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Dynamic structure factor for the electron gas in metallic systems
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A microscopic calculation is presented for the dynamic structure factor of the electron gas at me-

tallic densities. The calculation is based on a theory of dynamic correlations in the electron gas,
which is valid for high to metallic electron densities and which strictly maintains the conservation
laws. A detailed comparison is made to the multiple peaks experimentally observed in the dynamic
structure factors of Li and Be at momentum transfers greater than the Fermi momentum. From the
quantitative agreement obtained, we conclude that the peak structures are a direct result of short-
range Coulomb scattering correlations between two excited electrons. These correlations are fre-
quency sensitive and highly nonlocal, and cannot be replicated by mean-field approximations.

I. INTRODUCTION

In the preceding paper' (to be referred to as I here) we
formulated a new microscopic theory of correlations in
the interacting electron gas at metallic densities. We in-
corporated in this theory a number of significant features.

(1) In the high-density limit of the electron gas, the
theory reduces to the familiar random-phase approxima-
tion (RPA), which is exact in this limit.

(2) At metallic densities and for large momentum
transfers, our model reproduces the dominant correlations
in the electron gas, namely, those due to strong short-
range Coulomb scattering between two electrons.

(3) At metallic densities and for small momentum
transfers, our model includes correlations due to residual
electron-hole screening, these being the leading corrections
to the RPA high-density expansion.

(4) The theory is applicable in all regimes of momen-
tum and energy transfer and provides a unified frame-
work for both dynamic and static correlation effects.

(5) The theory strictly conserves particle number,
momentum, and energy. In particular, the dynamic struc-
ture factor exactly satisfies the f and conductivity sum
rules.

In this paper we pursue the theory's predictions for the
dynamic properties of the interacting electron gas at me-
tallic densities and at large values of momentum transfer
(that is, values greater than the Fermi momentum). For
real metals (for example, Be, Al, I.i) the dynamic struc-
ture factor, when plotted as a function of energy transfer,
has been observed ' to depart markedly from the predic-
tion of the random-phase approximation (RPA) and its
static mean-field generalizations. We will present numer-
ical calculations reinforcing our previous claim that the
intricate peak structure observed in the structure factor is
a direct result of dynamic Coulomb-scattering correlations
between electron pairs.

For a more extensive overview of existing approaches to
the correlation problem- in the electron gas, the reader is
referred to the critical survey in paper I and to references
therein.

In Sec. II we introduce the formalism and then present,

in diagrammatic form, the structure of the correlation
terms within our model. One class of terms in particular
is distinguished by its sensitive dependence on the external
energy transfer. Section III contains the detailed analysis
of each class of contributions and the systematic formula-
tion of a practical scheme for calculating the dynamic
structure factor. Section IV presents our main numerical
results for the structure factor. Finally, Sec. V contains
concluding remarks.

II. DYNAMIC CORRELATIONS: FORMALISM

Section II A establishes notation and briefly reviews the
main formal results of I. Section IIB introduces the set
of time-ordered correlation diagrams derived from our
model. At large momentum transfers these diagrams fall
naturally into three major groups.

A. General formulation

In this work we employ units such that 4=m =1. The
Coulomb coupling constant e is then equal to the inverse
Bohr radius, e =ao -0.529 A '. Momentum is in
units of inverse length, and energy has units of momen-
tum squared. For an electron gas of particle density n,
the Fermi momentum kF is given by k~ ——(3~ n)'
=(9m/4)' ao r, , where n has been expressed in terms
of ao ' and the usual separation parameter r, .

First, let us recall the relation between the total and
proper polarization functions, X(q, co) and X"(q,co), for
the uniform electron gas ( q and co are the momentum and
energy transfers):

~(~ )
X ( qco)

1 —V(q )X"(q,co)

Here, V( q ) =4rre /q is the Fourier-transformed
Coulomb interaction. The total polarization 7 measures
the response of the density to an arbitrary external poten-
tial in the weak-coupling limit, while the proper polariza-
tion g" measures the density response to the total
potential —the external potential plus the screening poten-
tial induced within the gas. The macroscopic dielectric
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response of the system is completely determined by X"
through Eq. (1), and the structure of X" depends only on
the microscopic correlations in the system.

A quantity directly accessible in scattering experiments
using a weakly coupled external probe is the dynamic
structure factor S(q, ro). The relation between S(q, ro)

and the'proper polarization X"(q, co) is
1S( q, ro)—:——ImX(q, co)

1 ImX"( q, ro)
(2)

i

1 —V(q )X"(q,co)
i

'
In I we applied the method of Baym and Kadanoff to9

formulate a strictly conserving approximation for X" by
setting up a inodel of microscopic correlations via the fol-
lowing steps.

(i) We expressed the exact ground-state energy of the in-
teracting system as a functional of the fully dressed one-

body propagator G.
(ii) From the complete set of closed Feynman diagrams

representing the exchange-correlation part of this energy
functional, we retained a subset (Fig. 1) with the following
characteristics.

(a) The subset included all particle-particle Coulomb
scattering "ladder" diagrams, which dominate the large-
momentum correlation contribution.

(b) The subset included all particle-hole polarization
"ring" diagrams, which dominate the screening correla-
tions at small momenta.

(c) Within each given diagram of our subset, every
propagator 6 was equivalent to every other 6 in the dia-
gram. This symmetry preserves the space-time invariant
form of the energy functional, thereby ensuring conserva-
tion. '

(iii) By formally minimizing the symmetric functional
for the ground-state energy with respect to 6, we generat-
ed an approximate but strictly conserving one-body equa-
tion of motion, allowing us in principle to evaluate the
propagator G in a self-consistent way:

G '(k, k )=[G' '(k, k )j ' —X[G](k,k ) .

(
9

) + 0 ~ ~

0
+ —„

(a)

+—1

3 +—1

4 + 0 ~ ~

(b)
FIG. 1. Contributions to the exchange-correlation component

of the ground-state energy functional @[G]within our model.
The accompanying fractions are weighting factors, and there is
an implicit overall factor of ~. Solid lines indicate the self-
consistent particle propagators 6 in the Feynman representa-
tion. (a) Direct scattering ladder plus ring diagrams. (b)
Hartree-Fock plus exchange ladder diagrams.

The k and k are the momentum and energy variables for
a single particle, and 6' '(k, k )=(k —k /2) ' is the
single-particle propagator for the noninteracting electron
gas. The functional X[6] is our single-particle self-
energy. It is defined as the variational derivative of the
ground-state energy functional with respect to ( —iG).

(iv) Finally, by taking the second variation with respect
to 6 of the ground-state energy functional, we generated a
conserving integral equation for the proper electron-hole
polarization propagator which we denoted by A"[6].
The equation for A"[6] contains an effective two-body
interaction, ="[6]. This interaction explicitly exhibits
within its diagrammatic expansion all the microscopic
dynamical correlations which are implicit in our choice of
a conserving energy functional. The equation for A"[6]
1s

A"[G](ki,k&,'q, ro) = iG(ki, ki)6(q—+ki, co+ki)

0

X 1+ g f . I="[G]~~ (ki9ki, k29kz, q9co)I IA"[G](k29kz9q9co)I
Kl

k 2, cr2

(4)

H (k k ) and (k cr k ) are single-particle variables. Although A"[G] does not depend on spm 0., the effective
interaction ="[G] includes exchange processes and these contributions carry a Kronecker fac or . e p p p-
larization function X" is simply the trace of A"[6]over its single-particle label:

dk10
X"(q,co)= g f A"[G](ki,ki', q, co) .

27Tl
k l, a1

Steps (i)—(iv), together with the diagrams for the ground-state energy functional (Fig. 1), uniquely define our model.
We may expand A"[G] in Eq. (5) in powers of:-"[6].For X" we obtain a series of terms X,g', X, . . . of increasing

order in the effective interaction. To first order in ="[6]we have
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X"(q,~o) =X (q, co)+X'(q, ~),
dk'

X (q, co)=2+ f G(k~, k~)G(q+k~, co+k~),
27Tl

k)

P'(q, co)=4y y f ' f —'. G(k„k, )G(q+k), co+k)) —,
' g t:-"[G] (k(,k), k2, k2;q, co)j

2m.i 2ai
kt k2 CT l, c72

&& G (k2, k2)G( q+ k2, co+k2) . (6)

The leading term X (q, co) represents the propagation of a
renormalized particle and a renormalized hole without
mutual correlations. In the high-density limit this func-
tion reduces to the familiar Lindhard function. The next
term, X'(q, co), contains to lowest order all the pair corre-
lations built into ="[G]. To examine these pair correla-
tions we now evaluate X'( q, co ).

B. Diagrammatic expansion for g'

After the frequency integrals in the Feynman diagrams
have been performed, the polarization function P'(q, co) in
Eq. (6) becomes the sum of all possible time ord-ered
Goldstone diagrams. ' Correspondingly ""[G] separates
out into a set of scattering-matrix elements linking the ini-
tial and final particle-hole pairs of 7'. Each of these ma-
trix elements can be expanded in terms of the components
of either the T matrix (T ) or the shielded potential ( V");
there is no mixing of T terms and V" terms within =".
Figure 2 defines the T matrix and the shielded-potential
interactions.

