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Growth of unstable domains in the two-dimensional Ising model
I

E. T. Gawlinski, Martin Grant, J. D. Gunton, and K. Kaski*
Physics Department, Temp/e University, Philadelphia, Pennsylvania l9122
(Received 7 May 1984; revised manuscript received 24 September 1984)

We investigate the ferromagnetic Ising model with spin-flip dynamics by Monte Carlo computer
simulation. The system is prepared at time t=0 by deeply quenching from a high-temperature
disordered state, to a low-temperature nonequilibrium state. We analyze the growth of domains of
the ordered phase through two measures of the average size of these domains: the Auctuation in
magnetization and the perimeter density. Systems of size 60, 75, 105, 150, and 240 are studied
over large numbers of quenches (from 48 to 450 on a given lattice). We find that domains grow
self-similarly following the Allen-Cahn law (domain area proportional to time). The effects of dif-
ferent updating procedures, finite size, and varying number of runs on the evolution and the statis-
tics of the data are studied. We find that the time evolution given by random updating or a multi-

spin coding algorithm are the same. We estimate the percentage error in the observed size of
domains from a simple zero-time sum rule, which is independent of system size. This is found to be
a reasonable estimate of error throughout the self-similar scaling regime.

I. INTRODUCTION

The development of order in a rapidly quenched system
is a problem of great current interest. ' In a binary alloy
undergoing an order-disorder transition (a two-state de-
generate, nonconserved system), convoluted domains form
which grow self-similarly through their interfacial
motion. A typical evolution following a deep quench is
shown in Fig. 1. According to theory, the average size
of the domains R grows in time via the Allen-Cahn
growth law

domain growth which they have proposed.
The application of the Monte Carlo method to dynam-

ics is somewhat controversial, however. ' The principal
problem arises from the fact that the computer algorithm
one chooses for updating the spins becomes an integral
part of the model. That is, for every different updating
procedure employed, a new dynamical equation is, in ef-
fect, being simulated. Furthermore, the criteria for

Furthermore;, lengths are predicted to scale with 8 during
the growth process. In particular, the nonequilibrium
(elastic) structure factor scales to a good approximation,

S(k, t) =R "(t)F[kii(t)],
in d dimensions, where k is the wave number.

These predictions have been investigated by experiment
and computer simulation. A recent experiment by Ylang
and Lu studied oxygen chemisorbed on W(112). Their
data are consistent with the t law. Two lattice gas
models which have been extensively studied are the Ising
antiferromagnet with spin-exchange' dynamics [which
corresponds to the O/W(112) experiment] and the Ising
ferromagnet with spin-flip' dynamics. Both models are
expected to have the same growth law as the experimental
order-disorder systems. The antiferromagnet has received
the most attention: Phani et al. studied it in three dimen-
sions, while Sahni et al. and Kaski et al. ' considered two
dimensions. The two-dimensional ferromagnet has been
studied by Kawabata and Kawasaki, " and quite recently
by Mazenko and Valls. All these studies observed scaling
and the t' law. Mazenko and Valls also find extremely
good agreement between their simulation and a
phenomenological renormalization-group theory of
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FIG. 1. Typical evolution of a 240 system after a deep
quench to T =1. The interfaces separating the domains are
drawn for t =10, 50, 100, and 150 MCS. Note the self-
similarity of the domain structure in time.
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minimizing statistical error in computer-simulation data
involve balancing N {the number of spins) versus n (the
number of quenches) in an appropriate way. The subtlety
of this problem has been discussed in the literature. s

Recently, in an excellent Monte Carlo study of a four-
state degenerate model, Sadiq and Binder' showed that
increasing X does not necessarily lead to better statistics.
This has also been emphasized by Mazenko and Valls. As
more complex lattice models are studied, this problem be-
comes increasingly important.

In this study we return to the Ising ferromagnet with
spin-flip dynamics which models the kinetics of an order-
disorder transition in a binary alloy. We have done this
for five reasons: (i) to test the effect of various computer
algorithms for updating spins, (ii) to test scaling and the
t'~ law on large lattices with large numbers of runs, (iii)
to study finite-size effects, (iv) to investigate the conse-
quences of varying the number of quenches, and (v) to
provide a basis for comparison in a separate paper on the
Ising model in a random magnetic field. '

We have prepared the two-dimensional Ising ferromag-
net in an unstable state. At t =0, the system is quenched
from infinite temperature, through the critical tempera-
ture, to a low temperature T/J =1, where J is the Ising-
interaction constant and Boltzmann's constant is unity.
The Ising Hamiltonian is
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where the sum runs over nearest neighbors, and o.=+1.
The dynamics of this model are given by a stochastic in-
teraction with a heat bath, via the spin-flip probability

