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A hysteretic transition to a high-injection-current nonequilibrium state in metallic contacts be-
tween silver and high-purity single-crystal tantalum was recently observed by the author and H.
Lerchner. Oscillations of conductance with bias in this state are interpreted as geometrical reso-
nances of the excess current caused by a bias-driven variation of the superconductor—normal-metal
phase-boundary position. Quantitative numerical results are obtained from an extension of the one-
dimensional Blonder-Tinkham-Klapwijk microconstriction model and are successfully compared
with part of the experimental results. Lacking any self-consistency features, the model is unable to
describe nonlinearities and feedback effects which apparently dominate much of the experimental
behavior, but supplies some indication that Andreev reflection might also play an essential role in

these effects.

I. INTRODUCTION

In a previous paper,! referred to as HL in the following,
the author and H. Lerchner reported observations of a
high-injection-current state in superconductor—normal-
metal metallic contacts. This state was characterized by a
conductance oscillating with applied bias, and it was
separated from a smooth low-injection-current behavior
by a hysteretic transition. The low-injection-current
behavior, on the other hand, roughly followed the expec-
tation from the superconductor—normal-metal microcon-
striction model given by Blonder et al.,’> referred to as
BTK in HL and in this paper.

In HL some formulas were given, derivable from a sim-
ple extension of the BTK model leading to an oscillatory
dependence of the excess current at high voltage U,

I..(U)=I4(U)—R5'U, (1)

on what was called the “melting depth” / of the supercon-
ductor. Here, I5(U) is the current with superconductivity
established in the superconducting bank, and Ry 'U is the
current with superconductivity suppressed by a magnetic
field or by a temperature above T, i.e., Ry is the resis-
tance of the junction in the normal state. The idea in HL
was that heating effects in our low-resistance (Ry <1 Q)
contacts give rise to suppression of the pair potential
within a finite depth / below the surface of the supercon-
ducting bank, with [ increasing with bias. Attempting to
retain the simplicity of the one-dimensional BTK model
and approximating the normal and pair potentials by ©
functions, one arrives at a model within which the discon-
tinuities of the normal and of the pair potentials are
separated by the finite length I Clearly, interference ef-
fects for the transmission and reflection coefficients must
be expected in this situation on account of the well-known
mechanism of combined normal and Andreev® reflection.
In Sec. II the theoretical result is derived, which was
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only stated by HL without derivation.* The result is valid
under somewhat more general conditions and can be ex-
pressed in a more concise form [Egs. (18)—(20) below]
than given previously. Section III contains a report on
sample preparation and experimental results beyond that
given in HL. HL presented an example of high-injection-
current characteristics with oscillating behavior of dif-
ferential conductance in the high-injection-current regime.
Meanwhile, a detailed numerical analysis of this example
was performed on the basis of the proposed theory. Sec-
tion IV contains this analysis, together with more infor-
mation on numerical consequences of the model. A final
discussion of physical parameters resulting from the
analysis is given in Sec. V. :

II. CURRENT-TRANSMISSION COEFFICIENT
FOR A ONE-DIMENSIONAL
NORMAL-NORMAL-SUPERCONDUCTING
GEOMETRY

The techniques given by BTK are simply adopted to
calculate the energy-dependent quasiparticle current-
transmission coefficient T(E) on the basis of the Bogo-
liubov equations™® for the wave function

woo= 43
namely
# d?
_E;;+V(X)—6F u(x)+Ax)(x)=FEu(x),
2)
— [‘%%ZZ'H/(X)_EF v(x)+A(x)u (x)=Ev(x) .
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The normal and pair potentials ¥ (x) and A(x), respective-
ly, are assumed as given in Fig. 1, the singularities of
V(x) at x =0 being given by a 8 function of strength H
and a step which we describe by different values of Fermi
wave numbers and Fermi velocities, kg, k7, vF°, and vg

for x§0, respectively. Physically, x =0 corresponds to

the contact between the two metals, the normal metal fil-
ling the half-space x <0. In the second metal, the pair
potential is destroyed by current injection down to the
depth . The case / =0 corresponds to BTK, from which
much of the treatment is directly adopted, including de-
tails of notation. Instead of mentioning this at every in-
stance, we emphasize here that nothing else is new in this
section, but introduce the finite “melting depth” [/ which
separates the normal and pair potential discontinuities,
and solve an 8X8 linear-equation system for the
scattered-wave amplitudes instead of a 4 X 4 system.

