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Effective-medium theory of percolation on central-force elastic networks
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We show that effective-medium theory gives an excellent description of regular lattices when
nearest-neighbor central-force springs are present with probability p. Effective-medium theory
shows that all the elastic constants go to zero at p „=dp, where d is the dimension and p, is the
effective-medium estimate of the ordinary percolation threshold.

I. INTRODUCTION

There has been considerable interest in the elastic prop-
erties of random systems recently. ' While much of this
attention has focused on the critical properties of the ran-
dom elastic network as it breaks up, it is of considerable
interest to describe the overall behavior. We focus our at-
tention in this paper on the central-force elastic percola-
tion model. ' We show that the simplest effective-medium
theories give excellent agreement with numerical simula-
tions for most values of p, the bond occupation probabili-
ty, except for a very small range of values of p near p«„,
on both the triangular network and on the fcc lattice.

Although it is unlikely that the present model will ap-
ply directly to any real physical system, it is an important
one as it is the simplest member of a general class of
models. These models are made up of units that can be
connected but still transmit no elastic restoring forces. In
the present case, the units are bonds and a pair of two and
just two connected bonds form a "free hinge" as there are
no angular forces. The whole network has finite elasticity
for high values of p because the high connectivity "locks"
all the free hinges. As bonds are removed from the pure
system, local floppy regions are created which eventually
prevent the rigid regions (i.e., the parts of the network
that have finite elasticity) from percolating and the sys-
tem loses its elasticity. Thus the breakup of the system is
determined by rigidity percolation and not ordinary con-
nectivi ty percolation.

The most important physical manifestation of this
phenomenon is in the cooalent random networks where
the local movement is not a free hinge but the dihedral
angle associated with three connected bonds. The energy
required to change the dihedral angle is small compared
to that needed to change the bond lengths and bond an-
gles, so it is reasonable to neglect it as a first approxima-
tion. This leads to a division of covalent random net-
works into )ow coordinated polymeric glasses and high
coordinated amorphous solids.

The other class of models for the elastic percolation
phenomenon involve specifying a sufficient number of
Inicroscopic forces so that all connected parts of the lat-
ice are rigid by themselves and the elastic percolation

transition occurs at the ordinary percolation threshold p„
albeit with different exponents.

The system under consideration is made up of Hooke
springs connecting nearest-neighbor sites i,j to give a po-
tential,

II. CONSTRAINTS METHOD

The simplest way to estimate where the transition takes
place is to use a constraints argument. When p is small,
the system consists of disconnected pieces and hence has
many zero frequency modes w-hose number is given by the
number of degrees of freedom (Nd) minus the number of
constraints ( —,zNp). Thus, the effective-medium estimate
of the fraction f of zero-frequency modes is given by

f=(Nd —,'zNp)/Nd =1—— (2)

so that f goes to zero at p„„=2dlz.
Next consider comparison of this result with numerical

simulations. We have computed f numerically for a 168
atom triangular network (see inset in Fig. 1) and a 108

$ [(ut uj) rtj f p'ij r

&~j&

where the angular brackets denote a sum over nearest-
neighbor pairs which are connected by springs with spring
constant a and p;J. is a random variable that is associated
with each bond and is 0,1 with probability 1 —p,p. The
u; are the displacements from equilibrium and r;~ is a
unit vector connecting nearest-neighbor pairs in equilibri-
um.

In the next section, we show how a constraints counting
argument can be used to give an estimate of p„„where
the elastic constants of the system vanish. In Secs. III
and IV we develop effective-medium theories for the elas-
tic constants for p &p„„ from two different viewpoints,
both of which lead to the same result. The first one is a
direct generalization of the Inethod developed in the study
of electrical conduction near percolation threshold, and
the second one applies the coherent-potential approxima-
tion to the present problem.
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FIG. 1. Elastic constants C» and C44 averaged over -three

configurations for a 440 atom triangular network. For the pure
system (p =1), C44 ——C»/3=a+3/4. The inset shows the
fraction of zero-frequency modes f for a 168 atom triangular
network averaged over three configurations. The straight lines
are from the effective-medium theories described in the text.

FICi. 3. Showing a two coordinated bridge connecting two re-
gions. This bridge is ineffective in transmitting any elastic re-
storing force and can be trimmed.

the electrical conduction problem, leads to the effective-
medium estimate for the ordinary percolation (i.e., the
connectivity problem) of p, =2/z, and hence

atom fcc lattice (see inset in Fig. 2). Both lattices had
periodic boundary conditions and f was obtained by
directly diagonalizing the dynamical matrix formed from
(1) and counting the number of modes with eigenvalues of
zero. It can be seen that Eq. (2) describes the results well
except near p„„where the very small deviations from (2)
are due to a combination of finite size and critical effects.

A similar constraint counting argument for 1, rather
than d, degrees of freedom per site, which is the case for

peen =pcd . (3)

The transition described here takes place well before or-
dinary percolation occurs because many connections in
the network produce no elastic restoring force. ' A simple
example is shown in Fig. 3. Configurations like this cor-
respond to one example of the floppy regions.

