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It is shown that an electron-hole liquid under suitable conditions can become superconducting.
This conclusion is reached by using an effective electron-electron interaction which includes vertex
corrections and multiple electron-hole scattering by means of local-field corrections. A simple
parametrization is proposed for the latter, and the parameters are determined in a self-consistent
manner. The superconducting transition temperature T, the interaction parameters A and yu, and
the characteristic frequency w, are studied as functions of density, hole- to electron-mass ratio and
valley degeneracy. T, is estimated to be of an observable magnitude (T, ~1 K) in some cases of in-
terest. The mechanism of superconductivity is purely based on Coulomb interactions. The inter-
mediate bosons responsible for pairing of the electrons are not acoustic plasmons but correlated pair

excitations from the Fermi sea of the holes.

I. INTRODUCTION

Ever since its discovery, the electron-hole liquid' (EHL)
in semiconductors has proved an ideal system to test vari-
ous many-body theories of fermions interacting via a
Coulomb potential. Agreement between theory and exper-
iment has been very satisfactory. An interesting question
to which, hitherto, no attention has been paid is, “can an
electron-hole liquid become superconducting and, if so,
under what conditions? Is the critical temperature suffi-
ciently high to be observed in a laboratory experiment?”’
It is the purpose of this paper to examine these questions
within the framework of existing many-body theories.

One of the simplest approaches to the problem is the
one based on the random-phase approximation (RPA). In
this approach the effective interaction between two elec-
trons is assumed to be v(g)/e(q,w), where v(q) is the
Fourier transform of the Coulomb potential and e(q,w) is
the RPA dielectric function of the system. An important
feature of this interaction is the presence of an attractive
term associated with acoustic plasmons,z’3 a collective ex-
citation which exists, in the RPA, whenever the ratio be-
tween the masses of the heavy and the light components
exceeds 2.25. This suggests the possibility of a mecha-
nism of superconductivity based on the exchange of
acoustic plasmons.“'5 The total RPA interaction is, how-
ever, always repulsive in the static limit. Superconductivi-
ty can therefore only arise as a result of the frequency
dependence of the interaction, in particular, of the renor-
malization of the Coulomb repulsion parameter p. In the
case of an EHL, with typical density n ~10'"—10! cm—3,
large background dielectric constant €, ~5—15, effective
masses of the order of the bare electron mass, and
moderate hole-to electron-mass ratio 0.1 <p < 10, an esti-
mate of the superconducting transition temperature T,
gives a vanishingly small value. This conclusion is er-
roneous because it is based on a theory, the RPA, which
does not include many-body corrections to the effective
interaction. One of the aims of this paper is to demon-
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strate the importance of such corrections. This demands
a full reconsideration of the problem.