In Figs. 3—9 we show the time-ordered diagrams for
X'(q, co). The corresponding Feynman diagrams for P'
may be found in Fig. 4 of paper I. As usual forward-
propagating particle lines (electrons) have an arrow point-
ing up, while backward-propagating lines (holes) point
down. In each diagram of these figures we use a pair of
solid horizontal lines to schematically represent two com-
ponents in the series expansion for either T or V" (both
components will belong to the same series). Two such

T

i

l

horizontal lines delineate the start and end of a given
dynamical correlation process in ="[G]. Figures 3—6
show those terms for which the pair of T or V" interac-
tions do not overlap in time. We defer discussion of the
overlapping terms. The time-ordered contributions to X'
fall into four classes, A through D. We discuss here the
first three classes (Figs. 3 through 8).

Class A (Fig. 3). Contributions in which the initial and
final electron-hole pairs both carry the external momen-
tum and energy (q, co) in the same time direction. At
large (q, co) this implies large transfers of momentum and
energy from the initial to the final pair, resulting in on-
shell scattering between these forward-propagating pairs.

Class B (Figs 4and 5). . Contributions in which the ini-
tial and final electron-hole pairs propagate in opposite
time directions. At large (q, co) these terms retain a net
momentum transfer of order q between the pairs, but
there is no overall energy transfer; they consequently
represent purely static correlations.

Class C (Figs 6to 8). C.ontributions in which the ini-
tial and final pairs propagate in the same time direction
but such that the correlations link electron and hole. Be-
cause of the strong phase-space constraints for this class,
the transfer of energy and momentum within the interac-
tion is very restricted even for' large q. When q is large,
the transfer is either limited to be of the order of the Fer-
mi energy Ez and Fermi momentum k~, respectively, or
else there may be at most one outer interaction line which
transfers momentum —q, while all the other bare interac-
tion lines transfer momentum & kz.

The main objective of our present analysis is to demon-
strate that the class-A group dominates the fine-scale co

behavior of the dynamic structure factor S(q, co). For

VSC

VSC

(q, to)

—e-e

-k2

(b)

FIG. 2. Definition of the rmatrix with self-consistent propa-
gators. Each pair G G is either electron-electron or hole-hole.
(b) Definition of V", the dynamically shielded RPA interaction
with self-consistent electron and hole propagators G.

FIG. 3. Class-A contributions to P (q, e) for which the ini-
tial and final electron-hole pairs both transport the external
momentum and energy in the same time direction. In this and
succeeding figures the time-ordered (Goldstone) representation is
used.
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FIG. 4. Class-B contributions to P'(q, ~) involving electron-

electron or hole-hole correlations. In this class initial and final
electron-hole pairs propagate in opposite time directions.
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(b)
FIG. 6. Class-C contributions to g (q, co) for which the initial

and final electron-hole pairs propagate in the same time direc-
tion and in which the correlations are between electron and hole.
(a) Electron-hole two-pair correlations. (b) Electron-hole one-
pair correlations.

convenience we have labeled the parts of:-"[6]in Figs.
3—9 as follows.

~ p
ex

(b)
FIG. 5. Class-8 contributions to P (q, co) (initial and final

electron-hole pairs propagating in opposite time directions) in

which the correlation is between electron and hole. (a}
Electron-hole two-pair correlations. (b) Electron-hole one-pair
correlations.

all interactions in =" involving the propagation of
two intermediate excited electrons at all times between the
initial and final scatterings.

all interactions in =" involving at least one inter-
mediate hole-hole excitation.

The two contributions above will be denoted generically
by ~ P-P

all interaction ladders in =" involving the in-
termediate scattering of an electron and a hole.
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q, u))

k)

e-e
ex

k)

h-h

k2
(q, ~)~

FIG. 7. Class-C contributions to P (q, co) in which the single
electron-hole pair is correlated through the full dynamically
screened interaction V".

k2

(q, ~)—
FIG. 8. Class-C contributions to P'(q, co) comprising the ex-

change terms for the electron-electron and hole-hole correlation
terms shown in Fig. 3.

We will refer to electron-hole interactions generically as
w p-p

:-~: all interactions in ""with at least one intermediate
electron-hole polarization bubble.

Where appropriate the analogs of these composite in-
teractions, produced by exchanging two particle lines, will
be distinguished by the subscript ex, as for example in

—ex

Having introduced the family of terms that make up =",
we now examine their functional behavior.

III. DYNAMIC CORRELATIONS: ANALYSIS

This section consists of three parts, in the first of which
we write explicit expressions for the classes A, B, and C
introduced in the preceding section. A fourth class, D, in-

volving two-plasmon scattering is introduced. Of the four
classes, only the class-A terms have a structure which
leads to rapidly varying dynamical behavior. Section
III8 discusses self-energy insertions in the single-particle
propagators. It is shown that such insertions, when con-
sistently treated in the time-ordered diagram representa-
tion, cannot contribute to the rapid variation of X"(q,co)
with the energy co. Finally in Sec. III C we combine the
results of our diagrammatic analysis with some formal
techniques from paper I to produce a tractable scheme for
calculating X"(q,co). This scheme reveals important and
novel dynamic effects.

A. Structure of:-"

In X'(q, co) the parts of ="[G] act effectively as two-
body matrix elements which couple the initial electron-
hole polarization pair propagator to the final pair propa-
gator. These matrix elements are in general nonlocal since

they depend on the outer hole momenta k&, k2 as weil as
on q. They are also energy dependent since they vary
with the outer electron and hole energies as well as with
co. We will express the matrix elements of:"~~[6],
:-&I'[G], and =P[G] in the form &Q „,i:-(P,E)

~
Q;„&,

where (i) P is the total conserved momentum of the at-
I

tached (incoming or outgoing) fermion lines, (ii) E is the
net energy input from the attached fermion lines (this can
be straightforwar'dly determined from the rules for Gold-
stone diagrams' ), and (iii) Q,„, and Q;„are the outgoing
and incoming relative momenta of the attached fermion
lines.

To simplify the discussion here we will replace all
dressed propagators G in the diagrams of Figs. 3—8 with
their bare counterparts 6'0'; our justification for this step
can be found in Sec. III B.

1. Class A

We can write the class-A contributions to X'(q, co) (see
Fig. 3) as

e e' e e
k, q+k& k2 q —k2x"(q, )—=4g

ki k2

&(= (ki, —kq&q, co) .

Our notation is as follows. The outer electron-hole pair
energy denominators are defined as

Ei(co) =co e-—+e- +ir),(0) (0)
q+ki ki

E2(co)=co—e - +e- +sg,CO) (0)
q —k2 k2

where e~ '=p /2 is the bare single-particle energy for a
P

particle of momentum p, and ri=O+. The Fermi cutoff
functions e,e» are defined in terms of the usual step

P P
function 6(x)=(x + i

x
i
)/2

i
x i:

6 =6(k~ —p),

6 =6(p —A:,).
The class-A-type interaction = (k&, —k2;q, co) is the
spin-averaged sum of:-' ' and:-" ". We have

(10)
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Momentum variables are given in terms of k), kz, and q by K= k) + kz and A =q+2k, where k =(k) —kz)/2.
The leading terms of:- expanded as Born series in powers of the Coulomb potential V are of second order in V.

These leading-order terms already display the functional behavior of all particle-particle excitations, and it is instructive
to look at the second-order Born terms explicitly:

= g V(Q)), , V(Q),
—,[E)(~)+Ez(~)]+ , (q'—+I(.") p'— (1 la)

and

=-,"""=QV(Q, ), , V(Q), (1 lb)
, [E)(~)—+Ez(~)] „(q'+—&—')+p'

where p) ———,
' M+p, pz ———,

' M —p, Q) ———,'(K+q )—p, and Qz
——p ——,(K—q ). The outer particle-hole energies

E((co) and Ez(co) are as in Eq. (8). In their more familiar form, the intermediate energy denominators are

+e(0) +&(o) e(0) e(o) [E ( )+E ( )]+[ (qz+~z) pz] (12a)

—e' ' - —e' ' +e' '+e' ' = —,[E,( )+E ( )]—[ , (q +If—)—p ] .
q+k& q —k2 p~ p2

(12b)

In Eq. (lla) we have a singular interaction which peaks
for p =

~ ( q +K ) + —,q.K, and another interaction

which peaks for p =
~ ( q +K )——,q.K. These two

peaks are thus separated by hp -qk~. The divergences
in the interactions are cut off by the Pauli operators,
which nevertheless permit large contributions from the
peaks. A singular energy denominator is sandwiched in
between the peaks. At the center of the single-particle ex-
citation region we have cu = —,q, so that
—,

I
E)(co)+Ez(co)

I
&qkF. The energy denominator of

Eq. (11a) goes through zero when p =—„'(q +K ), i.e.,
directly between the two interaction peaks. Consequently,
following the summation over p in Eq. (1 la), :-' ' will
exhibit a rapidly varying peak-and-dip structure on a scale
bco-qk~ when co is in the region of single-particle excita-
tions (i.e., Ice —q /2I &qkF). This ultimately leads to
fine co structure, on a similar b,co scale, within the central
peak of the structure factor S(q, co).

