ad-
vanced functions, while the off-diagonal part becomes an
equation for the distribution function which is associated
with g~.

This equation must be supplemented by the normalization'
condition ' P; '"' has the property of a projection operator, since it

follows from the normalization condition (2.18) and the
definitions (2.23) and (2.24) that

p+ (&)pR (A') 2pR (3)

1 2 2

(2.25)

We assume that F] and F2 are proportional to the unit
matrix. The symmetry properties of g, when states with
opposite spins are equally populated, allow us to introduce
the real distribution function f, defined by

Fi (R,p, E)= 1 —2f (R,p, E), (2.26)

A. The distribution functions F2(R,p, E)= 1 —2f (R, —p, E), — (2.27)

In equilibrium we may use the identity

(g (r, r, )g(r„r, ))=(g(r„r, )g (r„r, +i/T)), (2.16)

where T is the temperature, and the definitions
(2.2)—(2.4), to show that

g (E)=[g (E)—g (E)][1 —2f'(E)] . (2.17)

g g =1=g g

g'g +g g'=o.
A particular solution to Eq. (2.19) is

(2.18)

(2.19)

Here f (E)=(e ~ +1) ' is the Fermi-distribution func-
tion. In the nonequilibrium case, g contains contribu-
tions from the retarded and advanced functions as well as
the distribution functions, and the representations of g
discussed below are an attempt to separate the two contri-
butions.

The normalization condition (2.15) is, in a more de-
tailed form,

g DV3+ Pvl
R

g = —(x r3+/3 7)

(2.28)

(2.29)

where an asterisk denotes complex conjugation. The gen-
eralized densities of states are now defined as

+=2')+iR ),
p=N2+iR2,

(2.30)

(2.31)

where X; and R; are, respectively, even and odd functions
under the transformation (p,E)~(—P, E). —

The connection between the distribution functions in-
troduced by Eq. (2.21) and the ones introduced by Eqs.
(2.26) and (2.27) is

which, in the clean, weak-coupling limit reduces to the
usual quasiparticle distribution function within a semi-
conductor model. As long as we neglect spatial gradients
of the spectral densities, we may expand g and g" on the
Pauli matrices ~~ and ~3..

g&—g~g pg~ (2.20)
1 2f (p,E)=f(—p, E)—f(p,E)——(2.32)

where h is an arbitrary distribution matrix. The particu-
lar choice of distribution functions introduced by Schmid
and Schon corresponds to introducing a diagonal distri-
bution matrix and the scalar distribution functions f and

T

, (%i —R2)(p, E)f (p,E)= —,
'

X) (p, E)

h =(1—2f ) —2f r3. (2.21) X[f (p,E)+f(—p, —E)—ll . (2.33)

As we shall show below, (2.20) and (2.21) do not succeed The relation between f and the conventional distribution
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function for Bogoliubov quasiparticles has been discussed
in Ref. 16.

l 1
&g);,

+Imp
(2.34)

B. Self-energy and self-consistency equations

The self-energy entering the equation of motion (2.14)
consists of contributions from the phonons, nonmagnetic
and magnetic impurities. In the following, we discuss
each of the contributions separately and then derive the
self-consistency equations valid for strong- as well as
weak-coupling superconductors.

The self-energy from nonmagnetic impurities is

dQ-,
&;(p,E)= —— f ~(p p ')g(p ',E)2~;p 4m

dQ-,
Xg(p, E)= —— f m, (p.p ')r3g(p ',E)r

2&s 4

2~, ' (2.35)

where r, is the s-wave spin-flip scattering rate and
w, (p.p') is the normalized scattering probability. The
phonon self-energy is within the Migdal approximation

where 1/r; ~ is the s-wave scattering rate and w (p.p ') is
the normalized scattering probability which is equal to
unity for s-wave scattering. The self-energy from mag-
netic impurities is

dQ-,
Xp '"'(p,E)= f dE' [g ~ '(p ',E')D (p

' p, E' E—)+g —(p ',E')D" ~ '(p ' p, E' E—)], — (2.36)

where N (0) is the density of states at the Fermi surface for a single spin in the normal metal, and

(2.37)
dQ-,

Xpg(p, E)= fdE'' [g (p ',E')D (p
' p, E' E) —(g g— )(p—',E')—(D D")(p

' p, E—' E)], — —

D (q,~) p (q, n)
D (q, co) „~ co —Q+i5dn " (2.38)

with the phonons assumed to be in equilibrium. We use
the following spectral representation for the phonon
Green functions:

For isotropic or dirty systems, with s-wave scattering
from impurities, the self-consistency equations are aver-
aged over all directions to obtain the well-known Eliash-
berg equations:

(1 Z)E= ——f dx N, (x) f dy

D (q, co) =(D —D )[I+2N(co)], (2.39)

X =(1 Z)Er3 i@)r),— —

X"= (1—Z* )Er3 i 4)r), —
(2.40)

where p& is the spectral densities, gq" is the electron-
phonon coupling constant for phonons of polarization p,
and N(co) is the Bose function.