FIG. 2. R ~(t) vs. t for random updating (El) and multispin
coding (0). N =60,T = 1, 1000 quenches each. Note the excel-
lent agreement with Allen-Cahn theory.
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where hE; is the change in energy due to flipping spin o;.
A spin flips if 8; exceeds a random number between 0
and 1. We define a Monte Carlo step (MCS), our funda-
mental unit of time, as N attempts to flip spins. The up-
dating procedure is discussed below. Our attention has
focused on two quantities: the nonequilibrium mean
square of the magnetization fluctuations per spin,

and the average energy per spin

Since the k =0 peak of the structure factor is
S(O,t)=N(M )(t), scaling [Eq. (2)] implies the length
measure

R ~(t)=N(M~)(t),
originally introduced by Sadiq and Binder. ' lt is
straightforward to see that the average perimeter length
per unit area is R z ', where'
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FICx. 3. R M/100 vs t(MCS) where R M=N(M ). These
data indicate good agreement with the Allen-Cahn growth law—2R ~t. No systematic finite-size effects are apparent. El, 8

+, and & represent system sizes %=60, 75, 105, 150~,
and 240, respectively.
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good Allen-Cahn agreement. Plotting symbols indicate the
same system sizes as in Fig. 2.

FIG. 6. R M/100 vs R ~/100 for a 60 system. Time range is'

from 0 to 525 MCS. The breakdown of scaling is apparent for
FY) 0 4V N due t.o finite-size effects.

R (t)= 2
2+E(t)/J

Our results for these lengths in the different sized systems
are given in Figs. 2—6.

O
O II. MASTER EQUATION AND THE MONTE CARLO

ALGORITHM
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In this section we will examine the relationship between
the standard master equation and the Monte Carlo algo-
rithm. We will see that, in a very real sense, it is the algo-
rithm which defines the dynamical model. Nevertheless,
we will present empirical evidence demonstrating that
there are many dynamical equations (that is, many algo-
rithms) which 'give the salient dynamical properties in a
universal way. Our discussion is partly based on a recent
paper by Choi and Huberman. ' In discrete time the stan-
dard master equation for the probability distribution func-
tion p(cr, t) can be written in the form

FIG. 5. R, ~/100 vs R~. Note that R ~~R~ indicating
that these independently determined lengths have the same time
dependence. This is a consequence of dynamic scaling. Time
range is from 0 to 200 MCS.

The Monte Carlo algorithm for the same spin-flip proba-
bility can be written in the form
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p(o, t+1) p(—o, t)

(10)

R(t +1)—R(t)
R (t)

for the Monte Carlo algorithm, where t is measured in
Monte Carlo steps. While this is certainly a necessary
condition, it is by no means sufficient. To our knowledge,
there is no proof, rigorous or otherwise, of any limit in
which Eqs. (9) and (10) are identical. Instead there are
only plausible arguments (folklore) and empirical evi-
dence We n. ote that rigorous proofs would be of great
value and considerable interest. Nevertheless, for the par-
ticular problem we are studying (the growth of unstable
domains following a temperature quench) there are some
additional requirements which must be satisfied. In par-
ticular, for late times, we should observe the Allen-Cahn
growth law, Eq. (1). (Although this result is usually de-
rived by field-theoretic analysis, it is to be expected that it
also follows from the master equation. ) Furthermore, by
integrating the continuum master equation, following
Mazenko and Valls, we find that

R M'(t) =1+at+0(t'), (12)

where the unit of time is now one Monte Carlo step (N at-
tempts to update spins). The prime on the summation
means that the spins o.; are updated in some particular or-
der.

Clearly these two equations are different because of the
additional time dependence of p on the right-hand side of
Eq. (10). (Both dynamical equations have the same condi-
tion for detailed balance. ) In Eq. (9) all N spins flip in the
same environment, and in no particular order. In Eq.
(10), however, the spins flip in some specified order. To
be explicit, while the spin o i flips in the environment of
the tth Monte Carlo step, oz flips in the environment of
the (t+1)th Monte Carlo step [to order 1/N in Eq. (10)],
which is not the case for the master equation. Thus, if the
Monte Carlo algorithm is to simulate the standard master
equation, there must be no significant evolution during a
Monte Carlo step.

A concrete way to express this is as follows. One must
require that a physical quantity R (t) (e.g., a moment of p)
satisfies

sequentially, row by row. It is evident, however, that this
can lead to the sort of spurious evolution during a Monte
Carlo step discussed above. Indeed, test runs we have car-
ried out indicate that Eq. (11) is violated, and the Allen-
Cahn growth law is not present, for this updating pro-
cedure. Another way to update spins is as follows. One
visits the spins on the lattice in random order. Doing this
we find that Eq. (11) is satisfied, and the Allen-Cahn re-
sult is recovered (see Fig. 2). In addition, by interpolating
times between 0 and 1 Monte Carlo steps [i.e., we call an
updating of 1 spin (1/N)th of a Monte Carlo step] we find
that Eq. (12) is satisfied. ' On the basis of this evidence,
the random updating algorithm is faithfully simulating
the standard master equation.