In order to assess the contribution to X (q, co) of hole-
hole scattering correlations we first note that the Pauli
projection operator for hole states severely restricts the
available phase space when the momentum transfer q is
large. Although the energy denominator for hole scatter-
ing [Eq. (12b)] can vanish in an accessible region of phase
space, the relative hole momentum p must be such that

Even under the least stringent choice of the hole parame-
ters K and k, these two requirements almost exclude each
other for q & 2kF. We conclude that dynamic hole-hole
scattering at large momenta is negligible in comparison
with electron-electron scattering.

E) (m) Ez( —co)
k) k2

X= (k(, kz, q, co) . (14)

2. Class 8
The class-B terms of X'(q, co) are defined in Figs. 4

and 5. They all contain initial and final electron-hole
pairs which propagate in opposite time directions and
therefore overlap in the time domain without restriction.
Their mutual correlations are thus static. This is reflected
in the absence of the external energy co in all intermediate
energy denominators. However, the momentum transfer
between the initial and final pairs is always close to the
external momentum q when q is large. The class-B con-
tributions to 7' are denoted by 7:

and

p &kF , q k+O(qk—F—)—

p —„'(q +K )+O(qkF—) .

(13a)

(13b)

The spin-averaged interaction = can be divided into
particle-particle terms =I'~ and electron-hole terms, =I'I'
and =~. The =)' )' group, including fermion exchange, is

:"(") "z q ~)=&q+"
I

'(K ~'-"+e'-")
I
")+&q+"I:""«—e'-" -„—~'-„" -) I

")
——,

'
& q+k

I

=-'-'(K, ~'"+~(„') )
I

—k) ——,
'

& q+k I

=-"-"(K., —e(0) —~(„') )
I

—k) .
1 2 q+ k& k2 —q

The momenta K and k are as previously defined for Eq. (10), and we have expressed the matrix elements for =e)'„" in
terms of:"~I'. We again discuss the functional form of =I' I' by examining its second-order Born terms:
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e,e,
P 2(:-' '+ "',„')z ——g V( q +k —p ) [ V( p —k ) ——,

'
V( p +k )],

k —pP e,e
(:-""+=,"„") = g V( q + k —p ) [ V( p —k ) ——,

' V( p+ k ) ] .
p' —

I
q+k

I

'

(16a)

(16b)

x 2 2 (0) (0) (0) (0)k —p =E'~ +6~ —6~ I —E'~
p

j P 2
(17a)

and

p —
I
q+k

I
=e-, +e-, —e —e2 ~ 2 (0) (0) (0) (0)

P i P 2 q+kl q+k&
(17b)

Note, in contrast with Eqs. (12a) and (12b), that these en-
ergy denominators are independent of co and negative de-

I

Here p ] ———,K+ p and p 2 ———,K—p are the momenta of
the intermediate excited particle pairs. The original forms
of the energy denominators are

I

finite (because of the Pauli restrictions), and consequently
lead to purely static correlations.

It is known from previous work that ="~B is a slowly
varying function of the outer hole momenta k& and k2
and is consequently well approximated by its local average
over hole states. We again stress that this property is not
shared by the corresponding class-A term which, as we
have seen, is strongly nonlocal. The denominator for

is of order q for large q so that I:-"" /:-''
I

is
at most of order ( kF/q ), and is negligible to this order.

The electron-hole contributions to = have the general
forms

(ki, k2,'q, co)=2& —,'(K+q ) I:"'"(M,e'-' —e'-' )
I

—,(K—q ))—
& —,'(K+q ) I:-,'„(M,e'„' —e'„' )

I
—,'(K —q )),

ki k2 —q
2 ex k k 2

, .;q,~)= ——,'[V(~)+2&q+k I=-'(K, ~'-„" —~'-" )
I

—k) —&q+k I=-,'„(K,~'" —~'„" )
I

—k)].
(18a)

(18b)

We have exploited the symmetry of X under the transformation ki, co+~( —k2, —m) to combine =' " and:-"', etc. The
explicit functional forms of:-~ ~s and =~B can be illustrated by writing out their second-order Born terms:

and

(:-'"+-",'.")2=g V( —,'(K+q ) —p ) [V(p ——,'(K —q ))——,
' V(~ )]M. [—,'(K —q ) —p ]

(19a)

(:-~+=,„)2————,
' $ V(X') [V(& ) ——, V(p ——,(K—q ))] .

+ M [ —,(K—q) —p]
(19b)

The energy denominators are independent of the external energy co [compare Eqs. (16)], and remain negative in the al-
lowed region of phase space. When q is large the Pauli operators have two effects: (i) they force the energy denomina-
tors to be of order q, and (ii) the interactions in brackets in Eqs. (19a) and (19b) always carry a momentum of order q.
Consequently -~~B is of order (kF/q) smaller than ='', and =, which contains an additional interaction with
momentum approximately equal to q, is of order (kF/q) smaller than =' '

We conclude that the leading contributions to = are the lowest-order Hartree-Fock term plus the electron-electron
scattering term -' 'B, both of which are of order V( q ).

3. Class C

Figures 6—8 show the contributions to X (q, co). The terms in Fig. 6 can be written as

X' (q,co)=4+
k,

e 8 8 e
ki q+ ki k, —q

(ki, —k2,'q, co),Ei co E2 co
k2

(20)

where = ==PPc+" and

:-'"(ki —"»q ~)=2&q+"
I

"«~+~'-"—~'-" -„)
I
"&—&q+k I:-:."(K ~+~'-" —~'-" -„) I

k& (21a)

( k 1 k 2 q, ~ ) = ——,
'
[V( K ) +2 & —,

'
( q +K ) I:-'(~,~+~'-" —~'" - )

I

—,
'

( q —K ) &ki q —k2

—
& —,'(q+K) I:-,„(xi,co+@'-' —e' ' - )

I
—,(q —K))] . (21b)
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The interaction =c has been constructed to include only electron-hole correlations for which there are severe restrictions
on the transfer of momentum within the interaction.

As before we display the explicit form of:-c through its second-order Born terms:

(:-'"+=,'„")2——g V( q+ k —p )

P

e,e,
[V(p —k ) ——,

' V(K )],
E2(co) —K.(p —k )

(22a)

(:- +:-,„),= ——, g V(K)
e,e,

[V(K)——,
' V(p —k )] .

E2(co) —K (p —k )

(22b)

The Pauli operators in Eqs. (22) restrict the intermediate
relative momentum p to values less than 2kF. The term
K.p in the energy denominators is thus only of order kz.
For large momentum transfer q in the single-particle re-
gion, q /2 —qkz & co & q /2+qkF. The energy denomina-
tors are therefore insensitive to the value of p, and as co

moves through this region the denominators sweep
through zero with a functional variation very similar to
that of X' '( q, co). As with the class-8 terms —and in con-
trast with the class-A terms —the variation of the interac-
tion factors in the numerators of Eqs. (22) is not closely
coupled to the singular behavior of the energy denomina-

tors. Only one interaction factor, V(p —k ), peaks near
I

the permitted phase-space region; therefore, unlike the
class-A terms, there is no sandwiching of the singular en-
ergy denominator between two diverging potentials. For
this reason no fine structure in co arises at large q from
these class-C terms.

Formally, the term =2 in Eq. (22b) is divergent when
the momentum transfer K across it goes to zero, because
of the presence of the squared factor V (K). Thus we
should sum all the Born terms with this particular form,
or equivalently, we can work with the dynamically
screened interaction V". Figure 7 shows the dynamically
screened electron-hole correlation contribution to
X (q, co),

E) co
k~ k2

e 8
k2 q —k2

E2(~)
V(K )

E'c( K, co —E' ~ +E~ )
(0) (0)
q —k2 k)

(23)

The forward-propagating dielectric response ec is given in terms of the RPA dynamic structure factor S by

gRPA K
[ec(K,cu —e - +e- )] '=1+2V(K )f ~—E ~ +E'~ —CO +l'g

q —k~ k)

ddt (24)

When e~ ' is replaced by unity, one obtains the
Hartree-Fock particle-hole correlation term. It is well
known that terms in the Hartree-Fock model for g"(q, co)
lead to a slowly varying co dependence with no fine-scale
features (although there is significant overall relaxa-
tion). ' '

The complete expression Eq. (23) dynamically screens
the Hartree-Fock correlations. Referring to our argument
above for the other class-C contributions, we can conclude
again that there is no dynamical fine structure in
X" (q,co). An explicit numerical calculation confirms
this (see Sec. III C).

Finally, we note that the exchange terms =,'„' and:-",„"
of Fig. 8, corresponding to ='' and:-"" [see Eq. (10)],
are class-C terms since the configuration of the hole lines
in =,'„' and electron lines in =,"„"constrain the momentum
transfer across the =',„' and:-,"„"interactions to be less
than 2kF. These two exchange terms are generically relat-
ed to the dynamically screened X" (q, co) and constitute
corrections to the leading order Hartree-Fock term,
despite the fact, that their direct counterparts "I'~ give
contributions to g . They make up the lowest-order con-
tributions to a screened interaction series, which when
systematically summed should result in a correction to the

previously summed dynamically screened contribution
X" (q, co), Eq. (23).

