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Electron-phonon interaction in charge-density-wave superconductors
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Using a canonical transformation we derive an effective electron-phonon interaction for a system
undergoing a lattice distortion followed by a superconducting (SC) transition. The relevance of this
interaction in interpreting the Raman scatteririg observation of the SC gap mode in layered charge-
density-wave and A 15-compound superconductors is discussed.

In recent years two different theories' have been pro-
posed to explain the Raman scattering observation of su-
perconducting (SC) gap excitations in the layered charge-
density-wave (CDW) superconductor 2H-NbSe2. Both of
these assume the existence of a coupling between the
CDW-amplitude-mode (CDW-AM) phonon and the SC
electrons and interpret the experimental results in terms
of the phonon self-energy effects. The Balseiro-Falicov'
(BF) model assumes the usual electron-phonon type of
coupling, where a phonon decays by emitting an electron-
hole pair of same spin. On the other hand, Littlewood
and Varma (LV) propose a new mechanism of coupling
where the oscillations of the CDW amplitude produces a
variation in the electronic density of states at the Fermi
surface which in turn changes the SC energy gap. The
later mechanism corresponds to an interaction term where
a phonon decays by emitting two electrons or two holes of
opposite spins and momenta. Neither of these models has
been derived from first principles, and the coupling con-
stants remain as unknown parameters. Moreover, the
characteristics of the CDW state do not enter the models
explicitly. As a result, these theories do not forbid the ob-
servation of SC gap excitations by Raman scattering in
normal superconductors, for which there is no experimen-
tal evidence to date.

In this paper we give a first principles derivation of a
residual electron-phonon interaction in the CDW-SC
state. Starting from a normal interacting electron-phonon
system, we perform a canonical transformation which re-
sults in an effective electron-electron interaction and a
residual electron-phonon interaction. The effective
electron-electron interaction is known to be responsible
for the BCS and the CDW condensate states. On the oth-
er hand, the residual electron-phonon interaction which
involves two phonons and an electron-hole pair when
treated in the mean field approximation produces an ef-
fective electron-phonon interaction. The coupling con-
stant of this interaction explicitly involves the CD%' order
parameter, i.e., the Fourier component of the lattice dis-
tortion corresponding to the wave vector Q. Using this
effective interaction we recover the BF result for the pho-
non self-energy in the SC state.

The Hamiltonian of the interacting electron-phonon
system in the metallic state is given by

H=e He (2)

which eliminates H, ph to lowest order in g. The genera-
tor 5 is determined by

H, h [SHp]——
and the transformed Hamiltonian to 0 (g ) is

H=Hp+ —,
' [H, „h,S]

=Hp+H, , +H, ph,

where
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H, „= g [V (k, q, q')C- C-
~~lk q q cr

x(b, +b -, )b-, ,

+ V+(k, q, q')C- C-„

xb, , (b, +b —,)]

H=Ho+H. - h

= ge-„C-„C-„++co b b
ko q

+g g C- C-„(b +b ), (lb)
k q0.

where C- (C- ) creates (annihilates) an electron with

kyar

kcr
spin tT having energy e-, b (b ) creates (annihilates) ak' q q

phonon with wave vector q having frequency co and g is
q

the electron-phonon coupling constant. We perform a
canonical transformation:
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with

, +CO~,k+ q k+ q —q'

In writing Eqs. (4)—(8) we have ignored the terms which
renormalize the electron energies. It is well known that
H, , gives rise to the SC and CDW states in the mean
field approximation. The residual interaction H, ph cou-
ples two phonons with an electron-hole pair. This interac-
tion can be further reduced in the mean field approxima-
tion to

reciprocal-lattice vector, Eq. (9c) essentially describes Um-
klapp scattering of phonons in the CDW state, which is
irrelevant in the present context;

The interaction H, ph is similar in structure to that of
the BF model, however, its strength explicitly involves the
lattice distortion. As a result, for a normal SC such an in-
teraction does not exist. It is evident from Eq. (9d) that
V( k, q, Q ) =0 for q =0, which signifies the fact that the
optical phonons in the normal state will not couple to the
electrons. This is confirmable with the deformation-
potential theorem which states that g ( q =0)=0. Similar-

ly, for q=6 (a reciprocal-lattice vector) again the cou-
pling V vanishes because of the lattice periodicity. On the
other hand, when the system is in the CDW state, for
q =Q, because of Eq. (10), the coupling