In the following, we expand the self-energies X ' 'on
the Pauli matrices by the ansatz

Ni(E)= f dx R2(x) f dy

+-l 1

1mp

1
[N2(E)+ iR2(E)],

+S

where B(E,E') is

B(E,E') = ma F(
l

E —E'
l

)

[N, (E)+iR )(E)],i 1 1

imp S

(2.42)

(2.43)

where we assume that the 1 component is zero. We are
only considering kinetic equations linear in the deviation
from equilibrium, and as we shaH see in the next sections,
we only need the equilibrium part of the self-consistency
equations for the parameters in (2.40). The distribution
matrices F& and Fz are assumed to be proportional to the
unit matrix, and the distribution function f defined by
(2.26) and (2.27) is used.

When the generalized densities of states are independerit
of p ', we can introduce the effective phonon density of
states a Fby the definition

P

D '"'(q, co)=—,D (q,co)=0,
N(0) ' (2.45)

cosh(E'/2T)
sinh(

l

E E'
l

/2T)cosh(E/2T)—
and a F is the angular average of a F.

P
We may reach the weak-coupling limit of the self-

consistency equations, where retardation effects are
neglected, by taking the limit of infinite sound velocity.
The phonon Careen functions (2.38) and (2.39) are then

dQ-,
a', F(E)=N(0)g f, '

lg"-, , -, l'p. (p' —P.E)

(2.41)

where

A(q) =2N(0) g
CO~

q

(2.46)
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If 2, ( q ) is constant, 2,( q ) =A, , the phonon self-energy
(2.36) then reduces to

dO-,
X = ——f dE' gx(p', E') . (2.47)

The self-consistency equation for the gap 6 is obtained
from off-diagonal (od) terms of X, since

(y21)od (2.48)

When we take the limit of infinite sound velocity, we lose
the effects of renormalization, scattering, and pair break-
ing by the phonons. To retain the scattering and pair-
breaking processes, we have to keep the imaginary part of
ZE. The phonon contribution to Im(ZE) is obtained
from (2.42) as

Im(ZE)= = —,
' f dxN1(x)B(x, E) .

2r(E)
(2.49)

C. Densities of states

In this section we discuss the equations for the spectral
densities, which determine how pair-breaking processes
affect the generalized densities of states. As we shall see
later in specific examples, the smearing of the densities of
states depends on the particular mechanism considered.
While an arbitrary small rate of electron-phonon scatter-
ing always makes a superconductor gapless in the sense
that N1(E) differs from zero for all energies E, it takes a
finite spin-flip scattering rate to make it gapless. The
nonmagnetic impurities cause pair breaking whenever the
spectral densities depend on the direction in momentum
space, a situation which we neglect in the following,
where we only consider isotropic systems.

Equations for the spectral densities a and P are ob-
tained from the diagonal part of the equation of motion
(2.14) and the normalization condition (2.18). Due to the
connection (2.28) and (2.29) between g and g", we only
have to consider the equation of motion for g

scattering mechanisms are present (2.53) has to be solved
numerically, while the generalized densities of states in
the absence of magnetic impurities are

ZEiV)+iR) ——

[(ZE)2 q)2]1/2

[(ZE)'—e', ]'/2

(E2 g2)1/2 (2.54)

(E2 g2)1/2 2.55

where Z and p have to be determined from the Eliashberg
equations (2.42) and (2.43). The complex gap function b,
is defined as b, =@1/Z.

D. The kinetic equation

The kinetic equation is obtained from the off-diagonal
part of the equation of motion (2.14), which takes the
form

IIRg K g KIIA +g R+K +Kg A {) (2.56)

Using the representation (2.22) of g and the orthogonali-
ty (2.25) of the operators defined in (2.23), (2.24) together
with their equation of motion, we find the following equa-
tion for F)'.

(N1 —Rz)v~ V'f =(Izh+I; &+I,)(5f) . (2.S8)

tr(P1P1 )i vF V'F1 ——t.rIP1P1 [(X —X )F, —X ]],
(2.57)

where we have identified a driving term by the left-hand
side and put the remaining collision terms on the right-
hand side. The collision terms consist of contributions
from the phonons, nonmagnetic and magnetic impurities.
In the Appendix we express the collision integrals for each
scattering mechanism separately, in terms of the distribu-
tion function f defined by (2.26) and (2.27), and since we
are only interested in small deviations from equilibrium,
we linearize in the deviation from local equilibrium
of =f f . The kinetic equ—ation is then

[H',g'] =o, (2.50)

which provides us with four equations. The diagonal part
of the normalization condition g g = 1 yields the addi-
tional equation

a +P =1. (2.51)

IZEp i a@1+ — a/3= 0, —
+S

(2.52)

which together with (2.51) results in a quartic equation
for o, ,

We need only two equations to determine the spectral den-
sities and shall only consider one of the off-diagonal com-
ponents of (2.50), together with (2.51). The off-diagonal
part of (2.50) gives