Normalizing the amplitude of an electronlike excitation
reaching the contact from the left to 1, the ansatz to solve
Egs. (2) is -
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FIG. 1. Upper part: Normal and pair potentials defining the
model for calculation of the energy-dependent current-
transmission coefficient. Lower part: Amplitudes a, ..., h and
group-velocity directions of the outgoing quasiparticle waves
produced by an incoming electronlike quasiparticle excitation
within the BTK scheme.

(3)

[(1) e x4 p [é]e‘i"+"+a (1) e * for x <0,
Wix)=1{¢ [(l)]e"‘+"+f [(l)}e‘ik+x+h [?]e”‘_"-i—g [?]e‘”‘_" for 0<x <1,
e |40 |pintxy g |70 lo=icx for x 51,
Vo u
with

gt =kF£ +E /fof

k*=kZ +58k(E), +8k(E)=E/twg , Y

k= +(2m)\ 2 [ep £(E2—AY!2]1/2 |

To guarantee outgoing or damped quasiparticles for x >/,
the k* must be taken with positive real parts in any case,
and, for E <A, with positive or negative imaginary parts
for the upper and lower sign, respectively. The coherence
factors have the usual form,

Here, r and Z° are given by

-1 0 1 0 1
r+2iZ° 0 1 0 —1

0 —1 0 1 0

0 —r+2iZ° 0 1 0

0 0 eik+1 0 e—ik+1

0 0 eik+1 0 _e—ik+1

0 0 0 k7! 0

0 0 e 0 —

ug=1—vg=3[1+E-(E*—A"'"], (5)

their definition being extended by BTK to E <A, for
which case 13 and v3 are thus complex conjugates.

While the ansatz guarantees solution of the Bogoliubov
equations within the three regions, the boundary condi-
tions,

YOT)—(07)=0, (I *)—y(l~)=0,
’ (6)
P(0F)—¢'(07)=2m /#)HWYO), ¢(I+)—y¢'(I7)=0,

determine the eight coefficients a, . . ., h. We obtain

0 0 0 b 1
0 0 0 a r—2iZ°
1 0 0 e 0
—1 0 0 h 0 )
0 —Uy —Vp f o 0
0 —Uy Vo g 0
e 7L vy —ug ceixtl 0
e kT _y, ug de ! 0
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ki oF 0 2
r=——=—— and Z°=mH /#kg .
kg v@

(8)

The quantities g%, k¥, and k* were replaced by k5, kg, and k7, respectively, at the places where they appeared as fac-
tors from taking the derivative, but k¥ and k~ must be retained in the phases where their difference leads to the in-

terference effects we are interested in.

On account of current continuity, the amplitudes at any fixed x are sufficient to determine the current-transmission
coefficient. Again following BTK, we determine the coefficients in the x <0 bank, i.e., we eliminate from (7) all coeffi-
cients except a and b. The algebra is straightforward and need not be given here. The result is

b=(4rD)~(r +1—2iZ%(r —1—2iZ%(v3e'*—ude —'*

a=(4rD)~(—4ruqv,) , 9)

4rD =(r —142iZ°)r —1=2iZ W3 —(r +142Z°)(r +1—2iZ%ude ',
with

a=18k(E) . (10)
To square the amplitudes, it is convenient to introduce a phase ¢ =¢(E) by

ud=|uy|%™, vi=|vy|% ", (11)
where, from (5),

0 forE>A,
- ‘arccos(E/A) for E <A . (12)

After some algebra, we obtain

|b]2=D| = ";—,”2+22] L L 22| [ uo | *+ [v0] *=2  uo | w0 | *eosl2a—]} ,

la|?=|D|~*|uo|*|vo|?, (13)

lug | *|vo | *cos[2(a—¢)] ,

VE =UF ,
i.e.,, r =1, Z#0 (8-function scattering only), and
rel, Z=0

(Fermi-velocity misfit only), are extended to the general

2 2
(r—1)> (r+1)>
|D|*= 4 '+22]IUO|4+ . +2Z*| |uo|*
(r-1)2 2 (r+1)2 2
—2|—4+Z —4Z
4r + 4r +
with ’
. —1/270_ mH _ H - .
L= B kA Haper Y
Since
(r+12  (r—1)*
4 4r +1,