Many other ways to update spins in an algorithm are
possible. Note that in a random updating, one typically
finds that widely separated spins are being updated (which
is why there are negligibly few unphysical correlations
there, causing history-dependent effects inside a Monte
Carlo step). Of course, one can simply choose several
widely separated spins and update them simultaneously.
This is what is done in a multispin coding algorithm. '

We have studied such an algorithm where we randomly
update groups of 15 widely separated spins. The advan-
tage of this is that, because the orientation and energy of
15 spins can be stored in a 60-bit word, a factor of 15 is
gained in computer storage space. In addition, the algo-
rithm results in a doubling of execution speed over the
random updating method discussed above. Again we find
that Eq. (11) is satisfied, and that we obtain the Allen-
Cahn result. In fact, as can be seen from Fig. 2, the re-
sults are indistinguishable from the random updating
method. Also, interpolating between 0 and 1 Monte Carlo
steps [where an updating of 15 spins is called (15/N)th of
a Monte Carlo step] we again find that Eq. (12) is satis-
fied. ' Therefore the multispin coding algorithm is also
faithfully simulating the master equation, on the basis of
this evidence. Thus, both the random updating and the
multispin coding algorithms simulate the master equation
which models the kinetics of an order-disorder transition
in a binary alloy.

It is important to point out that these results and con-
clusions apply only to the model we are studying, and
may differ significantly for other models. In general, any
technique for simulating a master equation should be used
with some caution, particularly when dynamics are stud-
ied. For the remainder of this paper we will study the
phase-separation kinetics using the multispin coding algo-
rithm discussed above (and in Fig. 2 the random updating
algorithm).

as t +0, where a=—3.0 for T/J=1. [Equation (12) is
completely unrelated to the Allen-Cahn growth law and
simply describes initial transient behavior. ] These three
constraints, Eq; (11), the Allen-Cahn growth law, and Eq.
(12), will enable us to provide empirical evidence relating
the Monte Carlo algorithm to the master equation.

Any differences between the algorithm and the master
equation are intimately connected to the way spins are up-
dated in the primed summation of Eq. (10). Certainly the
simplest way to update spins is to go through the lattice

III. RESULTS

We have considered several system sizes, always with
periodic boundary conditions, 60, 75, 105, 150, and
240. The number of runs on each lattice size was 450,
300, 180, 90, and 48, respectively. (In Fig. 2, 1000 runs
for the 60 system are shown. ) We plot our results for the
two lengths R ~ and R& in Figs. 2—4. The data are
represented well by the theoretical growth law, Eq. (1).
Scaling is observed since they have the same time depen-
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dence over, t =1 to t =200 MCS. Over these times, we
observe no systematic finite-size effects within the pre-
cision of our study. We find that such effects become im-
portant for R &0.4@X, as was found in earlier stud-
ies. ' ' However, it should be emphasized that these ef-
fects are primarily due to percolating clusters (slabs)
which are artifacts of the periodic boundary conditions.
Other more subtle finite-size effects are also possible. ' In
Fig. 5, we compare the time behavior of the two lengths.

We have studied an additional 36 quenches in the 60
system over longer times (t —1000 MCS). In Fig. 5 we
display results for 22 of these quenches which eventually
reached equilibrium. To show the breakdown of scaling
for R )0.4v N, we have plotted R ~ versus R~ out to
525 MCS. It should be emphasized that, in contrast to
the results here, in the thermodynamic limit (N~ ao ) the
system will not equilibrate in a finite amount of time.

Finally, let us consider the criteria for minimizing sta-
tistical error in the data. ' We have found it useful to
analyze the disordered system which is present at zero
time. From Eq. (12),

R M(t =0)=l'.
Further, we find that the error for ~ quenches is given by
the sum rule,
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The ~~ factor follows from standard error analysis,
while the V 2 factor comes from the fourth moment of the
binomial distribution. In Fig. 7, we plot the observed
relative error at time t, b.(t), versus the calculated zero-
time relative error b,o for the different system sizes (i.e.,
different number of quenches) and for three times: t =0,
t = 100, and 200 MCS.

The approximate time and system size independence of
the relative error can be understood as follows. Let the
240 system be broken down into 16 60 systems. One
might think that 48 quenches on the 240 system would
correspond to 768 quenches on the smaller 60 system.
However the built-in t =0 uncertainty (calculated above)
is not changed by breaking down a large system into
many -smaller ones. Furthermore, scaling implies that
the error can only depend on time through the charac-
teristic length R(t). Thus, b, (t) is independent of time to
a good approximation, and Eq. (12) provides an error esti-
mate which is independent of system size throughout the
self-similar scaling regime. Of course one must, in addi-
tion, still consider systems large enough to encompass all
the necessary physics of the model being studied.