Jth=u~ —p J (2.59)

where p is the chemical potential and J is the particle
current operator. Measuring energy from the chemical
potential, the electronic heat-current operator is

E. The thermal current and the charge density

The heat-current operator may be found by considering
the energy-momentum tensor for the coupled electron-
phonon system. ' The energy-current operator is then of
the form u=u, +u~h. In the following we assume that
the phonons are in equilibrium —that is, we can neglect
the energy current u„h from the phonons. The heat-
current operator is then

I,a —2iI,ZEa + [@1—(ZE) —I;]a
J1h ——— g(B,, V'2+8, ,V'1)g (2)g (1)

~ 22t1l
(2.60)

+2i I,ZEa+(ZE) =0, (2.53)

where I", is the spin-Aip scattering rate. When both
Using the definitions of 6 ' ', we find the heat current
to be
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N (0)pF d Q
J,h= — dE Ep trg

4m 4m

which in the st@.tic case may be rewritten as

(2.61)
dQ-

p= —eN(0) 2ep+ —„' f dE tr[g —r3(g —g")]
4m

(2.65)

Jth=—N(0)pp dQf dE Ep(N &

—
R 2 )[2f(p,E)—1] .

(2.62)

where P is the scalar potential introduced in (2.9). In the
static case we have

dQ-
p= —2eN(0) eP ——, f dE

4m

Finally, we consider the charge density

p(1)=eg(Q (1)Q (I)),

which rriay be expressed in terms of g,

(2.63) X I(N i —R2)[2f (p,E)—I]+Ni I

(2.66)

eN (0) dA-
P= dE «lg r3(—g —g )]K R

4' (2.64)

Since the charge density is a gauge invariant quantity
(2.64) must have the form

In using this expression for the charge-density one should
remember that the quasiclassical Green functions only
represent correctly those contributions to the density
which come from regions near the Fermi surface. The
contributions from regions far from the Fermi surface are
represented by the scalar potential P.

III. THERMAL CONDUCTIVITY

The collision integrals are most conveniently discussed in terms of the usual deviation function g, which for thermal
conductivity is defined by f=f +f (1 f )p V T—g, where f is the Fermi function and VT is the temperature gra-
dient. We then eliminate the common factor p VT in Eq. (2.58) and average over all directions. The contributions to
the collision integrals are then the following.

(1) Phonons: From the Appendix we find

Iph($) =
2 f dE' B(E',E)[Ni(E)N|(E') —R2(E)R2(E')]Q(E)

4 cosh (E/2T)
N2(E)N2(E')—Bi (E',E)[N, (E)—R 2(E)][N i (E')—R 3(E')] 1+, f(E')
Ni(E)Ni(E')

(3.2)

(3.1)
where B is defined by (2.24) and Bi by an identical expression except that a I" in (2.44) is replaced by aiF, an effective
density of states for transport which is evaluated in the same way as a I', but with the inclusion of an addit'ional factor
p.p ' in the sum over phonon states. Here p and p

' are the directions of the initial and final electrons in the process in
which ari electron is scattered by a phonon.

(2) Impurities: From the Appendix we find

I; p(g)=- N, (E) R2(E) q—(E)
4 cosh (E/2T)

tr
+imp +Imp

In the following we assume that the magnetic impurities only have a s-wave component, so the contribution is

N i (E)+R 2(E) g(E)
4 cosh (E/2T)

1,(f)=—
7$

The full kinetic equation is, according to (2.58), (3.1), (3.2), and (3.4),

2 UFE %i —R2 X]+R22 2 2 2

(Ni —R2) = — f dE'B(E', E)(NiN'i R~R2 )+- P(E)
oo +imp S

I

+ f dE'Bi(E', E)(N, —R2)(Ni —R2 ) 1+ Q(E') .
oo

where r,"„is the transport scattering time, given by the usual weighted average of the collision probability w(p p '),

1 f dx[ —,
' w(x)(1 —x)] . (3.3)

(3.4)

(3.5)
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The electronic heat conductivity K is defined by

J,h ———KV' T, (3.6)

where J,h is given by Eq. (2.62). In terms of g we have

N (0)uF
K=

3 0f dE(N I
—R2) EQ(E)

cosh (E/2T)
(3.7)

We close this section by introducing the important param-
eter ~;„characterizing the strength of the inelastic
electron-phonon interaction. It is defined as the normal-
state inelastic relaxation time at T, and at the Fermi ener-

+In

2Im(ZE)
ReZ E

4m. " a F(E)
ReZ (0) o sinh(E/T, )

(3.8)

In the weak-coupling limit we use a Debye model,
where a I =bE . Here b is of the order of the inverse
Debye temperature OD squared. For this model one ob-
tains

+in .