Eq. (13) is suited to demonstrate that |a |>and | b |2 and
hence the current-transmission coefficient, as given by
BTK,

T(E)=1+|a|*—|b]|?, (15)
depends only on the combination
(r—1? (reg—1)
Z4k=2? = . 16
off + 4r 4reff ( )

Thus, this result, given by Blonder and Tinkham’ for the
[=0 case, is valid also for finite /. Hence, the two limit-
ing cases,

case in the same way as in the / =0 case, namely by either
replacing Z by Z, or r by rey, as given in (16). Since
we concentrated on the second case in the early stages of
our analysis, and thus (rather fortuitously) our prelimi-
nary report (HL) and all numerical work was based on us-
ing the parameter 7. instead of Z.¢, we retain this use of
rff, the corresponding Z ¢ simply being given by (16).

The final result for the transmission coefficient as a
function of reduced energy,

n=E/A, 17)

is obtained from (4), (5), (10)—(13), (15), and (16), and can
be expressed in the form



31 GEOMETRICAL RESONANCES IN A HIGH-INJECTION-CURRENT . .. 2819
TOn) 2/(14+8{1—cos[2(An—arccosn)]}) forp<1, :
MEIT [1+(1—P)x —Px?]/[14P*%—2Px cos(2An)] forp>1, (18)

using the following abbreviations:

2
(22 p | r=1
x=[n—(n"=1""), P r+1|,
R R (19)
(rc—1) 4r
S=—L—L T =T(c0)=—"—
8r? (o0 (r+1)?
Apart from a numerical factor 2/,
A=2Al1/Fvg =(2/m)1/€) (20

is the “melting depth” in units of the coherence length &.

r must be read as 7., the index being dropped for sim-
plicity here and in what follows. In addition, numerical
Z values given later must be read as Z 4. As may easily
be realized, Eqgs. (18)—(20) constitute the result given
without derivation in another form by HL (this result be-
ing corrected, as indicated in Ref. 4).

The interference effects represented by the cosine terms
in the denominators of (18) are, of course, not unexpected.
Their analogs under somewhat differing boundary condi-
tions and for somewhat differing physical problems have
been theoretically investigated for 17 <1 in the work by
de Gennes and Saint-James as early as 1963,% and for the
case of general 1 they lead to the well-known Rowell-
McMillan® oscillations in the quasiparticle density of
states of normal-metal—superconductor sandwich struc-
tures. While the emphasis was on the density of states in
these investigations, the normal-metal—superconductor
system being separated from its surroundings by either an
infinite potential step or by a tunneling barrier of extreme-
ly low transmission, we here instead followed the BTK
method of handling the open system of a metallic contact
with small amount of normal scattering by calculating an
energy-dependent overall current-transmission coefficient.

III. SAMPLES AND EXPERIMENTAL RESULTS

The experimental results only briefly described in HL
and to be analyzed in Sec. IV were obtained as a by-
product of several years of research on tunnel junctions
prepared on bulk tantalum.!® During these investigations,
a total of several hundreds of junctions were prepared by
the same techniques to be described below, and with the
same sort of counter contact, namely an evaporated silver
film typically 1000 A thick. More than 90% of the junc-
tions showed typical tunneling behavior. A small percen-
tage of samples, however, obviously contained metallic
links. It is the properties of these samples we are dealing
with in this paper.

Sample preparation was as follows: The tip of a 0.4-
mm-diam tantalum wire is carefully out-gassed with the
aid of electron-gun heating under ultrahigh-vacuum con-
ditions and at a temperature slightly below the melting

[

point. Finally, the tip is melted into a hanging drop to
produce a smooth surface, and then cooled to room tem-
perature. The sphere-shaped molten drop crystallized in
single-crystal form. Residual-resistivity ratios after this
treatment are typically 10000 or higher.

After breaking the vacuum, the sample is air-oxidized
at room temperature for 10—60 min, and, after masking a
0.1x0.1 mm? tunneling window with Formvar paint, a
silver counter electrode is evaporated. After contacting a
gold wire to the silver film, the sample is mounted on a
suitable sample holder and immersed in a helium-bath
cryostat to measure the current-voltage characteristics and
its derivative with the usual Adler-Jackson'!' modulation
techniques.

Although only a small percentage of the samples con-

" tained metallic links, the final number of these was more

than 20 on account of the large overall number of sam-
ples.