4. Class D

Finally, we consider a set of terms contributing to
:-"[G]which includes electron-electron scattering mediat-
ed by a pair of dynamically screened interactions which
overlap in time (see Fig. 9). We omit any explicit discus-

-k
2

I k„

~(q, ~)

FIG. 9. Class-D contributions to P'(q, co). The interaction
represents an overlapping two-plasmon excitation propaga-

ting forward in time, while = represents two plasmons propa-
gating backwards.
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sion of the corresponding electron-hole and hole-hole
class-D contributions merely pointing out that con-
clusions similar to those in the discussion below can be ar-
rived at for these terms also. One of the time-ordered dia-
grams, denoted by = in Fig. 9, allows intermediate
propagation of two plasmons. However, it is clear from
the form of this diagram that the total momentum trans-
ported by the plasmon pair is just q. When q &2q„
where q, is the cutoff for a single plasmon, a double reso-
nance will not occur since at least one of the plasmons can
readily decay into a single electron-hole pair. On this
basis one would not expect to observe a two-plasmon peak

I

in the dynamic structure factor when q )2q, .
In the usual way we write the total contribution to

X'(q, co) as

(k(, k2, q, co) .
(25)

To make the expression for "D more manageable, we
make use of Eqs. (11) and (24) to write

V'(Q, ) V'(Q )f S (Q„co,)dco, f S (Q„co,)dCO,

P

X [(co—co) —co2+ l 'g )(co+e —E—' cop+I'g )
(0) (o)

p,

X (CO+ e-„—e —CO) +i 7)) ]
(0) (0) —1

p)
(26a)

= +e e~ V (Q))V (Q2) f S (Q), CO))dCO) f S (Q2, CO2)dCOr

P

X [(—co —co) —cop+ l r) )(e- —e co) +i—r) )
~ (0) (0)

p,

X (&- —& —co2+iri)]-(O) (o) ~ —1

kI pl
(26b)

The term "" expresses the forward propagation of a
correlated plasmon pair. Since the intermediate momenta

Q) and Q2 sum to q, the double-plasmon resonance from
the combined structure factors S (Q), co) ) and

(Q2, co2) disappears when either Q) or Qq moves
above the plasmon cutoff q, . For values of q less than
2q, we would expect resonance effects in " associated
with the propagation of two real plasmons.

The term = represents backward propagation of the
intermediate plasmon pair. Its denominator structure
shows no singularities for positive values of co and conse-
quently contributes no fine-scale structure.

B. Se1f-energies

We now turn to the single-particle self-energy insertions
in the dressed propagators 6 of X"(q,co). While these
terms contribute significantly to p"(q, co), we show that
they do not lead to any additional fine-scale dynamical
behavior at large momenta, so that in the end it is the
electron-electrori scattering in = [6] which is the dom-
inating source of the fine-scale energy peaks.

It is well known that there are systematic cancellations
between self-energy insertions X[6] and particle-hole in-
teraction ="[6]. A specific instance of this is the
Hartree-Fock model, where it has been shown" ' that
self-energies and electron-hole correlations in combination
are important for determining overall relaxation effects.
The cancellation between X[6] and:-"[6] follows from
expanding Eq. (4) for the particle-hole vertex A"[6]
directly in terms of bare propagators O' ', Any model

I

satisfying the requirements of Ref. 9 automatically con-
tains this form of cancellation.

Consider the leading term X (q, co) in the expansion of
the proper polarization X"(q, co) in powers of:-"[G],Eq.
(6). In principle the single-particle propagator 6 (p,p ) is
determined by the self-consistent solution of Eq. (3) ex-
pressed as a Dyson equation:

6(p,p )=6' '(p,p )+6' '(p,p )I&[G](p,p )I

XG(p,p ) . (27)

XG' )(p,p )+ (28)

where the truncated terms are of higher order in X[G'0'].
The zeroth-order contribution to X (q, co), coming from
the replacement of its electron and hole propagators with
the bare propagators 6' ', is just the Lindhard function.
The first-order self-energy insertions in p ( q, co) are
shown in Fig. 10 as time-ordered diagrams. They are ex-
plicitly evaluated in Appendix A [Eqs. (A12) and (A13)].

In each diagram of Fig. 10 an incoming electron or hole
is initially excited into an intermediate state by scattering
off an electron-hole pair from the background, and relaxes
back to its original state after a final interaction. If the

To calculate the dynamical contribution of the self-energy
functional X[6],as defined by its diagrams (see, e.g., Fig.
10), one should first expand the right-hand side of Eq.
(27) in powers of the bare propagator 6'0'.6(ppo)6(0)(pro�)+6(0)(pro)

I +[6(0)](ppo)
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i, '
l )

q+k1

k)

(b)

q+k)

use of the general expression for terms such as those of
Fig. 10. For an electron with momentum q+ ki the self-
energy X' - isq+ k

1X'—:X - (co+E'-'+i')+X - (e' ' - ), (29)q+ k
1 q+ k

1
k

1 q+ kl q+ kl

where X ~ (X~
) denotes intermediate propagation of a

particle as an electron (hole). Expressions for X ~ and X ~

are given in Eqs. (A13). For the hole with momentum ki,
the self-energy X" is

kl

(c) X =X (e - —co ig—)+X- (e- ) .h & (0) (0)
kl kl q+kl kl kl

(30)

Iq kp h q+k)

We have shown the explicit energy dependence -of each
contribution.

To lowest order in X the forward-propagating part of
X (q, co) can be written as

k)
Z'-

k)

FIG. 10. First-order self-energy insertions in the particle-hole
propagator g . (a) and (c) are off-shell contributions which are
constrained to propagate only within the lifetime of P . (b) and
(d) are on-shell contributions and have no such constraint on
their lifetimes.

X~(q, co) =XF '(q, co)+2 + Ei(~)
kl

e h 1

q+k( k) Ei(~)
(31)

incoming electron is scattered into a similar intermediate
electron (not hole) state, then the amplitude of this self-
energy insertion lies off the energy shell. This follows
from the restricted lifetime for the scattering, which must
take place within the lifetime of X (q, co). If, however, at
any stage the electron is scattered into a hole intermediate
state, then the resulting amplitude is on the energy shell
because the self-energy lifetime in this case is unrestricted.
Similar arguments apply for an incoming hole.

The same lifetime constraints apply to all self-energy
insertions in all components of X"(q,co); the fact that
there exist off-shell X insertions within every electron-hole
propagator means that neither the electron nor the hole
can be assumed to propagate in total independence of its
partner.

In Appendix A we present a more detailed formal dis-
cussion of the self-energy structure. Here we simply make

I

where F denotes forward time propagation, and XF ( q, co)
is the forward-propagating part of the Lindhard function,

XF ( q, co) =2 g Ei(~)
kl

(32)

XF(q,co) =2+
Ei(co) —X' - +X- +iq

kl q+ k
1 k

1

(33)

Let us look more closely at the structure of the energy
denominator in this equation. Using Eqs. (29) and (30),
we obtain

[Note that we can recover X through the relation
X (q, ~)=XF(q,co)+X+(q, co) ]- .

The completely dressed polarization function XF(q, co)
can be approximated by inserting in all orders X' and X"
into the electron and hole lines of XF. The result is

E, (co)—X' +X"- =co —[e' ' - +X - (co+a'-')+X - (e' ' - )]+[a'-'+X- (e' ' - —~)+X- (&-')]
q+ k

1
k

1 q+ k
1 q+ k

1
k

1 q+ k
1 q+ k

1
k

1
k

1 q+ k
1 kl kl

—:Ei(~)—tX - (e - +Ei(co))—X - (e' - +i') I
q kl q+k, q+ k 1 q+ k

1

+ IX~ (~'" —E,(~))—X~ (~'" —iq)I,kl kl kl kl

where we have introduced the on-shell electron-hole energy

E&(co)=co—[e' ' - +X - (e' ' - +ig)+X - (e' ' - )]+[@'-'+X (e'-' ig)+X- —(e'-')]+ig,
q+ k

1 q+ k
1 q+ k

1 q+ k
1 q+ k

1 kl kl kl k
1

k
1

(34)

(35)

by adding and subtracting the on-shell evaluations of
X~ and X- in Eq. (34).

q+ k
1 kl

Hedin and Lundqvist, who investigated the energy-

dependent properties of the dynamically screened single-
particle self-energy, ' -found that the imaginary part of
this self-energy on the shell rose sharply to a value of or-
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der —,Ez ' when the electron's momentum crossed a
threshold =2kF, (

~
q+k&

~

=2k+). If one approximates
the energy denominator of Eq. (33) by the expression Eq.
(35), using a pureylon shell-electron self-energy, then the
resulting quantity [—ImXF(q, co)] will exhibit a marked
peak-and-dip structure around co=2EF '. This is directly
due to the sudden jump of the on-shell self-energy at

~ q+ k
~

=2k+. We show in Appendix A that if the off-
shell self-energy terms are correctly included in the energy
denominator of Eq. (33) then only the usual broad peak
will be obtained with no anomalous fine structure. It is
therefore essential to correctly treat the off-shell contribu-
tions to the self-energies in the joint propagation of an
electron-hole pair. Consequently we suggest that if the
calculations of Mukhopadhyay, Kalia, and Singwi' and
of Awa, Yasuhara, and Asahi' were repeated with the
self-energies correctly taken off the energy shell then the
twin peak structure they reported for S(q, co) would not
appear.