14m/(3) T, b

ReZ (0)
(3.9)

a F(E)=2.75 X 10 E (3.10)

where E is measured in meV. The Debye tail (3.10) is
particularly important at low temperatures. In this
strong-coupling case we obtain

ReZ(0)
~ ~

+In c
(3.11)

Furthermore, if a F=0 for E & OD, one has
ReZ (0)= 1+A, , where A, =beD In the. case of the
strong-coupling superconductor Pb, we use the model for
a F discussed in Ref. 22 (case 2, p. 532), but we include a
Debye tail for frequencies below the transverse peak
which we estimate from Ref. 23 to be

and

N,=, 6(iE
i

—5),
(E2 g2)1/2

RI ———,6(b, —iE
i
),(g2 E2)1/2

(3.12)

(3.13)

N2 ——
, 6(b, —tE

~
),(g2 E2)1/2

R2 ——
, / sgn(E)6(

~

E
~

b, ) . —
(E2 g2)1/2

(3.14)

(3.15)

+inC=
[ReZ(0)]r,"„

(3.16)

In Fig. 1 we plot 11,(T)/a~(T) as a function of T/T,
for a clean and a dirty superconductor. In the clean limit,
where c =0, the overall feature is the same as that found
by Tewordt except for the larger slope close to T, . Note
that the dirty-limit result has zero slope as t~l since
fx~(T) a, (T)]/vz—(T) is proportional to b, when the
temperature is near T, .

To obtain a better understanding of what is happening
we plot in Fig. 2 11', (T)/~&(T, ), the thermal conductivity
normalized to its value at T„ for a number of different
impurity concentrations. We see that even though the
density of quasiparticles is decreasing below T„ the clean
limit result is still increasing as the temperature is
lowered, due to the decrease of the number of phonons.
However, for T=0.3T, it reaches a maximum and then
falls off very rapidly due to the exponential decrease of

The clean limit of the kinetic equation (3.5) then reduces
to that derived by Bardeen et al. ' and solved numerically
by Tewordt, " who found the limiting slope of
a, (T)/az(T), as t = T/T, approaches 1 from below, to be
1.62. In our calculation we find the limiting slope to be
1.8. The difference is probably caused by the high resolu-
tion we use during the numerical inversion of the collision
operator. The influence of impurities is conveniently dis-
cussed in terms of the parameter

A. Weak-coupling limit with nonmagnetic impurities
1.0—

I
f

I
t

I [

We now proceed to determine the electronic thermal
conductivity in the weak-coupling limit from solutions to
the kinetic equation (3.5). We assume that the phonon
spectrum is described by the Debye model discussed above
(3.9). In the low-temperature regime T/OD « 1 in which
we are interested, the momentum of the scattering pho-
nons may be neglected compared with the Fermi momen-
tum. That is, we can take B& ——B in the collision integral,
which is correct to order ( T/OD ) .

A consequence of the Debye model is that the normal-
state electronic thermal conductivity for a pure sample at
temperatures much lower than the Debye temperature is
proportional to T, due to the freezing out of the num-
ber of phonons.

In the quasiparticle limit, where we neglect the inAu-
ence of pair breaking on the generalized densities of states,
we have

I-
X

05
I—

0.1—

0.0 0.2 O.C

Tl Tc

0.6 0.8 1.0

FICr. 1. Temperature dependence of the electronic thermal
conductivity K, for a pure and a dirty (dashed curve) weak-
coupling superconductor, normalized to the normal-state value
at the same temperature.
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a;(T)/a&(T) to be 7.2, which is in good agreement with
experiment but somewhat different from the approximate
result of Ambegaokar and Woo who found the slope to
be 11.

To obtain a better understanding of this behavior, we
plot in Fig. 7 a;(T)/a&(T, ) for a number of impurity
concentrations. The behavior of the clean-limit result
(curve A) is very different from that of the weak-coupling
clean limit result at temperatures greater than T=0.3T, .
The weak-coupling result is increasing when the tempera-
ture is lowered, while the curve for lead decreases. At
lower temperatures, the curve for lead shows a minimum
at T=0.7T, and then increases very rapidly. Below the
maximum at T=0.25T„ the thermal conductivity eventu-
ally drops to zero. The influence of impurities is also seen
in Fig. 7, discussed in terms of the parameter c. It is seen
that curves B and C follow the c=0 curve down to
T=0.6T, . The behavior for temperatures below 0.6T,
depends critically on the value of c, but the general
behavior is that if c & 1 then ~, has a maximum, while it
always decreases if c & 1.

In order to study the influence of the impurities in
more detail, we also show in Fig. 8 the thermal conduc-
tivity of Pb at T=0.4T, as a function of c in the range
0&c &1. In Fig. 9 we plot ~tv(T)/~~(T, ) for three dif-
ferent values of c, together with the clean-limit result for
a weak-coupling Debye model (dashed curve). The clean-
limit result for lead (curve A) is increasing much faster
than the weak-coupling limit result (dashed curve) for
temperatures T)0.4T, . At lower temperatures curve A
essentially increases as T . The influence of impurities
on ~tv(T) is shown in curves 8 and C for two different
impurity concentrations.