1 2
[He-ph]MF H e-ph+H e-ph ~

where

H e ph
——g V(k, q, Q)(b- )C-„- C-„

k qcr

x(b-, +b -, )

and

+ V+(k, q, Q —q)(C- C- )

xb - (b-, +b -, )]

V(k, q, Q)= —2 ~g ~

(e-—e- )
k k —q

(E~—E~ ) Cil~—2 2
k k —q

H, h
——Q [V (k, q, Q —q)(C C )

k qcr

x(b, +b, )b-

(9a)

(9b)

(9c)

V(k, Q)= —8~g ~'
(4e- co-)—

k Q

is finite, and since Q can be zone folded to q =0, the op-
ticlike CDW phonons (i.e., the CDW amplitude modes)
will interact with the electrons in the SC state through
H,' ph. In what follows we shall approximate V(k, Q) by
a constant A,

' keeping in mind the fact that I,' is of 0 (g )
and hence will be of the same order of magnitude as the
BCS coupling constant. But the effective coupling con-
stant A, =A, '(b- ) will be enhanced for systems having a

Q
higher Peierl's transition temperature. In H, ph the CDW
wave vector Q enters explicitly through the electron
operators. It is worth remarking that to O(g ) a LV-type
interactiori cannot be generated from Eq. (7). However,
the possibility of generating such an interaction cannot be
ruled out if one considers terms to O(g ), as a result it is
expected that the processes associated with LV-type in-
teraction will be an order of magnitude weaker and the
coupling constant will depend explicitly on both the lat-
tice distortion and the SC gap.

On calculating the phonon propagator using the mean
field Hamiltonian with the effective coupling constant A, ,
we obtain

k —qk+ 2 24E'~ —co ~ 46~ —co ~
k Q k —q Q

D (~)=D (co) —4m'A, 'X- ( q, co),
Q

where the free-phonon propagator:

D (co)=co-/rr(co co )—
q q q

(12)

(13)

k+Q k (10)

which is essential for the formation of the CDW state, has
also been used in simplifying Eq. (9d). Since Q is a

(9d)
I

In writing Eqs. (9) we have explicitly assumed that the
system is in the CDW state and has undergone periodic
lattice distortiori, the CDW wave vector being Q. Conse-
quently (C- C- -. )&0 and also (b- )=(b- )&0.
However, care should be taken in evaluating these aver-
ages as the canonical transformation renormalizes the
electron and phonon energies. Furthermore, the nesting
property (electron-hole symmetry)

and the electron response function in the CDW-SC state:

X- ( q, co)
Q

kk'

(14)

which should be evaluated in the coexistent CDW-SC
state. Since we describe the CDW and SC states by the
mean field Hamiltonians it is -expected that to the lowest
order iri the approximation, the CDW phonons will be
generated first, which will then couple to the SC electrons.
Keeping this in mirid we evaluate X-(q, co) in the SC

Q
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state using the BCS Hamiltonian and assume that the
phonons entering D (to) are CDW-AM phonons corre-

q

sponding to q=Q. Thus, we obtain

X- (Q, co)
Q

= —(2h /m) g tanh E-„(co 4E—-),

where

+g2) 1/2

(15)

and 2h is the SC energy gap. In evaluating X-(Q, to) we
Q

have made use of the dectron-hole symmetry [Eq. (10)] of
the CDW state and assume that k+2Q=k. Equation
(15) gives the phonon self-energy calculated by BF, which
has a square-root singularity at co =26. However, because
of the prefactor (b- ) in A, , the self-energy is nonvan-

ishing only in the CDW state contrary to the predictions
of the BF model.

It was pointed out by LV that within the random-phase
approximation, the Coulomb corrections completely
screen the electron-phonon interaction. However, recently
it has been shown that on making the theory consistent
by including higher-order electron-phonon effects one re-
covers the 2A singularity in the phonon self-energy.