We conclude that neglect of the off-shell contributions
to the single-particle self-energy in the joint propagation
on an electron-hole pair is unjustified, and furthermore
that the consistent inclusion of off-shell effects does not
contribute to the fine-scale dynamical structure of
X (q, co) or more generally to the fine-scale structure of
X"(q,co) as a whole.

C. Calculational scheme

We have now identified the strongly dynamic and non-
local part, =' ', of the two-body interaction =". At large
momentum transfers "' ' dominates the contributions
X (q, co) to X'(q, co). The remaining dynamic contribu-
tion, X (q, co), contains the parts of:-" which depend
weakly on (q, co) and are approximately local.

Figure 11 illustrates this point for the interactions =
(Fig 7) and. :-' 'A (Fig. 3) at q =1.75kF and r, =2. We
plot

[A(o).=.A(o)](q ~)
XP'( q, ~) &( q )XP'( q, co)

for === and:-=:"' ' . The denominator is chosen so
that if:- is a purely static function then y[:-] will be in-
dependent of co. Also plotted is the function y"'[:"](q, co)
for which the hole propagators in Eq. (36a) have been
averaged over (i.e., the usual local average). In this case
the A'o' propagators factor out, canceling with the XF '

and leaving

(36a)

y"'[=](q,co) = —(=)(„(q,co)/V(q ) . (36b)

Figure 11(a) shows these functions for =~c. The real
and imaginary parts are both smoothly varying functions

I

dk'
X' (q, co)=2+ f A [G](k(,k„q,co)

&E
k,

dk] dk2+4+ g f 2 .f;I & "[G](k),k(', q, co) J

k) k2

Rp

. 3
o. 0.5—

Re
(b)

I ~ I t I

~/EF

FICx. 11. Approximate local-field factors corresponding to
P'( q, co), at r, =2, q = 1.76kF. Solid lines: exact factors.
Dashed lines: hole-averaged factors. (a) Factors for g' (q, ~).
(b) Factors for p (q, co).

loc — $e p-p
(37)

—~P-P+ ~+ ~p P+ w~ + ~p-p—ex —ex —ex

Note that ='" is not strictly a local function, but contains
those parts of:-"which can be well represented by a local
approximation. Our definition of:-"' includes hole-hole
as well as electron-electron scattering, so that this interac-
tion is time symmetric (as is ='"). It can then be shown'
that X"(q, co) has an explicit expansion in powers of:""':

of m, and y'" appears to be a good approximation to y.
One should contrast this with the result for "' ' shown
in Fig. 11(b); real and imaginary parts are here very sensi-
tive to the value of cu, and y'" does not represent y at aH
accurately. The vertical scales in the two plots are dif-
ferent, and we see that the magnitude of y[:-~c] is typi-
cally much greater than that of y[:"' 'A].

The class-C terms govern the overall relaxation effects
in the dynamic response of the correlated electron system.
In general these effects are large but dynamically feature-
less, and we wish to separate the dynamically interesting
term =' ' from these terms. To do this we recall the fol-
lowing procedure from paper I. First we separate =" into
a "nonlocal" part ="' and a "local" part ="' by defining

nl p-p

a&, o2
[G](k„k„k2,k„q,co) J I &"'[G](k~,k2; q, ~)I+ . (38)
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where &"'[G](k~,kt, q, ~) satisfies Eq. (4) with:-' ' re-
placing =" (note that G remains as before), and the trun-
cated terms are of higher order in ""'[G].

Equation (38) is merely a convenient rearrangement of
all the contributions to X"(q,co). Let us introduce a di-
mensionless parameter

( iG—G):="'[G]:( iG—G) jXO

1 —Xo(:-'-)).,

+2X'' (q,co), (39)

where X'' is defined by Eq. (7) and X'' by Eq. (14),
and we retain only the direct electron-electron pair
scattering contribution in ="'==]'~. Our numerical cal-
culations reported in Sec. IV of the dynamic structure fac-
tor S(q, co) [see Eq. (2)] are all direct applications of Eq.
(39).

By adopting the approximation in Eq. (39) we have
overlooked all relaxation effects from X (q, co) acting to-
gether with self-energy insertions into the single-particle
lines G. Each G is replaced with the noninteracting G' '.
In Table II we give lowest-order estimates of the relaxa-
tion arising purely from X (q, co). In future work the
broad relaxation effects will be combined with the fine-
scale effects fmm strong electron-electmn scattering. For
the present calculation we emphasize that we have re-

Provided o. is small compared with unity, correction
terms of higher order in -"' in Eq. (38) will not contribute
significantly and we can truncate the expression after the
second term. In Table I we show the value of a for vari-
ous r, and q & kF. At high densities r, & 1 the parameter
a remains small for all q &kp. As the density decreases
the lower bound on q for which a remains small increases,
so when r, =4 is reached, a remains small only for

q &2k~. In the other limit, for small q, all contributions
to -" are of comparable magnitude and share the same
functional behavior. In this limit the separation of:-"
into local and nonlocal parts no longer serves a useful pur-
pose. In this work we concentrate on the behavior of:-"'
and X"(q, co) in the range of q for which the parameter a
is small.

Our primary aim now is to investigate the dynamical
contributions to ="' and the dependence on co of the non-

local dynamical part of X"(q,co). For simplicity, in this
initial calculation we neglect the relaxation effects resid-

ing in the local electron-hole vertex A' '. In this scheme
Eq. (38) becomes

X"(q,co)=X' '(q, co)+X'' (q, ~)+X''"(q, —~)

q /kF

0.75
1.25
1.75
2.25
2.75
3.5

rs 2

0.1

0.5
1.0
1.1
1.1
1.0

rs =3.2
0.2
0.8
1.5
1.7
1.8
1.9

r, =4
0.3
0.8
1.5
1.7
1.9
2.2

tained all significant fine-scale structure in co which, how-
ever, wiil appear centered relative to the RPA spectral
function instead of being superimposed on the fully re-
laxed single-particle spectral function.

IV. NUMERICAL RESULTS

We now discuss the results of numerical calculations
for the dynamic structure factor $(q, co) using the compu-
tational approach described in the preceding section. In
Sec. IV A we present S(q,co) for conduction-electron den-
sities corresponding to Li, Be, and Na, calculated for
momentum transfers q & 1.5k+. We directly compare our
S(q, co) with the observed features of S'" '(q, co) measured
for Be (Ref. 5) and Li (Ref. 6). In Sec. IVB we present
our data in a form useful for other numerical applications.

A. Comparison with experiment

In Fig. 12 we display our S( q, co) calculated for r, =3.2,
corresponding to the density of Li, together with experi-
mental data of Priftis, Boviatsis, and Vradis for that met-
al. S( q, co) (calculated) and S'" '(q, co) (measured) are
plotted as functions of the energy transfer ~ at fixed
values of the momentum transfer q. Since this present
calculation omits the smoothly varying static local-field
contributions plus the related single-particle self-energies,
our calculated fine peaks will be positioned with respect to
the center of the RPA peak. This should be the basis of
any comparison between these calculated values and the
experimental data.

At each value of the momentum transfer there is not-
able correspondence between the fine-co structure of our
S(q, co) and the fine-co structure of S'"~'(q, co). We now
compare each pair of curves in some detail.

q=1.80kF. A strong peak a at co=2.1E+ exists in

TABLE II. First-order Hartree-Fock estimates of peak relax-
ation in P' '(q, co)+P'( q, ~).

hE/EF

TABLE I. Dimensionless parameter a as a function of r, and q.

q /kF

1.25
1.75
2.25
2.75

Rea

0.2
0.1

0.06
0.02

Ima

0.3
0.1

0.07
0.05

Ren

0.2
0.1

0.1

0.1

Ima

0.4
0.3
0.2
0.1

0.6
0.4
0.2
0.1

Ima

0.5
0.1

0.1

0.1
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q = 3-80 kF—

o/ ~ q=2 05kF

Io 0

2 45kF

b q=2 74kF

a a'.
0 ~ b q=

12

FIG. 12. Dynamic structure factor for Li, at r, =3.2. Solid
line: present calculation. Solid circles: x-ray inelastic scattering
data points from Ref. 6. Dashed line: guideline from Ref. 6.
Absolute energy scale is fixed by EF——4.9 eV. (Our curve for
q=2.05k~ is plotted with data measured for q=2.01k+.) The
letters a, a', etc. indicate corresponding peaks. In comparing
the curves it should be noted that our calculation omits contribu-
tions which lead to an overall relaxation -2EF (cf. Table II).