While a detailed account of the entire experimental ma-
terial obtained by the author and several members of our
experimental group lies beyond the scope of this article,'?
the general findings can easily be described on the basis of
the example already presented by HL and quantitatively
to be analyzed in Sec. IV. For illustration of the follow-
ing statements, the reader may glance at the experimental
curve represented in Fig. 4. The following observations
were made at 1.6 K, the lowest measuring temperature:

(1) Normal-state resistance was typically 0.2—1 €, in
contrast to 10 to several hundred Ohms for tunneling
junctions.

(2) Normal-state conductance decreased slightly with
bias, as is typical for metallic contacts,'® in contrast to
tunneling behavior.'*

(3) In the superconducting state, conductance was larger
than in the normal state in the gap region eU <A, with a
relative minimum at zero bias observed in most cases, this
minimum still corresponding to about 1.1—1.4 times the
normal-state conductance. Thus the low-bias behavior is
in rough agreement with the BTK theory for a small Z
parameter of about 0.5, and, in fact, this observation,
when first made, was a key to an understanding of our ex-
perimental results. !

(4) In a higher-bias regime, situated somewhere between
3 and 15 mV and typically extended over several milli-
volts, two stable states existed under our condition of con-
stant imposed current. One of these states was continu-
ously reached from the low-bias regime and the other
from the high-bias regime, with the entire phenomenon
representing a hysteretic transition between two clearly
separated states, which shall be termed the “low- and
“high-injection-current” states. The low-injection-current
state always represented a smooth variation of conduc-
tance with voltage, coming rather close to the behavior
which other authors observed for low-resistance point
contacts, with deviations from the BTK prediction ac-
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FIG. 2. Differential resistance of a Ta/Ag metallic contact.

Normal-state resistance was Ry =0.2 (), and the normalized ex-
cess current eRyA~1(Is—1Iy)=0.55 for2mV <U <8 mV.

counted for by heating.” 'S,

While statements (1)—(4) hold for all of the samples,
the high-bias state which we are mainly interested in
represented itself rather differently for different samples.
In any case, strong structures were observed in the first
derivative, dI /dU; the shape of these structures, however,
was rather different. Only in a few cases were rather
smooth oscillations of the kind represented in Fig. 4 ob-
served. In other cases, a nearly periodic pattern was ob-
served in dI /dU, but with rather sharp and narrow mini-
ma, far from what might be called a damped harmonic
behavior. An example of this kind is represented in Fig.
2, taken from unpublished work by H. Lerchner and the
author. While Figs. 2 and 4 represent extreme cases, there
are examples intermediate between them. Upon close ex-
amination, the feature of a narrow minimum and broad
neighboring maxima, say, the “anharmonicity” typical of
Fig. 2, is also seen in Fig. 4 for the minimum at 8 mV.

We feel that examples such as that represented in Fig. 4
give a better chance of approaching an understanding of
the physics of the high-injection-current state, and, hence,
in the next section, we perform an analysis of this exam-
ple along the lines already presented by HL, i.e., assuming
a “melting depth” driven to higher and higher values by
increasing injection. '

IV. NUMERICAL RESULTS
AND COMPARISON WITH EXPERIMENT

Any attempt to understand the observed structures as a
result of some fixed-geometry—variable-energy resonance,
say, of the Rowell-McMillan type, would quantitatively
fail. The reason is, simply, that eU >>A holds in the ob-
servation regime, and, thus, corresponding contributions,
falling off with energy eU like (A /eU)?, prove to be small-
er than the observed effects by an order of magnitude or
even more. In contrast to this, alterations of the excess
current by variations of the geometry of the supranormal
transition are, in principle, observable at arbitrarily high

ARTUR HAHN 31

voltage, the reason being that the excess current at any
high voltage is largely determined by the low-energy con-
tributions to the current integral.

Thus we are interested in the excess current at very
high voltage U—in fact, its U— o« limit defined by BTK
in normalized form as

~ eR N . 1
Iye=—— lim [Zg( U)—Ry U] ’ (21)
A Usw
which can be calculated from the current-transmission
coefficient, for given normal scattering and normalized
“melting depth” A, as

~ © T('T])—Tw
Iexc: fO —“T—d"? .

-]

(22)

We have numerically calculated 7, exc for several values of
r and 0 <A < 5w, the result being represented in Fig. 3.
As expected, oscillations are observed in all cases except
in the » =1 and the »— oo limits.