In Fig. 10 we plot the deviation from Matthiessen's
rule, defined by (3.18), for lead in the superconducting as
well as the normal state and at the two temperatures
t=0.96 and 0.60. At t=0.96, the DMR is large over a
broad range of impurity concentrations in both states.
The maximum DMR is, in the normal states, 24% of the
total resistivity, while it is 19% in the superconducting
state. At t =0.60, the normal-state DMR is peaked with
a maximum of 16% for an impurity concentration
c=0.5. The DMR in the superconducting state is below
4%%uo for all impurity concentrations.

The explanation of the behavior of ~, ( T) /~~ ( T, ) and
the large deviations from Matthiessen's rule may be seen
from the deviation function P, which we plot in Fig. 11
for pure lead at the temperature t =0.90. The main con-
tribution to ~, comes from excitations in the energy re-
gion E/T & 6; however, for Pb close to T, the excitations
with an energy E/T=5 6are very effectively re—moved
by recombination processes, where they recombine with a
quasiparticle of energy E=h to form a pair. This process
has a large probability, due to the lowest peak in the effec-
tive phonon density of states a I'. The removal of excita-
tions is clearly seen in Fig. 11. The figure also shows how

P is nonzero for energies below the gap, due to smearing
of the densities of states. The effective removal of the
"high-energy" excitations is the main reason for the drop
in x;(T)/zz(T, ) below T, . Another reason is the larger
ratio 2b, pb(T=O)/T, =4.3, which means that the number

10—

FIG. 11. Deviation function g for lead as a function of ener-

gy at the temperature T=0.90T, . The units of P are arbitrary.

of excitations at a given temperature is less than in a
weak-coupling superconductor, since the gap (at the gap
edge) is known to follow

~Bcs( T)
b pb( T)=kpb(0)

Bcs(0)
(3.19)

At lower temperatures, the recombination processes of
particles that contribute to the heat conductivity is not
sufficient to reach the first peak in a F. This means that
the dominating scattering channel loses weight, so the
heat conductivity begins to rise. At even lower tempera-
tures, it is only the Debye tail that determines the scatter-
ing, so ~, (T) should behave like a weak-coupling super-
conductor, which indeed is the case.

The behavior of the normal-state thermal conductivity
ir&(T)/Irz(T, ) is also explained in terms of the structure
in the effective phonon density of states a F. We may use
the same arguments as for the superconducting case dis-
cussed above if we replace recombination processes by
scattering from a state above the Fermi surface to states
below the Fermi surface.

The main numerical problem in calculating the elec-
tronic thermal conductivity of strong-coupling supercon-
ductors is to obtain the solutions to the Eliashberg equa-
tions, which enter the generalized densities of states. In
Fig. 12, we have plotted the generalized density-of-state
functions X~ and X2 for lead, obtained by solving the
Eliashberg equations at temperature T=0.96T, . They
appear remarkably similar to those for the weak-coupling
case in the absence of pair breaking, except for some
broadening due to the finite quasiparticle lifetime. The
most important difference is that the energy is measured
in terms of the actual energy gap at the gap edge (3.19).
This suggests that it is possible to obtain reasonable re-
sults by neglecting the broadening of the energy levels,
that is, we use the density of states (3.12)—(3.15) with the
gap following (3.19), and keep the model for the effective
phonon density of states. Our numerical calculations
show that this quasiparticle approximation is within 10%
of the exact result for all temperatures and all impurity
concentrations.

As discussed above, the low-temperature electronic
thermal conductivity of pure lead is determined by the
Debye tail of the effective phonon density of states. We
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FIG. 12. Generalized densities of states N& and X2 for lead
for the case of scattering by phonons alone at the temperature
T=0.96T, . The gap at the gap edge is Apb(T=0. 96T, ) =0.44
meV.

can then use Eq. (3.17) as an approximate expression for
the temperature dependence of a, for T/6 «1, provided
the value of the gap is taken to be the zero-temperature
result appropriate for Pb.

C. Experiments on tin and lead

The thermal conductivity of tin and lead samples at low
temperatures has been investigated by many authors, and
a detailed summary with plots of the various experiments
is given in Ref. 26. Here we consider the measurements
performed by Guenault on pure tin, and measurements
on pure lead performed more recently by Mezahov-
Deglin' and Odoni et al. The experiments on tin give
a slope of ~, (T)/~z(T) as T~T, of about 1.6 for a pure
sample. This is a little less than the value of 1.82 we find
for a pure superconductor. The discrepancy is not too
surprising since Sn is not truly a weak-coupling supercon-
ductor. Also the samples studied in Ref. 3 are never real-
ly pure. Estimates of c from the ratio of the room-
temperature resistance to the residual resistance for the
cleanest sample studied in Ref. 3 result in c & 1.5. This
means, as discussed in the preceding section, that
a;(T)/a&(T, ) should decrease as the temperature is
lowered below T„which indeed is observed. The experi-
ments also show that there are small deviations from
Matthiessen's rule in the normal state. An inherent limi-
tation in comparing the theory presented here with experi-
ment is the assumption of an isotropic model. Pure tin is
known to have pronounced band-structure ani. sotropies,
but as discussed in Ref. 3 an average of Ir;(T) over all
directions gives good agreement with the theory for iso-
tropic models.