S'"~'(q, co) together with a well-defined shoulder h at
co=4EF Correspon. dingly, S(q, co) has a strong but some-
what broader peak structure a' at co=3.2EF and a sharp
dip and peak b' at ~=6EF. Both curves exhibit pro-
nounced band tails beyond co =7EF.

q=2.05k+. The experimental curve has a broad asym-
metric maximum a, peaking at m=2. 5E+, with a shoulder
b at su=4. 5EF. Our calculated curve has a strikingly
similar shape, with its peak a' at co=4E+ and its shoulder
b' at e)=6'.

q =2.45kF. At this momentum transfer S'"~'(q, co)
shows a distinctive low-energy peak at ~=2.5E~, the sug-
gestion of a twin peak maximum a and b extending from
~=4.2EF to co =5.2EF, and a shoulder c at co =6.5E~. In
our corresponding S(q, co) we find no evidence of a low-
energy peak. However the steplike sequence of a max-
imum a' plus two shoulders b' and c' at energies 6EI;,
7.2E~ and 9EF is very similar to the plateau-and-shoulder
feature a b cin S'"~'(q, co). --

q =2.74kF and q =Z.99k+. We can identify the peaks a
with a' and b with b' for both pairs of curves. At
q=2. 74kF we also have a peak c' at co=11.8EF which
could possibly be identified with the peak c in S'"~'(q, co)

at m=11.7EF. However, staying with our uniform relaxa-
tion construct, we would conclude that matching c to c' is
not very convincing. Moreover, the E-electron excitation
threshold for Li occurs right at this point (co=11.5EF),
and this could well contribute to the experimentally ob-
served peak c. There is still evidence of a low-energy peak
around m=2. 5EI; in the experimental data at q=2.74k+,
but at q=2.99k+ there is no low-energy peak. In our cal-
culated curves there is no indication of any low-energy
peak in this region.

At q=2.99k+ the superimposed fine-peak structure has
become less pronounced. This is to be expected since the
contributions to 7"' become relatively less important for
large q. For values of q above 3kF our curves are relative-
ly featureless.

We find no evidence for any many-body mechanism
which would generate the low-energy peak around
co =2.5EF for q= 2.45kF and 2.74kF. A simple two-
plasmon excitation can be ruled out on kinematic grounds,
since twice the plasmon cutoff momentum is only—1.3kF. Any possible candidate must presumab1y be
band structure related.

A possibility would be the excitation of a single
plasmon accompanied by an interband electron transition
with umklapp. The reciprocal-lattice vector here is
G —2.3kF, so that in the reduced-zone representation
q=2.45kF would become q-0. 15k+. Adding the corre-
sponding single-plasmon energy (-1.6E+) to the typical
value of the energy gap for Li ()0.5E~) we obtain for the
energy of the process )2. 1EF. This is close to the actual
peak position. The argument is made plausible by the fact
that the cutoff for this process would be at q-3kF, and
the observed low-energy peak disappears at this momen-
tum. This argument assumes the plasmon carries off al-
most al1 the momentum remaining after umklapp.

In Fig. 13 we show our S(q,co) at r, =2 together with
the data reported by Platzman and Eisenberger for Be
(r, =1.9). Our results for r, =2 were previously reported
in a letter. The comparison of the curves for fixed
momentum transfer proceeds in a pattern similar to Li.
At q =1.5k~ there is a clear correspondence between the
pronounced peak a-a' and shoulder b-b' in both curves.
Once again as expected, our curve is nearly uniformly dis-
placed upwards in energy -2EI;. At q=1.75k+ our peak
a' and our main peak b' match up with the observed peak
a and main peak b, accompanied again by the uniform en-
ergy shift. At q =2. lkF we see a well-defined structure on
the high-energy side of our broad main peak (a'), with a
sharp peak (b') at co=6 5EF By cont.rast, .S'"~'(q, co) ap-
parently exhibits a change of slope not only at m=5.5E+
(b), but also at co=1.5EF, which would correspond to a
low-energy peak. The main peak (a) at co=3.5EF is
somewhat sharper than our main peak (a'). It would be
interesting to see if improved experimental resolution re-
vealed additional structural details on either side of the
central peak a.

As in the case of Li there is no evidence in our calculat-
ed results for any low-energy peak. Repeating our argu-
ment concerning an excitation process of a plasmon plus
interband transition with umklapp, the corresponding re-
sults would suggest a low-energy peak at —1.8E+ existing
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FIG. 15. Nonlocal field factor g[:-' '](q, co), Eq. (36), for den-
sity r, =3.2. Dashed lines are the real parts, solid lines the
imaginary parts.

4J /EF

FIG. 13. The dynamic structure factor for Be, at r, =2
(EF——12.5 eV). Solid line: present calculation. Dashed line: x-
ray inelastic scattering data from Ref. 5.

1
I

a' b''

q=1 75 kF

only for momentum 0.9k+ (q (2.2k+.
Figure 14 shows the structure factor S(q, co) for r, =4.

There is unfortunately no published experimental data
with which to compare. The dotted curves are the result
from RPA and one notes that they are generally less re-
laxed in energy than our curves. This is consistent with
the behavior of the slowly varying T-matrix contributions,
which reduce the Coulomb wave-function's amplitude for
electron pairs at close range, and as a consequence reduce
the electrostatic interaction energy.

B. Nonlocal-field factors

Pl

o+
I

Ol
Pl

I

0

~ ~
q=2.00 kF

We complete our presentation of numerical results with
some data on the effective-field contribution of:-''. In
Figs. 15—17 we show the real and imaginary parts of the
nonlocal-field fictor g[:-''](q,co) at r, =3.2, 2, and 4,
where g is defined by

(40)

a' ~ ~

q=2. 50 kF The data in Figs. 15—17 may be of use in applications
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q= 3.00 kF p
=1.75 kF

3

o
=2.1 kF

12

4J/E F

FIG. 14. Dynamic structure factor at r, =4 (EF——3.1 eV) cor-
responding to Na. Solid line: present calculation. Dotted line:
RPA calculation. The overall relaxation of the calculated peaks
results from the slowly-varying part of the T-matrix contribu-
tion to the local field.

2 4 6
~/FF

FIG. 16. Nonlocal field factor g[:-' ']( q, co) for density r, =2.
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FIQ. 17. Nonlocal field factor g[:-' ']( q, co) for density r, =4.

V. SUMMARY AND CONCLUSION

The purpose of this work was to use our new theory' in
a practical calculation of dynamical properties of the me-
tallic electron gas. Three main conclusions can be drawn

requiring estimates of nonlocal effects. However, depend-
ing on the application, it would be necessary to exercise
care in using these nonlocal-field factors, since the de-
tailed dependence of:- on the attached electron-hole vari-
ables has already been convoluted in our definition of

regarding the nature of dynamic correlations in such a
system.

(a) Strong Coulomb scattering between electrons dom-
inates the frequency-sensitive contributions to the dynam-
ic structure factor at momentum transfers appreciably
larger than the Fermi momentum.

(b) The frequency-sensitive electron-electron scattering
contributions are highly nonlocal, in the sense that any
averaging of these terms over their internal particle states
destroys their detailed frequency dependence. Such
averaging is implicit in most mean-field models of corre-
lation effects: It follows that a standard mean-field theory
cannot replicate the fine-scale features in the dynamic
structure factor.

(c) There is a clear separation, at large momentum
transfers, between the rapidly varying nonlocal correla-
tions on the one hand and slowly varying, almost-local
correlations on the other. The latter, which are dominated
by electron-hole one-pair scattering, are mainly respon-
sible for broad-scale relaxation in the dynamic structure
factor. These terms are well approximated by a mean-
field construction.

The task of maintaining the conservation laws become
quite formidable, once one attempts to treat effects which
are inherently dynamical. The nonlocal nature of these ef-
fects cannot in general be ignored, and the conservation
laws are only satisfied because of cancellations between
terms whose functional behavior appears to be disparate.
It is a great advantage to adopt a formalism which has the
conservation laws already built in it.

The formalism itself is open to further development.
One aspect of potential interest to the wider study of Fer-
mi systems concerns the structure of the nonlocal
particle-particle scattering effects. It would be useful to
establish the extent to which these effects vary with the
nature of the particle-particle interaction —for example, if
one had a strong short-range potential typical of He in
place of the Coulomb potential.

APPENDIX A: ELECTRON-HOLE SELF-ENERGIES

In this appendix we determine the functional form of single-particle self-energy insertions when the particle belongs to
an electron-hole polarization propagator. We present strong evidence that self-energy insertions, when correctly evaluat-
ed off the energy shell, do not contribute any sharp structure to the polarization function.

To simplify the discussion we consider the first-order insertions of X=X[G' '] into the Lindhard function (see, e.g.,
Fig. 10). For brevity we write G' '(p) for G' '(p,p ) and X(p) for X[6' '](p„p ), wherep:—(p,p ); we also set q=(q, co).