III. STATIC METHOD
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For p ~p„„, it is of interest to develop a mean-field
theory for the elastic constants. We have done this in two
ways, both of which lead to the same result. The one that
is simpler conceptually is to adapt an argument used by
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FICx. 2. Elastic constants C», C44, and 8 =(C»+2C~&)/3
averaged over three configurations for a 500 atom fcc lattice.
For the pure system (p =1), C» 2C~2=2C~ =aV 2/b——, where
b is the nearest-neighbor separation. The inset shows the frac-
tion of zero-frequency modes f for a 108 atom fcc lattice aver-
aged over three configurations. The straight lines are from the
effective-medium theories described in the text.

FIG. 4. 'Showing the notation for constructing the effective-
medium theory. On the left-hand side a single bond between
sites 1 and 2 is modified by having a spring constant a rather
than a . The strain existing before the modification can be
reestablished by applying a force f across the bond as shown.
On the right-hand side, we show an equivalent circuit for the
bond joining 1 and 2 as described in the text. The springs a'
and a are connected in parallel.
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.Kirkpatrick for the electrical resistor network. Suppose
a uniform stress (uniaxial, hydrostatic, etc.), is applied to
a lattice where all the springs are o. and that the atoms
labeled 1,2 in Fig. 4 have a relative displacement, along
r&z of 5u . Now substitute a single "wrong bond" a as
shown in Fig. 4 and imagine an extra external force f ap-
plied to 1 and 2 as shown to restore 1 and 2 to their posi-
tions before a was substituted for a . It is then easily
seen that f should be

F=-
1

where

D"'u.
lJ J

J

DlJ
um ~r&&'r&i" J

J +E

f=5u (a —a) . (4) These equations can be inverted by Fourier transforma-
tion to give

From the superposition principle, the relative displace-
ment 5u between 1 and 2 induced by f when the system is
unstressed is the same as the extra displacement between 1

and 2 when there is an applied uniform strain 5u~ but no
f. Then 5u is the "fluctuation" in relative displacement
of 1,2 due to the introduction of the wrong bond a. The
relation between f and 5u can be obtained in the following
way. If the force f is applied to 1,2 when all the springs
are a~, there will be an effective spring constant
a,tt ——a /a* where 0&a'&1 takes account of all the
connections between 1,2 including the direct one in this
uniform system. We will calculate a* later, but for now
treat it as a known constant. If the a spring between 1

and 2 is remoued, then the new effective constant a~ be-
tween 1 and 2 is

a' =a /a' —a

uk ———D '( k ).Fk, (13)

=a g [1 exp—(ia k 5)]55. , (14)

where 5 is a unit vector in the direction of one of the z
nearest neighbors and a is the nearest-neighbor separation.
Putting FJ ——fr~2(5J~ —5J2), the negative of the externally
applied force as shown in Fig. 4, we find that

where D(k) is the d)&d dynamical matrix for a Bravais
lattice, and Fk and uk are the Fourier transforms of the
F; and u;, respectively:

D(k)= QDJexp[ik(r~ —r;)]

as shown in Fig. 4. If a is added in parallel to a' and the
force f applied, then the relative displacement 5u of 1 and
2 is given by

uz —u& ———g [2 exp(iak—r~2)
k

—+—exp( ia k.—r &2)]D ( k ).r,2, (15)

or

f=5u(a' +a)

5u =5u (a~ —a)/(a /a* —a~+a) .

(6)

which defines

a' = g [2—exp(ia k r &2 )

k

The effective-medium result is obtained by choosing a~
so that the average value (5u ) of 5u is zero to give

—exp( iak. r—i 2])riz D (k)' iz . (16)

CXm A CXm +EX
(8)

As all bonds are equivalent, we can replace r~2 by any of
the nearest-neighbor bonds 6, sum over all nearest-
neighbor bonds and divide by z to give

For a distribution P(a) of spring constants a this leads to

f P(a) du=1 .
1 —a*(1—a/a~ )

a'= QTrI[1 —exp(iak 5)](55).D '(k)I
Xz

2 g Tr(1)= =p„„.2d
(17)

For the present case of interest P(a') =p5(a a')—
+(1—p)5(a') gives am J Scen

Peen

Thus, the result (11)can be written ' as

(18)

am P —Q

1 —a* (10)

which goes to zero when p„„=a*.
The quantity a is obtained for the perfect lattice as

follows. The force F; on-the atom i is given by

Since all the elastic constants .C;J of the network are
linear functions of a only, we conclude that they all go
to zero linearly at p„„,and that any ratio of two elastic
constants is independent of p. In particular, the ratio of
the bulk modulus to the shear modulus of the triangular
network is akoays 2.
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Next cansider comparison of this result with the nu-
merical simulations. The straight lines from Eq. (18) are
plotted in Figs. 1 and 2 for the triangular and the fcc lat-
tices and show excellent agreement with simulations ex-
cept for a very small critical region near p«„. Such clase
agreement between simulations and effective-medium
theories is rare although it does occur for the conductivity
problem in 2d. The deviations are larger in 3d for the
conductivity problem than in the results for springs in
Figs. 1 and 2. Indeed 2d/z appears to be a superior esti-
mate far p„„ than 2/z is for p, . This is particularly ap-
parent in comparing the results for the fcc lattice in this
paper and those in Ref. 6. In general, we would expect
effective-medium theories to do better in higher dimen-
sions.