The following are the predictions of the present calcula-
tion: (1) Only those systems which undergo a lattice dis-
tortion (e.g., due to CDW formation, martensitic transi-
tion, etc.), before the SC phase transition will show a peak
below 2h in the phonon spectral function. (2) Because of
the dependence of the coupling constant on the lattice dis-
tortion which is a temperature-dependent quantity, the in-
tensity of the peak associated with the gap mode will
show a temperature dependence. (3) The gap-mode fre-
quency will also show a temperature dependence arising
from that of both b and (b- ). (4) The temperature

Q
dependence of the gap-mode intensity will be strong and
predominantly that of (b- ) provided that the SC and

Q
structural transition temperatures are close to each other.

The Raman scattering data on the layered compound
CDW superconductor 2H-NbSe2 as well as the high- T,
A15-compound superconductor ' V3Si show evidence in
support of the above predictions. In the former case it
has been shown that a peak in the Raman spectrum ap-
pears near the SC gap (2b, ) upon cooling from the CDW
to the coexistent CDW-SC phase. The effect of magnetic
field on the strength of this peak shows that it derives its
Raman activity from the presence of a nearby CDW-AM
phonon. So far, there is no report of the observation of
temperature dependence in the Raman spectrum of this
system. While the observation of the gap-mode peak fol-
lows from Eqs. (12) and (15) the absence of temperature
dependence can be attributed to the fact that the Peierl's
transition temperature (Tz ——33 K) is much higher than
the SC transition temperature (T, =7.2 K).

In the case of V3Si, undergoing a martensitic transfor-
mation at T =20.5 K and then a SC transition at
T, =16.9 K a gap mode has been observed around 41
cm '. There is clear evidence of the coupling of the gap
mode to an Eg symmetry phonon around 260 to 300
cm '. Both the frequency and intensity of the gap mode
show strong temperature dependence. In contrast, no
such behavior is seen for nontransforming samples of
V3Si. In the case Nb3Sn which is also a high- T, (= 18 K)
A15-compound superconductor undergoing a martensitic
transformation (T~ =50.6 K) the observed gap mode '

does not show any temperature dependence, in spite of the
evidence for the coupling between the gap excitations and
a phonon at 150 cm '. The reason for the latter behavior
again being T ~~ T, .

In conclusion, a first-principle derivation of a model
Hamiltonian for a system undergoing a lattice distortion
followed by a SC transition is presented and its relevance
to the Raman scattering observation of the SC gap mode
is discussed. The theory applies to the cases where a cou-
pling between the gap mode and a phonon exists. Clearly,
the alternative mechanism for the appearance of the gap
mode due to direct electronic Raman scattering ' falls
outside the scope of the present discussion.
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IC. A. Balseiro and L. M. Falicov, Phys. Rev. Lett. 45, 662
{1980).

P. B. Littlewood and C. M. Varma, Phys. Rev. Lett. 47, 811
(1981);Phys. Rev. B 26, 4883 (1982).

R. Sooryakumar and M. V. Klein, Phys. Rev. Lett. 45, 660
{1980). R. Sooryakumar, M. V. Klein, and R. F. Frindt,
Phys. Rev. B 23, 3213 (1981).

4J. D. Patterson, in Introduction to the Theory of Solid State
Physics (Addison-Wesley, London, 1971),p. 334.

5S. N. Behera and B. Dey (unpublished).

G. C. Mohanty and S. N. Behera, Can. J. Phys. 61, 1160
(1983).

7R. Hackl, R. Kaiser, and S. Schicktanz, J. Phys. C 16, 1729
(1983).

~S. B. Dierkev, M. V. Klein, G. W. Webb, and Z. Fisk, Phys.
Rev. Lett. 50, 853 (1983).

9B. W. Batterman and C. S. Barrett, Phys. Rev. 149, 296 (1966).
A. A. Abrikosov and E. A. Falkovskii, Zh. Eksp. Teor. Fiz.
40, 262 (1961) [Sov. Phys. —JETP 13, 179 (1962)].