Mezahov-Deglin' measured v, in pure lead for tem-
peratures below T„and obtained results for a, which look

IV. CHARGE IMBALANCE

It is often useful in describing properties of supercon-
ductors to separate the total current into a normal current
associated with the excitations, and a supercurrent associ-
ated with the moving condensate. In a similar spirit, one
may express the total charge as a contribution from the
distribution of excitations, and a contribution from the
condensate. The two contributions are referred to as the
charge of the normal component and the charge of the su-
perconducting component, respectively, and form the
basis for the development of a two-fluid model for the
charge density, as described in detail by Pethick and
Smith ""

The total charge density is given by (2.66). In the situa-
tions that interest us here, the changes in the total charge
are suppressed by Coulomb interactions, that is 6p=0. In
nonequilibrium situations, the system then responds by
setting up a potential P, which is seen from (2.66) to be
given by

dA-
eP= I dF. (N& —R', )5f—:

4~ 2N(0)
(4.1)

which defines the quasiparticle charge Q*. The expres-
sion (4.1) for Q is identical with that of Ref. 16, Eq.
(A22), since N&f =(N& —Rz)5f according to (2.33). The

very much like curves A and B in Fig. 7. However,
Mezahov-Deglin' analyzed the behavior of ~, for
T/T, (0.7 in terms of lattice conduction. The behavior
for 0.3(T/T, &0.7 was explained as lattice conduction
with the mean free path of phonons being limited by
scattering from the quasiparticles. The increase in K, as
temperature decreases is then due to the decrease of the
number of quasiparticles. Below the maximum, the mean
free path of the phonons is determined by the sample size,
so the ultimate dependence should be a; ~ T at very low
temperatures.

The results in the preceding section show that the max-
imum in heat conductivity may be explained in terms of
the electronic contribution. We are not able to make a de-
tailed comparison with experiment' since the impurity
scattering rate ~; z cannot be estimated from the available
experimental data. This is basically due to the uncertainty
in determining ~& when the magnetic field is zero. The
version of Kohler's rule used in Ref. 18 gives a value of
the ratio of the room-temperature resistance to the residu-
al resistance of 10, which corresponds to c=0.06. How-
ever, as discussed in Ref. 18 another version of Kohler's
rule would result in a smaller value of c, which is neces-
sary if the larger maximum in ~, is explained in terms of
electronic heat conduction.

Recently, Odoni et a/. measured the thermal conduc-
tivity of pure lead in the temperature range
0.007 & T/T, &0.17. They showed that the thermal con-
ductivity within this temperature range is due to lattice
conduction, since they observed the size dependence of Ir,
and verified the dependence ~, ~ T, except at the lowest
temperatures. Unfortunately, their measurements did not
extend to high enough temperatures to allow comparison
with our calculations of the electronic contribution.



31 THERMAL CONDUCTIVITY AND CHARGE IMBALANCE IN. . .

charge imbalance Q* is then detected by measuring a
voltage across a detector junction when no current fiows
through it. The voltage detected is

dQ;*

dt
(4.4)

Vd ——
7

gus 2eN(o)gas

where

(4 2)

gus= f dENi
BE

(4 3)

is the normalized tunneling conductance, as discussed, for
example, in Ref. 12.

which defines ~&. The voltage detected in a tunnel injec-
tion experiment is then, according to (4.2), proportional to
+g +

Schmid has shown how the injection of quasiparticles
from the normal metal at voltage V is included in the
quasiclassical Green-function approach. Assuming that
the normal metal is in equilibrium and going to second or-
der in the tunneling Hamiltonian, Schmid finds the fol-
lowing contributions to the self-energy:

A. Charge imbalance generated by tunnel injection
=+imN~(0)

l
revs I'r3

(4.5)
In the tunnel-injection experiments pioneered by

Clark, a quasiparticle current is injected, via a tunnel
junction, from a normal metal (N) into a superconductor
(S). Here it is converted into a supercurrent which flows
out of the active volume. The volume has been chosen so
that the deviation from equilibrium is constant in space.
In steady state, with the quasiparticle charge injected at a
rate dQ;*/dt, the excess distribution relaxes at a rate r&,

'

to produce a steady-state charge imbalance Q',

0=Iph+I; @+I,+Iz-,
where

(4.6)

E—e V&3
Xr = i 2~N~—(0)

~
T~s

~

'r, tanh
2T

where T&s is the tunneling matrix element, and N~(0) is
the density of states per spin at the Fermi surface of the
normal metal. The kinetic equation (2.58) takes the form