To conclude, we have analyzed the effects of varying
both system sizes and numbers of quenches on the domain
growth in the ferromagnetic spin-flip Ising model. We
found that the well-known results of theory and experi-
rnent, the t' law and self-similar scaling, showed no sys-
tematic finite-size deviations until domains had grown to
a size R )0.4~N, within the precision of our study. We

FIG. 7 Measured error (i.e., observed statistical error) versus
computed error at t =0 [see Eq. (12), ~2/A, for the quantity
R M. Three times are shown for each system size: t =0 (Ej),
t =100 t ), and t =200 (Q). All times are in Monte Carlo steps.
The dashed line with unit slope is the computed error,
50(n) =V 2/~

tested the effect of different procedures for updating the
spins during simulation. We found that sequential updat-
ing led to a time evolution so fast that the Cahn-Allen
growth law was no longer observed. The multispin and
single-spin coding algorithms with random updating were
extensively tested and found to be representative of the
standard master equation associated with the kinetic Ising
model. We also obtained an estimate for the statistical
uncertainty in the data from a simple sum rule, which was
independent of system size. In a future paper we will ob-
tain the structure factor S(k, t).

ACKNOWLEDGMENTS
f

We wish to acknowledge valuable conversations with
Professor M. H. Kalos and Professor G. F. Mazenko. We
would also like to thank Dr. Jorge Vinals for some useful
and stimulating discussions. This work was supported by
Office of Naval Research Grant No. N00014-83-K-0382
and National Science Foundation Errant No. DMR-
8312958. One of us M. G. was supported by the Natural
Sciences and Engineering Research Council of Canada.



286 GA%'LINSKI, GRANT, GUNTON, AND KASKI 31

'Present address: Physics Department, Tampere University of
Technology, Tampere 10, Finland.

J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transi-
tions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz (Academic, London, 1983), Vol. 8.

J. D. Gunton and M. Droz, Introduction to the Theory ofMeta
stable and Unstable States, Vol. 183 of Lecture Notes in Phys-
ics (Springer, Berlin, 1983).

S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).
4K, Kawasaki, M. C. Yalabik, and J. D. Gunton, Phys. Rev. A

17, 455 (1978).
5T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. Lett. 49,

1223 (1982);T. Ohta, Ann. Phys. (N.Y.) (to be published).
6G. F. Mazenko and O. T. Valls, Phys. Rev. 8 27, 6811 (1983);

Phys. Rev. B (to be published).
7G.-C. Wang and T.-M, Lu, Phys. Rev. Lett. 50, 2014 (1983).
M. K. Phani, J. L. Lebowitz, M. H. Kalos, and O. Penrose,

Phys. Rev. Lett. 45, 366 (1980).
P. S. Sahni, G. Dee, J. D. Gunton, M. K. Phani, J. L. Le-

bowitz, and M. H. Kalos, Phys. Rev. 8 24, 410 (1981).
oK. Kaski, C. Yalabik, J. D. Gunton, and P. S. Sahni, Phys.

Rev. 8 28, 5263 (1983).
C. Kawabata and K. Kawasaki, Phys. Lett. 65A, 137 (1978).

~A. Sadiq and K. Binder, J. Stat. Phys. 35, 517 (1984).

~ E. T. Gawlinski, K. Kaski, M. Grant, and J. D. Gunton,
Phys. Rev. Lett. (to be published).

"M. Grant and J. D. Gunton, Phys. Rev. B 28, 5496 (1983).
~5K. Kawasaki, in Phase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green (Academic, New York,
1972), Vol. 2.

R. J. Glauber', J. Math. Phys. 4, 294 (1963).
7M. Y. Choi and B. A. Huberman, Phys. Rev. B 29, 2796

(1984).
For random updating we obtain a=3.0+0.2 while for the
multispin coding algorithm we obtain a=2.9+0.3.

~ L. Jacobs and C. Rebbi, J. Comp. Phys. 41, 203 (1981).
We have also checked that there is no preferential direction
for growth due to a spatial correlation between the 15 widely
separated spins.

Pointwise time correlation of our data makes the results ap-
pear somewhat better than their statistical uncertainty. This
is also true of other studies.
Explicitly, if m is the net displacement from the origin after a
one-dimensional random walk of N steps, then
( m ) —( m ) = 2K (N —1). After appropriate normalization
this gives Eq. (13). Generalizations to models with more than
two degenerate ground states should be straightforward.
See also the discussion in Ref. 12.