The first-order insertions into the electron and hole lines of X' '(q) generate the contribution

d'k',
PP'(q)=2+ J . G' '(k))G' '(q+k()[X(k))G' '(k()+X(q+k))G' '(q+k))] . (A 1)

27jl
kl

Noting that

G'o'(k, )G' '(q+k, )= [G' '(k, ) —G' '(q+k, )]
1

E)(q)

where

E&(q) =co—e - +e- +i g, [g&
——g(6~ —8 ~ )],(0) (0)

q+ kl kl k) q+k. l

Eq. (Al) now splits into two contributions, X,' '(q) and Xb '(q):

(A2)

(A3)
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dk'
g,' '(q)=2+ f . 6'0'(ki)G' '(q+ki)[X(q+ki) —X(ki)],

Ei(q) 2mi
kl

dk'
Xb (q)=2+ —f I[6' '(ki)] X(ki) —[6' '(q+ki)] X(q+k|)j .

E, (q) 2rii
ki

Again applying Eq. (A2) to X,' '(q), we have

dk
P,' '(q)=2+ f [G'0'(k, ) —6' '(q+ki)][X(q+ki) —X(ki)] .

Ei(q)2 2mi'
ki

We now evaluate Xi (q) using the dynamically screened interaction V" in the self-energy. Specifically(0)

(A5)

(A6)

d'
X(k) = —g f . G' '(k —p) V"(p)

=XHF(k) —g V (p) f . G' '(k —p) f de'S (p, co)

P

1

P —co +&'g p +co —l'g
(A7)

Here XHF(k) is the usual Hartree-Fock self-energy which contributes to X,' '(q) the term

+HF1(q) =2g, g V( p)(e- —e - ),
Ei(q)' k& —p q+ k& —p

p

and contributes nothing to gI, '(q).
For the more interesting dynamical contributions, integration over p gives, from Eq. (A7),

g RPA

X(k) XHF(k) g V ( p ) f 0 (0) dCg'—(e' —e'
P k —p k —p k —p

On substituting into Eq. (A6) we obtain the following products to be integrated over k, :

6'"(k, )X(q+k, )-(k', —~'" iq, )-'[~+k', ~'" —(e —e )(~' —i~)]-',
k) q+k& —p q+k& —p q+k& —p

6' '(q+k&)X(k&)-(cu+k& —e' ' - +iq, ) '[k, —e'-' —(e- —e- )(co' ig)]-
q+ ki k& —p k& —p k& —p

G~ ~(k, )X(k, )-(k', —e'" —i&, )-'[k', —~'" —(e e' )(~—' irj)]
k, k 1- p k1- p k 1- p

G' '(q+k&)X(q+k&)-(co+k& —e' ' - +ipse)q+kl

X[co+ki —e' ' - —(e - —0 - )(co' ir))]-q+ki —p q+ki —p q+kl —p

(AS)

(A9)

(A10a)

(A lob)

(A 1 la)

(Al lb)

When 6' '(ki) propagates as a hole and 6' '(q+ki) as an electron (forward propagation, g&
——ri), the nonvanishing

terms give

Xg '(q) —XHFi(q)=2/ [X - (e'-'+co) —X (6' ' - —co)
(q)2 q+k| ki ki q+ki

ki

+X - (~'" (A12)

where

X)(e)—= ge) V'(p) fk k —p E —6~ —CO +l'g
p k —p

(A13a)

k k —p +CO —l'g
P k —p

(A13b)
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Equation (A12) directly demonstrates that there are significant off-energy-shell contributions to the self-energy inser-
tions in a single-particle propagator associated with a particle-hole polarization pair.

For completeness, we also give the contributions to XI, '(q):

X' '(q)= —2g QV(p) f d 'S (p, ')
E)(q)

e g&
q+ k1 —p k1 —p

(0) (0) 2 + (O) (0) 2(E' ~ —E ~ +co ) (E~ —e~ —co )q+ k1 q+k1 p k1 k1 —p

(A14)

Having analyzed the detailed time ordering of self-energy insertions in P' '(q), we now show that such insertions do
not change the qualitative shape of the fully renormalized P (q).

We recall the spectral representation' for the single-particle propagator G in terms of A-(co'), the single-particle

spectral distribution. We express the polarization function go= iG—G as

dk'

k1

A- (co')
k1

- (co")
q+ k1

co +k ~
—6) + E 'g

~

=2+ f dco f dco

k1

A- (~')A - (co") dkok1 q+ k1

co —m" +co'+i g ) 2~i co+ k ]
—ct) +l'g

&

(A15)

On evaluating the imaginary part of X (q) we obtain

E
ImX (q)= —2m g f A (co')A - (co'+co)dec' .

q+ k1
k1

(A16)

A —.(co+co') =5(co'+co —e - ),q+ k1 q+ k1

2- (co')=Z- 5(co' —e- )
k1 k1 k1

+(1—Z- )5(co' —e- —b,e- ) .
k1 k1 k1

On substituting into Eq. (A16) we get

(A17)

This equation, which is quite general, demonstrates the
intrinsically off-shell character of single-particle self-
energy effects in electron-hole polarization contributions
such as P' '(q). For the noninteracting case, 3 -(co')

k
=5(co' —e'-'), and the convolution in Eq. (A16) is then re-

k
duced to the familiar Lindhard result. When the self-
energy of Eq. (A7) is used to define A-(co'), Hedin and

k

Lundqvist' have shown that the spectral distribution for
electrons (k & kF) retains a sharp single peak at the quasi-
particle energy e- while that for holes (k & kF ) can

k

develop multiple peaks. Hence, to estimate the effect of
the self-energies on the renormalized polarization function
X (q), let us assume a spectral distribution function which
has one 5-like peak for electrons and, for example, two
peaks, separated by Ae-, for holes:k1'

ImX (q)= —2wge e
k,

X[Z- 5(co —e +e )k1 q+ k1 k1

+(1—Z- )5(co+A,e- —e
k1 k1 q+ k1

+e- )].
k1 (A18)

Equation (A18) represents a superposition of Lindhard-
like functions on a broad characteristic scale of order qkF.
Consequently this expression cannot give rise to sharp
features in P (q) on a scale of k~ or less. A broad distri-
bution of this kind for P (q) follows naturally from the
convolution structure of Eq. (A16).

APPENDIX 8: CONVOLUTION INTEGRAL FOR g'

x"(q,~)=4+e e g e e
k ) q+ k ( k2 & ~2 E)(~)+E2(~)

k, k2

=2rr,
p, p, 2&i(~)[&i(~)+&z(~)]

(ki, —k~;q, cg),

We present here a general method for calculating a given contribution to X'(q, co) for all q and co. We note that expli-
cit calculations of the Hartree-Fock contribution to X'(q, co) have been published by Geldart and Taylor' for the static
case (co =0), and by Holas, Aravind, and Singwi' for general values of co.

For definiteness we treat the contribution X (q, co). Recalling Eq. (7) we rewrite it as

1 +:- (ki, —k2,'q, co)
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where we have defined Q ~ =6- 8- and Q ~:=6 - 8 -; in the second line we have used the symmetry of Q ~,
k, k~ q+ k, q —k, '

A
Q ~, and:- under the transformation k~~~ —kz. On converting the sums over k& and k2 to integrals, Eq. (81) becomes

(cg ——,q —q k+iri)(co —,'q——q k —,
'

q—K.+ig)
(82)

The cosine variables uI, and u, are defined in terms of z =q.k and u =q K, and the azimuth angle P:

ug =uz+[(1 —u )(1—z )]' cosP

u, =(qu +ku~ )/1 q+ k
1

where 1q+k1 =q +k +2qkz. The functions Q
~ and Q ~ are given by

Q ~ =e(kz k ,—K )m—i—n[1,(kF —k —, K )/k—K],
I

Q =e(
I
q+k

I
'+-.'K' —k&min[1 (

I
q+k

I

'+ .'K' k~-)/I —q+k IK]

(83)

Next we reduce Eq. (82) to the form

kF 1 K„ Qb

X (qco)=
5 ~ J dkk j dz J dKKJ du

1 ~u
dP:- (kt, —k2;q, co),

0 —Qo —l'g ~1
(85)

z, = —min( l, q/2k ),
K„=2(k~—k )'~

K~ ——2[max(0, kF k q 2q—kz)]—~—
ub ——min(u~, u2, u3),

where

(86a)

(86b)

(86c)

where zo=(co —q /2)/qk, uo ——(2' —q —2kqz)/qK, and
the bounds z„K„,K~,ub, g„,g& are rather intricate func-
tions defined as follows:

—,
'

I (u uo i q—) '+—[u —u0+ 4'/(qK) iri]—(87)

t

tors. Given a knowledge of the bounds, the singularities
may be treated by standard numerical techniques. We
find that the particular order of integration shown in Eq.
(85) is the most efficient for obtaining stable results.