The experimental conductance, normalized to the nor-
mal conductance Ry !, should be given by

dI A dl. dx
N]|oe | == (23)

v |... e dr dU

1.4

[ r=1 ,2=0
1.3¢
r=1.6,2=0.24
1.2
1.14

1. 1¢2262=050
.94

]

.84

ol r=4,2=0.75

iexc

]

.6 ;

.54
.4 4 r=8 ,Z=12‘0

7

.3

=1 =1
Y r=16 ,2=1.88

-1t r=50,Z=3.46

|

- 012345
Ax/m

FIG. 3. Normalized excess current vs normalized “melting
depth” calculated by numerical integration.
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with A(U) representing the bias dependence of the melting
depth I=(m/2)AE.

In Fig. 4 we display the positive bias part of the experi-
mental dU/dI characteristics already presented by HL.
Here, we are only interested in the high-injection-current
branch, which clearly represents four minima at different
U values. By tentatively identifying these with the first
four minima in 4T, exc/d A calculated as a function of A, a
scale is given relating A and U, this relation being
represented by the four dots in the inset of Fig. 4. Al-
though this relation deviates from linearity, we may
neglect this nonlinearity as a first approximation and as-
sume the linear A(U) dependence indicated by the straight
line in the inset of Fig. 4. After doing so, we can calcu-
late the right-hand side of Eq. (23) for given r without
any further parameter fit, the factor dA/dU being given
by the slope of that straight line. With r=2.6, corre-
sponding to Z =0.5, taken from the low-injection-current
behavior according to HL, we obtain the theoretical curve
in Fig. 4 representing the right-hand side of Eq. (23). A
was taken to be 0.72 meV.!? The display is such that not
only the A- and U-abscissa scales of the experimental and
theoretical curves are linearly related, as described above,
but also the ordinate scale is chosen so as to correctly
represent the relative variations of the experimental con-
ductance in the high-injection-current regime (a few per-
cent at most). Thus the amplitudes of experimental and
calculated oscillations can be directly compared.

I — A
0‘30.: , 20F LTk ' + [
s ,
rRf | S "
I © 2n}
032+ + ~
'\ T
| LAl o
' o 0 2 4 6 8 10 120(mv)
034+ \‘ Minima-positions and assumed
| linear A (U)-relation
0.36
0,38 ke O
0.40F
1
0 5 10 15 U(mv)

FIG. 4. Dashed and lower solid curves: Differential resis-
tance R vs voltage U of a Ta/Ag metallic contact in the low-
and high-injection-current regimes, respectively. Below. 3.16
mV only the low-injection-current state is stable; above 6.8 mV
only the high-injection-current state is stable. Dotted curve: R
vs U in the normal state. Second ordinate scale: with respect to
this scale, the lower solid curve represents Ry(dI/dU), i.e., ex-
perimental conductance normalized to zero-bias normal-state
conductance. Upper solid curve: Theoretical normalized con-
ductance, for r=2.6, vs melting depth, or vs U (see inset and
text). .
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As a result, the amplitudes of the oscillations corre-
sponding to the lowest-order interferences are represented
appreciably better than might have been expected from
the simple model from which, at most, an order-of-
magnitude agreement was expected before the calculations
were done. It should be emphasized that the theoretical-
curve amplitude does not contain any adjusted parameter,
the r value being adopted from the low-injection-current
state in a manner to be described more precisely below.
The higher-order interferences are somewhat less pro-
nounced experimentally than theoretically predicted, and
no further structure was resolved experimentally beyond
the fourth minimum.

We claim that the good representation -of the low-
order—interference amplitudes by the theory strongly in-
dicates that the physics of the model is basically correct.
One might ask, therefore, how safe the chosen r value is,
and how strongly alterations of r, within reasonable lim-
its, would modify the theoretical result.

HL obtained Z=0.5, i.e., » =2.6, on the basis of the
BTK theory from the measured value of the
superconducting-to-normal zero-bias resistance ratio at
1.6 K. 'As mentioned in that paper, some deviations from
the BTK prediction occurred at higher bias, typical for
low-resistance junctions and attributed to heating ef-
fects.””!® In fact, higher r values are obtained from the
normalized excess current

T o(U)=eRy A~ Is(U)—Iy(U)]

directly measured at U >>A/e. In the (3—8)-mV regime
typical for the lowest-order interferences in Fig. 4, one ob-

28
r=4
26+

24y —r=8
22

N
o

-
-]

-
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-
»

-
[

[
(=]

| r=186

d feye /7 ar(x)

@

. 2.5 3. 3.5 4. 4.5 5.
A/m

FIG. 5. dI, exc/dA vs A for different values of normal scatter-
ing parameter r. Dependence on r is only weak for 2.6 <r < 8.
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tains T, exc(U)=~0.4 from the data represented in Fig. 1 of
HL. This corresponds to values somewhat below »=28 or
Z =1.24, and, hence, appreciably larger than the values
obtained from the zero-bias resistance ratio.