Ir 27TN~(0)
~

T~——s ~

' [f (E ev) f (E+e—V)]—
2

I

E+eV E—eV
tanh +tanh

4 2T 2T
—2(1 —2f ) (4 7)

In the situations we consider here the nonequilibrium contribution to the injected charge is small compared with the
total, so we neglect it in (4.7) as was done in Ref. 12. Since quasiparticle charge is determined by the part of 5f even in
E, we only need to retain the even part of I~ which acts as a driving term in the kinetic equation. In the spatially homo-
geneous case, we have

mN~(0)
~
T~s

~ [f (E+eV) —f (E—eV)](N~ —R2)=I~h+I; &+I, . (4.8)

The collision integrals are most conveniently discussed in terms of the deviation function P defined byf=f +f (1 f )g, and we find t—he following.
(1) Phonons: From the Appendix, we have

I h(y)= f dE'B(E', E) (N)N') R2R2)Q(E) —(—N, —R2)(N'( —Rq ) 1+ f(E')2 &2 &2

4 cosh (E/2T)
(4.9)

where the function B(E,E*) is defined by (2.44).
(2) Impurities: From the Appendix, we find

I; p($)=0 (4.10)

as long as the system is isotropic. The impurities do not relax the quasiparticle charge because they scatter on constant
energy surfaces, which do not change the isotropic of. The magnetic impurities contribute according to the Appendix:

I,(y) = — IN, +R, (N, —R, ) [1—(N2—/N, ) ] I
1 2 2 2 2 2 P(E)

+S 4cosh (E/2T)
(4.11)

The full kinetic equation is then
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4nNJv(0)
~

T&s
~
[f (E+eV) —f (E—eV)]cosh (N& R—z)2T

I N)+R2 —(N) —Rp) [1—(N2/N() ] + dE'B(E', E)(N, N', R2—R 2 ) g(E)

I

+ I dE'B(E', E)(N )
—R 2)(N (

—R 2 ) 1+, g(E'),
00

(4.12)

where the generalized densities of states are obtained from
the same quartic equation (2.53) as for thermal conduc-
tivity.

To demonstrate the equivalence of the quasipartii. cle
Boltzmann equation and Eq. (4.12) in the weak pair-
breaking limit, we have to retain first-order terms of
pair-breaking rates associated with electron-phonon and
spin-flip scattering„which corresponds to the use of the
generalized densities of states (3.12)—(3.15). Equation
(4.12) then reduces to the quasiparticle Boltzmann equa-
tion discussed by, for example, Pethick and Smith' and
Chi and Clarke. ' In Ref. 16 we used the distribution
functions introduced by Schmid and Schon, and to show
the equivalence between the two approaches, we had to
expand ReZX2 and Re@~%2 in the pair-breaking rates.

The charge-relaxation rates have been calculated for ar-
bitrary temperatures, within the quasiparticle approach,
by Chi and Clarke' and by Lemberger and Clarke. '

Lemberger and Clarke ' found that the experimental data
they obtained were fitted very well by an interpolation
formula derived by Schmid and Schon,

1/2

+1 I 2
(4.13)

valid in the region 6/T«1 and r, &&(T/b) r;„. The
numerical solution of the quasiparticle Boltzmann equa-
tion only gives the result (4.13) in a very small tempera-
ture region near T, [except for small corrections discussed
below Eq. (47) in Ref. 16], while the calculated relaxation
rates at lower temperatures are significantly higher and do
not follow the simple universal dependence on ~;„/r, im-
plied by (4.13). In Ref. 16 the full effects of pair breaking
were studied within the Green-function approach, and
compared with the results obtained from the quasiparticle
Boltzmann equation for the temperatures and injection
voltages of experimental interest. The result obtained in
Ref. 16 showed that the solution of the full kinetic equa-
tion for the parameters investigated is much closer to the
solution of the quasiparticle Boltzmann equation than to
the extrapolated Schmid and Schon formula, except for
6/T «1. The temperature dependence of Q* and r, at
low temperatures and for low injection voltage is found by
introducing the variable (=sgnE(E —6 )'/ in the kinet-
ic equation and then scale the energy to (AT)' . The re-
sult is that Q* ~ (5/T) e / for T/b, &&l. The inject-
ed quasiparticle charge per unit time has a temperature
dependence given by

d Q
gt

( T/g) —1/2 5/T—
dt

so

O'
T—s/2

dQ,*/dt (4.14)

at T=O, where the angular brackets denote an angular
average. This has to be included in the calculations to
make comparison with experiment at low temperatures

meaningful.
As discussed in Sec. III 8, the main problem in treating

I I I I t I l I

5 6 7 8

FEG. 13. Plot of quantity 4s;„/~w + as a function of 6/T.
Q

The dashed curve shows the result for a weak-coupling super-
conductor, while the solid curve shows the result for lead. En
the strong-coupling case, 5 is the value of the real part of the
gap function Wi/Z at the gap edge.