The numerical simulations were done by removing
bonds at random in a lattice with periodic boundary con-
ditions, imposing an appropriate external small strain e
(which redefines the vectors that define the large periodic
cell) and relaxing as fully as possible by moving atoms to-
wards positions where there is no force on them. The
elastic constants were obtained by computing the potential
energy of the system via Eq. (1) and using V= —,'Ce.
This procedure has some advantages over that used previ-
ously' in that all atoms are treated equivalently and there
are no "surface atoms. " Typical strains used were
a=10

There are some subtle and important differences in the
numerical simulations done in this work and those done
previously. ' In Fig. 3, the two bonds can be removed as
they-do not produce a restoring force. (Dangling bonds
are also removed as in the conductivity problem. ) How-
ever, when 0=180 in Fig. 3, there are two ways to
proceed. In Ref. 1, it was assumed that there was a re-
storing force as given by the potential (1), whereas in the
present work we assume there is none and remove such
configurations. This has the effect of increasing P«„
from =0.58 nearer to —', . We remove such configurations
because "buckling" can occur in compression rendering
the connection in Fig. 3 ineffective even if 8=180'. This
model can be visualized as replacing all 180 bonds by
180'—b„evaluating the elastic properties for a small
strain e«6, and letting 6~0. Both models (i.e., Ref. 1

and the present one) are equally valid and of course the
effective-medium theories do not distinguish between
them. In the numerical simulations to calculate f, as
described previously, it was found that f was slightly
larger for the 6=0 case than for the small 6 case. How-
ever, this was only appreciable around p„„and too small
an effect to show on the scale of the insets in Figs. 1 and
2.

IV. COHERENT-POTENTIAL APPROXIMATION

%'e now consider a multiple-scattering approach in
which all repeated scatterings from the same bond are
summed to give a coherent-potential approximation
(CPA). We find that same result (18) is obtained from
this method. Writing the Hamiltonian for the system as

H=Hp+ V,
where

and

~2
~p ——g + g [(u; u—j) r,I]

i . (ij)
(20)

A' —CXm

l( u 1 u2) r121
2

(21)

represents a single "defect" bond in an effective medium
a as shown in the left-hand side of Fig. 4. It is con-
venient to define Green's functions for the system
described by Hp as

(0/ u; fn)(n
/

u. /0)
Pli-

dO —M~ +COp

(0/ ui /
n)( nfu; (0)

CO+ CO+ —Cgp
(22)

where P;j is a d &d matrix. A similar quantity G,z is de-
fined for the system described by H. We rewrite (21) in
matrix form with

+IJ (a attt )r12r12mij t (23)

where mIJ. (51I51,——+52152i —51I52i —52;51i) arises froin
the translational invariance of each bond. It is easy to
show that the Dyson equation is satisfied, i.e.,

G =P+P.V.G

G=P+P.T.P

where

a —am
( )

1 —2(a —a )ri2(P11 —P12) ri2

has the same form as V,z but with a renormalized coeffi-

cient. Setting (T) =0, we find

12 12 IJ

1 —2 ~—CX ri2' P~] —P]2 'f'y2
(27)

which is analogous to (8) except that it applies at all fre-
quencies co and the effective force constants a (co) are
functions of the frequency. Note that all elements of the
T matrix are set equal to zero by (27) as all the T matrices
have the form af a scalar multiplying m;J. The method of
Sec. III can also be easily generalized to finite frequencies.

The pure system Green's functions P; obey the equa-

tion of motion (nating that Pi i ——P22 and P12 ——P21)

ZCXm
Mco P11 ——1+ r12.(P11—P12).r12,

d
where P&~ is the magnitude of the isotropic site diagonal
Green's function. As co —+0, Eq. (27) reduces to the pre-
vious result (8) with again a* =2d/z.

(28)

where P, G, and V are considered as matrices in both site
indices ( i,j ) and in a d-dimensional vector space.
Remembering that we are considering a single defect
bond, .Eq. (24) can be rewritten as
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V. CONCLUSIONS

There is a slight difference between these two versions
of effective-medium theory for p &p„„. In the first, the
elastic constants C;J are calculated, and the various
masses are irrelevant. In the second, the sound velocities
are calculated in the long-wavelength limit. This leads to
the elastic constants if it is assumed that the effective
mass is independent of p. In reality, the effective mass
will depend on p, but this dependence is expected to be
much weaker than the dependence on p of the elastic con-
stants near p„„,analogous to the conductivity case. An
account for such effects is obviously beyond the capabili-
ties of effective-medium theories.

To summarize, we have shown that simple effective-

medium theories give a remarkably good overall descrip-
tion of the dilute elastic systems with Hooke springs. The
detailed behavior around p„„is a subject still under study.
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