As a matter of fact, however, the theoretical dr. exc/dA
curve only very slightly depends on # for » values between
2.6 and 8. This peculiarity is seen in Fig. 5, representing
dr. exc/dA vs A for some r values as calculated numerically
with high precision. Hence the good agreement between
experiment and theory claimed above is not at all affected
by some uncertainty regarding the most adequate value of
the r parameter, since any reasonable r value yields prac-
tically the same result as the value chosen in Fig. 4.

V. DISCUSSION

We postpone discussion of the most important point,
namely the three dimensionality of the experimental situa-
tion in contrast to the one-dimensional model, to the end
of this section.

There are two deviations of minor importance between
experimental and theoretical results as represented by the
solid curves of Fig. 4. Firstly, the small size of the experi-
mental fourth-order—interference minimum and the
nonobservability of higher orders can be accounted for by
several reasons, the most probable being small deviations
from the geometry, which allows for constructive or des-
tructive interference. Another possible explanation would
be in terms of a finite quasiparticle mean free path of
several coherence lengths order of magnitude.

Secondly, the downward shift of the experimental with
respect to the theoretical curve is of little importance. It
could have been somewhat reduced by normalizing the ex-
perimental conductance with respect to the voltage-
dependent, instead of the zero-bias, normal conductance.
The remaining discrepancy is due to the fact that, apart
from the oscillations, the mean excess current slowly de-
creases with increasing bias. This effect, clearly observ-
able from the experimental current-voltage characteristics
(see HL), cannot be accounted for by the simple model,
but most also be expected for a finite quasiparticle mean
free path.

A third discrepancy concerns what was, in Sec. III, al-
ready called the “anharmonicity” of the experimental
curve. Clearly, this can easily be accounted for by assum-
ing a nonlinear instead of a linear A(U). What must be
concluded from the experimental result of Fig. 4 within
the framework of the given interpretation, is that near
A=3m/2 (the position of the second dI/dU minimum)
the “melting depth” varies more quickly with voltage U
than it does in the neighboring regions around A= and
A=2m.

We are seriously confronted here with the fact that the
description given is essentially phenomenological, and
that no self-consistent theory is available to explain the
spatial variations of pair potential and electric field under
the condition of externally controlled current injection.

While any attempt to improve this situation lies beyond
the scope of this investigation, some conclusions and sug-
gestions concerning the high-injection-current state can be
drawn from the experimental observation.

Firstly, there are apparently rather strong nonlinearities
in the dependence of melting depth on bias, Fig. 2
representing an extreme example. It is highly probable
that the same sort of nonlinearities constitute the source
of bistability in the hysteretic transition regime between
the low- and high-injection-current states that was ob-
served for all samples.

A second conclusion is based on the observation that in
the high-injection-current state, and even in the hysteretic
transition regime, the total variation of conductance is
only a few percent of the normal-state conductance,
despite the strong nonlinearities. From this observation,
one may conclude that Joule heating by the total (normal
plus excess) current is not the main mechanism driving
the “melting depth.” This is in contrast with the view
underlying our previous paper (HL), in which this argu-
ment had been overlooked.

Finally, one might ask why a one-dimensional model
should be applicable to a truly three-dimensional problem.
In fact, the diameter of the orifice connecting both metals
is rather small compared with the “melting depth,” say, at
the fourth minimum of the curves in Fig. 4. An easy esti-
mate leading to this conclusion is as follows:

Firstly, from the pure-tantalum low-temperature coher-
ence length £=925A,'"'® one obtains I,=(7/2)A&
=(/2)?6=2300 A for the I value at the first minimum,
and 7 times this value at the fourth minimum.