in agreement with the result in Ref. 32.
We have solved Eq. (4.12) within the model for pure

lead discussed in the previous chapter. ' In Fig. 13 we
plot the calculated charge-relaxation rate at the constant
injection voltage eV equal to ten times the T=O energy
gap b(0). The dashed curve is the charge-relaxation rate
for a pure weak-coupling superconductor within the De-
bye model. In both cases, the rate has been normalized to
the ~;„' obtained from the two different effective phonon
density of states a I'. Close to T„both curves follow the
result r ~ = (nb /4T)r;„', while the strong-electron-@+
phonon coupling in lead leads to a larger charge-
relaxation rate than in weak-coupling superconductors at
lower temperatures. A comparison with the rneasure-
ments of Clarke and Paterson shows that the calculated
value of ~, at T=0.6T, is 30% larger than the mea-

gQ

sured value. The calculation shows a fast rise in ~&, at
lower temperatures, much faster than observed in the ex-
perirnent. This may be due to the approximation that the
gap is isotropic, which prevents charge relaxation from
the impurities. Tomlinson and Carbotte have calculated
the mean-square gap anisotropy with the result
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strong-coupling superconductors is to solve the Eliashberg
equations. The results for thermal conductivity suggest
that it is possible to obtain reasonable results by neglect-
ing the broadening of energy levels, that is, we use the
density of states (3.12)—(3.15) with the gap following
(3.19) and keep the model form for a F. The numerical
calculations show that this quasiparticle approximation is
within 10%%uo of the exact result for all temperatures.

V. CONCLUS IONS

In the previous sections we have demonstrated how the
quasiclassical Green-function approach to nonequilibrium
superconductivity may be used to make realistic calcula-
tions of the charge-relaxation rate and the thermal resis-

tivity of strong-coupling materials such as Pb. The im-

portant frequency dependence of the effective phonon
density of states a F was taken ful ly into account. How-
ever, our model does not include any explicit effects of
band anisotropy. The pronounced differences between
weak- and strong-coupling superconductors are mainly
due to the frequency dependence of the effective phonon
density of states, while the effects of broadening play a
rel atively minor role. Our detai 1ed study of Pb suggests
that calculations for other materials may be perf ormed in
a quasiparticle approximation, which neglects broadening
but takes into account the frequency dependence of the ef-
fective phonon density of states in the quasiparticle col-
lisi on integral.

APPENDIX

In- this appendix we give expressions for the collision integrals for each scattering mechanism separately, obtained
from the self-energy expressions (2.34)—(2.37). We first consider the phonons and obtain

Iph ————trIP& [(X~h —X„h)F~ —X~h]P~ }
K

d Q-,
= —2~%(0) g f dx dy

~

g",
i p&(p

' —p,y)5(y —x+E)

I [Kl(p~p x E)+K2(P P x E))[+(y)+f (p x)]5f(P E)

[&(y)+f ( —p, —E))[K,(p,p—',x,E)5f(p ',x ) —K~(p,p ',x,E)5f( —P', —x )]} (Al)

The contribution from the nonmagnetic impurities are obtained from Eq. (2.34),

I, p
——trIPf [(X—i —2,")F(—&; ]&) }

'18i

d Q-,
f w(p p ')

I [K& (p,p ',E,E)+K&(p,p ',E,E)]5f (p,E)
4m

i (P P ' E E )5f(p
' E ) K2 (P,p

' E E»f—( P' E)]}—— (A2)

and finally the contribution from the magnetic impurities is obtained from (2.35)

1 „Ip~ [(Z~ Z~ )F Zx]p~ }
Si

d Q-,f w, (p p ') [ [K3(p,p ',E,E)+K4(p,p ',E,E)]5f (p,E)
4m.

[K3(pp E E)5f(p ',E) K4(p,p ', E,E)5f( ——p ', —E))} . (A3)



2846 J. BEYER NIELSEN AND H. SMITH 31

The coherence factors E&, E2, E3, and E4 entering the
collision integrals are listed below in terms of'the general-
ized densities of states. We use the notation that func-
tions of (p ',x) have a tilde, for example, N~(p ',x) =N~,
while, for example, N&(p, E)=N~,

K, (p,p ',X,E)= —,', tr(p)P (p )P) )

The coherence factors EC3 and E4 entering the collision
integral from magnetic impurities are

K3(p,p ',E,E)=—„tr(P, r3P &
P

& r3pt )

1
N)N) +R2R2+(N ) —R 2 )2

2 2

2
N, N I R2R—2+(N )

—R p)

1V2%2
X(N) —Rp) 1+

N&N&

( E) t (PitP RP AP )

2 2N)N) —R2R2 —(N ( —R 2 )
2

x,iy,X(N) —R2) 1—
N)Ãi

(A4) and

K4(p,p ',E,E)= ——„tr(P, r3P 2P 2 r,p", )

1
N~N~ +R2R2

(A6)

]N)X(N( —R2) 1+ (A5)
%2%2X(Ni —R2) 1 ——
%)2V )

(A7)
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