Note that Eqs. (85) and (86a) through (86d) are also
applicable to X (q, co). In this case we let zo ——q/2k, and
for the expression (u —uo ig) —in the integration over u

we substitute

u i
——(q+2kz)/K,

u2 ——e(Q —1z 1)

+e( fz1 —Q )(Q'1z1+I[1—(Q )'](1—z')}' '),
u3 ——e(Q ~ —1y1)

+@ I y I

—Q ')(Q '1y I+ I [1—(Q ')'1(1—y') }'"),
y=(q+kz)(q +k +2qkz)

APPENDIX C: NUMERICAL SOLUTION OF:"' '

We give here some details of the computation of the
electron-electron scattering amplitude "' '. At large
momentum transfers the amplitude "'' is given by the
all-order sum of T-matrix ladders [see Fig. 2(a)]. Specifi-
cally we have

& p21=-' '(P E)
I pi &

=—&P2 I
T(P &)

I pi &
—I'(p2 —pi),

and finally

P„=m —cos '[min(1, A,B )],

P~ ——cos '[min( I,A+,B+)],
(86d)

& +—=maxI —1,(Q ~+1zu1)[(1—u2)(1 —z )] '~
} .

where

=maxt —l, (Q + 1yu
1
)[(1 u2)(1 y2)] —&~2}

where T satisfies the Bethe-Goldstone equation

& p 2 I
T(»& )

I p i &
= ~( p 2

—p 'I )

0 ~(p, P, kF)+g I'(p~ —p) p2 p2+

x&p1T(P,E)1p&& . (C2)

For numerical stability it is essential that these bounds be
specified exactly, since from Eq. (85) it is clear that end-
point singularities can arise from the energy denomina-

Here Q ~ (p, P, kF ) =e- 6- is the Pauli projec-
P —p /2 P + p /2

tion operator. We will solve Eq. (C2) with Q~(p, P, kF)
replaced by its angular average with respect to P.p, i.e.,
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Q ~(P,P,kF)=e(p + ,'P —kF—)

Xmin[1, (p + ,'P —kF—)/pP] . (C3)

The approximation of Q ~ by its angle average results in
an overestimate of:-' ', since it permits partial inclusion
of singular contributions from the first and last V in each
ladder term of the T matrix. For the exact Q

~ these con-
tributions are excluded. There is no effect on the qualita-
tive behavior of:-' ', and quantitatively the modifications
are only minor.

With the substitution of Q ~=Q~ in Eq. (C2), the
equation decouples into a set of integral equations for the
partial-wave components of the approximate T:

tl(P2 Pl P E) UI(P2 P 1 )

Q ~(P,P,kF)+—I dpp'Ul(P2, P)
E—

4
—P —p +tg

fI(P2&P1) UI(P2&P1) ~UI(po&po) &

gl(P2&pl ) = tI(P2&P1& P&E) jtI(po&po, 'P&E ) .
(C7)

As a function of p2 for fixed po, the function gl(p2,po)
obeys the regular Fredholm equation

The partial-wave equation (C4) for l=0, 1,2,. . . can now
be solved systematically. For amplitudes tl(p2,p1,'P, E) in
which E is below the threshold for real scattering, Eq.
(C4) is a regular Fredholm equation and may be solved by
standard numerical methods. When tI corresponds to
dynamic scattering (as in =' ' ), the energy denominator
in Eq. (C4) vanishes when p =po= E——,'P —&0,and the
integral equation is singular. In this case we use a tech-
nique due to Kowalski. '

Introduce the functions

X tl(p, p1', P,E), (C4) gI(P2&PO)=fI(P2&po)+ —J dpp Kl(p2, p)Q ~(P,P,k F)

where the partial-wave components v~ and t~ determine V
and T through the expressions

Xgl(p, po), (C8)

V(p2 —p1) =4m. g (2l+ l)UI(P2, P1)PI(P2 p1 ),
I=O

& p2 I
T(P&E)

I p1& =4' p (2I+1)tI(p2&p1'P E)
l=o

(C5)

where the kernel Kl(p2, p ) is defined as

Kl (p 2 &p ) = [Ul (p 2 &p ) UI (p 2 &p 0 )fl (p 0&p )](p 0 p

(C9)

XPI(P2 P1) .

4' p1+p2+ 9
Ul p2&pl Im !

I -o 2PIP2 2P1P2
(C6)

Here Pl(x) is the Legendre polynomial of order l. Each
component vi of the Coulomb potential is given explicitly
in terms of Ql(x), the Legendre function of the second
kind:

The singularity due to the denominator at p =po has been
thus removed. However, for a long-ranged potential such
as V the numerator diverges at p =po. We overcome this
by introducing a very small but finite convergence factor
JM into the Coulomb amplitudes [cf. Eq. (C6)]. Providing
p is sufficiently small our results are insensitive to its
value.

The fully on-shell amplitude tl(po, po, P,E) can be
recovered from the solution gl(p, po) to Eq. (C8) by means
of the relations

rl(po po) I'poQ (po» kF—')"I (po po)
t((po Po'P E)=

1+[PQQ (Po P kF)rl(Po Po)]

2 ~ 1 2 )rl(po&po) UI(Po&PQ) 1
o

dP 2 2 [P Q (P&P&kF)UI(PO&P)gl(p&po) poQ (PO&P&kF)UI(PQ&Po)]
po —p

(C10)

(Cl 1)

To obtain the full solution for tl(p1,p2,'P, E) when PI&po&p2, we must extend Eq. (C8) completely off the energy
shell. We first solve the fully off-shell equation

OO

gl(p2&pl ) =Ul(p2&pl )+ dp p Kl(p2&p )Q (p&P&kF )gl(p&pl ) (C12)

The matrix element tl(p2, p, ;P,E) is generated from the
relation

tl(P2&pl&P&E) =gl(P2&po)tl(po, po,'P, E)gt(p1,po)

+gt(P2 P1)»(po,po)

(C13)

We may now solve Eqs. (C8) and (C12) numerically on
a discrete mesh of p1 and p2 for an appropriate range of
the parameters I, P, and E=po+ 4 P . If E——'P is posi-
tive, the equations are singular and the mesh must be
chosen to cluster about po (E 4P2)'~, with. ——a den—sity
-po/p to properly take account of the rapid variation of
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Kt(p,pc) in that region. We have found in practice that
the first four partial waves are sufficient to guarantee an
overall convergence of the partial-wave sum for T to
within a few percent in all our calculations.

For class-A terms the following correspondence of vari-
ables applies [cf. Eqs. (10) and (B2)]:

(p2
~

=' '(P, E)
~
p]) =4rr y(2l+1)ut(p2, p))

I=O

xF(i,I',E;p„p, )pt(p", p", )

(C15)
M=(q +4k +4qkz)' +-+ I',
E=co+k. + 4K ~go+ 4P

—,
'

~
K+q

~

= ,'(K +—q +2Kqu)' ~pz,

—,
'

~

K—q ~

= ,'(K —+q 2Kq—u)'~ ~ p& .

We can now reconstruct =' ' (k&, —k2', q, co):

(C14) +(i~p~Eip2~p 1 ) tl (p2 ~p li p~E) ~UI (p2~p 1 )

While this calculation is, somewhat intricate, the com-
putational effort required in strict terms of machine
storage and execution time is modest in relation to, for ex-
ample, typical band-structure calculations.

*Formerly D. N. Lowy.
~F. Green, D. Neilson, and J. Szymanski, preceding paper, Phys.

Rev. 8 31, 2779 (1985).
D. Pines and P. Nozieres, The Theory of Quantum Liquids

(Benjamin, New York, 1966).
3D. N. Lowy and G. E. Brown, Phys. Rev. B 12, 2138 (1975).
4D. J. W. Geldart and S. H. Vosko, Can. J. Phys. 44, 2137

(1966).
5P. M. Platzman and P. Eisenberger, Phys. Rev. Lett. 33, 152

(1974).
G. D. Priftis, J. Boviatsis, and A. Vradis, Phys. Lett. 68A, 482

(1978).
K. S. Singwi and M. P. Tosi, in Solid State Physics, edited by

H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New
York, 1981),Vol. 36, p. 177.

~F. Green, D. N. Lowy, and J. Szymanski, Phys. Rev. Lett. 48,
638 (1982).

G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961); G.
Baym, ibid. 127, 1391 (1962).

~ G. E. Brown, Many-Body Problems (North-Holland, Amster-
dam, 1972).
D. J. W. Geldart and R. Taylor, Can. J. Phys. 48, 167 (1970).
A. Holas, P. K. Aravind, and K. S. Singwi, Phys. Rev. B 20,
4912 (1979).
M. W. C. Dharma-wardana and P. Taylor, J. Phys. F 10, 2217
(1980).

~4L. Hedin and S. Lundqvist, in Soll'd State Physics, edited by F.
Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York,
1969), Vol. 23, p. 1.

G. Mukhopadhyay, R. K. Kalia, and K. S. Singwi, Phys. Rev.
Lett. 34, 950 (1975).
K. Awa, H. Yasuhara, and T. Asahi, Phys. Rev. B 25, 3670
(1982); 25, 3687 (1982).
D. J. W. Geldart and R. Taylor, Can. J. Phys. 48, 155 (1970).

~sA. L. Fetter and J. D. Walecka, Quantum Theory of Many
Particle Systems (McGraw-Hill, New York, 1971),Chap. 11.
K. L. Kowalski, Phys. Rev. Lett. 15, 798 (1965).