On the other hand, the orifice diameter d may be ob-
tained from the normal-state resistance Ry with the aid
of the formula given by BTK and essentially representing
a generalization of the Sharvin formula!® to include elas-
tic scattering as described by the parameter Z, namely

RI;IZZN(O)eZUF—l%d%HZZ)—‘ . (24)

From typical values of the Fermi velocity vy and one-spin
density of states N(0), in metals, one typically obtains
d =800 A.

Hence, at least for the higher-order interferences, d is
small compared to /. One must then think of the normal
phase as forming some kind of droplet in the tantalum
half-space centered around an injection orifice of small
spatial extent. It is very important that, regardless of the
exact shape of this droplet, Andreev reflection focuses
back on the injection orifice on account of the special na-
ture of Andreev reflection, which conserves momentum
and, hence, transforming an electronlike to a holelike exci-
tation and vice versa, simply inverts the group velocity of
quasiparticles on account of time-reversal symmetry.
Hence, the trajectories of incoming electrons and reflected
hole wave packets are identical even if the reflecting phase
boundary is not orthogonal to this trajectory. Thus a
one-dimensional model does not seem as bad an approxi-
mation as it might first appear for a calculation of the
amplitude of the interference oscillations. In order to ob-
tain fully constructive or destructive interference, one
must ‘then, of course, assume that the phase boundary ap-
proximately is at a constant distance from the injection
hole, i.e., that the droplet shape does not deviate too much
from a half-sphere. This assumption seems quite reason-
able for an injection orifice of small spatial extent, say, a
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pointlike injection hole, if one additionally assumes ran-
dom normal scattering in the orifice, i.e, the random na-
ture of the scattering described by the scattering parame-
ter Z of the model.?® In this case, the entire problem is
approximately spherically symmetrical, since cooling
through the sample surface is negligible compared with
heat conduction to the bulk.?! It is important, however,
that even small deviations from spherical droplet shape
(although they might lead to some reduction in interfer-
ence amplitude) do not affect focusing conditions in the
case of Andreev reflection, as they seriously would for
normal reflection, which does not invert, but rather con-
serves, the tangential components of group velocity.

In fact, for a one-dimensional instead of random
current injection, another more serious difficulty would
arise in justifying the simple model, namely the following:

According to BTK, the E <A contributions to the
current integral are converted from quasiparticle current
to supercurrent within a damping length given by the re-
ciprocal of the imaginary part of k¥ as given in (4). This
is easily found to take a minimum value 7§ at E =0, and
although it increases to infinity when E approaches A, a
scale of a few coherence lengths is thus given for this
current conversion. Within this scale, the current density
corresponding to the E < A contributions must have fallen
off to values that are small compared with the critical
current as calculated for a homogeneous current-carrying
state,® otherwise (in our treatment) use of a real pair po-
tential A(x) would have been disallowed. As an easy esti-
mate shows, unless Z >>1, the current density does not
meet this smallness requirement at the orifice and, conse-
quently, would not meet it anywhere in a one-dimensional
geometry. Instead, three-dimensional spreading is essen-
tial to justify the assumption of the pair condensate essen-
tially at rest. :

In contrast with the analyzed experimental example
where the assumption of negligible supercurrent density
seems to work, it may be inapplicable in other cases. Pro-
gress might be possible in understanding more aspects of
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the involved experimental results by an attempt to avoid
this assumption, i.e., looking for a complex self-consistent
solution for the pair potential under injection conditions.
It is hoped that such an effort might finally lead to an
understanding of the systematics, which are doubtless
present in experimental results such as that represented in
Fig. 2, but which are not presently understood. The sim-
ple phenomenological approach given here to discuss the
simpler empirical case of Fig. 4 might thereby serve as a
hint that Andreev reflection by the spatially inhomogene-
ous “supranormal” structure (or, more generally speaking,
interference of low-energy quasiparticles within the
geometry of this structure) might be important for the
self-consistent nonlinear theory to be developed. The final
result might thereby well present richer structure of none-
quilibrium states than the simple normal droplet here as-
sumed. As an example, one could imagine finding time-
dependent structures or stationary, spatially inhomogene-
ous phases similar to those found in flat film geometries.?
In contrast to the film geometry, the results reported by
HL and this paper are characterized by quite different
geometrical and cooling conditions, and they thus corre-
spond to a very different situation with respect to phonon
escape times and quasiparticle elastic mean free path. As
far as the author is aware, they constitute the first results
on nonequilibrium in a high-purity half-space with ap-
proximately pointlike quasiparticle injection.

\
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