The two features that a realistic model of the interac-
tion must necessarily include are (i) the existence of ex-
change and correlation between the particles of the sys-
tem, and (ii) the existence of exchange and correlation be-
tween the two interacting particles and the rest of the sys-
tem. In the language of Feynman diagrams, the first ef-
fect gives rise to vertex corrections to the internal polari-
zation insertions and the second is responsible for vertex
and ladder diagram corrections involving the external
lines. A simple approximation scheme which enables us
to treat both points (i) and (ii) in a unified way is the gen-
eralized random-phase approximation (GRPA). In this
scheme exchange and correlation effects are described by
certain local-field corrections which modify, at short
range, the average Hartree field of the RPA. The local-
field corrections can be calculated from a parameter-free
theory, such as the one proposed some years ago by
Singwi, Tosi, Land, and Sjolander® (STLS) and have been
found to represent well the experimental data on the
EHL.” Although the GRPA scheme was originally con-
ceived to improve upon the RPA calculation of the dielec-
tric function [i.e., to deal with point (i) only], we have
found that it can be used to construct an effective, local
interaction which consistently accounts for both effects (i)
and (ii) by means of the local-field corrections. In its final
form this effective interaction is very much like the two-
component generalization of the one recently proposed by
Kukkonen and Overhauser® for electrons in a simple met-
al. Different from the RPA interaction, it can be strongly
attractive up to wave vectors of the order of the Fermi
momentum and frequencies of the order of the Fermi en-
ergy of the holes (we assume that mj,>m,). This
behavior does not violate the conditions for the stability of
the ground state with respect to spin- or charge-density
waves. Thus, we can have a BCS-like situation, with
Cooper pairs forming in an attractive potential well near
the Fermi surface.
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Using the GRPA form of the effective interaction, we
have calculated the superconducting transition tempera-
ture of an EHL. We have assumed a simple parametrized
form of the local fields which satisfies, in the limit of
small wave vector, the appropriate compressibility sum
rules. We have found that (1) T, is strongly dependent on
the density of the liquid and decreases very rapidly when
‘the latter increases, and (2) T, is strongly dependent on
the mass ratio p and decreases with the latter, falling to
zero for p <3. For the EHL in CdS,’ a direct-band-gap
semiconductor with one electron valley, one hole valley,
and p~6, we have estimated 7T, ~1 K. For the EHL in
AgBr,'° an indirect-band-gap semiconductor with one
electron valley, four equivalent hole valleys, and p ~ 3, we
have estimated that T,~0.1 K. Thus, quite reasonable
transition temperatures are possible, in principle, in an
EHL, even with moderate values of the mass ratio. On
the other hand, T, depends very sensitively on some pa-
rameters of the semiconductor, such as p, the reduced
mass i, and the dielectric constant €_, the last two deter-
mining the energy scale of the system. The choice of a
suitable material becomes, therefore, a crucial factor for
an experimental verification of our theory.

A few comments on the physical mechanism of super-
conductivity in the EHL are now in order. It is well
known that exchange and correlation enhance the
compressibility of a Fermi liquid, driving it toward a
compressional instability which, in an EHL, would take
place at r;=r,=2.5 (r; is the usual Coulomb coupling
constant, measuring the average distance between carriers
in units of the effective Bohr radius). Looking at the den-
sity fluctuation spectrum of the liquid, the progressive
softening that occurs as #; approaches r,, shows as a con-
stant shift of the spectral weight from high to low fre-
quency. More precisely, in the limit of small r; (high-
density limit) the spectral weight concentrates under the
peak of the acoustic plasmon; as r; increases the
acoustic-plasmon peak is gradually suppressed while the
pair continuum is enhanced; as 7, gets very near to 7y, a
new sharp peak appears on the low-frequency side, which
we may call “paraphonon peak,” and signals the proximi-
ty of a phase transition. In an EHL at equilibrium densi-
ty, #s/re ~0.8 and the compressibility is enhanced by a
factor of 4—S5 relative to its noninteracting value. The sit-
uation is intermediate between the acoustic-plasmon re-
gime (r;—0) and the “paraphonon” regime (r;—r ), but
somewhat nearer to the latter. The density-fluctuation
spectrum consists of a continuous distribution of pair ex-
citations from the Fermi sea of the holes whose density is
enhanced by exchange and correlation effects. Whether
these excitations can provide an effective mechanism for
superconductivity depends very critically on the strength
of their coupling to the electrons. It is here that exchange
and correlation effects between the external particles and
the medium play a decisive role. If they were neglected
(i.e., if we used a simple screened interaction with a dielec-
tric function accounting for internal exchange and corre-
lation effects), the electron-hole effective potential would
turn out to be rather weak. This effective potential, how-
ever, cannot be correct, since it fails to reduce, in the
long-wavelength limit, to the inverse of the electronic den-
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sity of states at the Fermi surface—a condition which was
first pointed out by Heine, Noziéres, and Wilkins
(HNW).!!' Vertex corrections alone are sufficient to re-
store the HNW condition and to make the effective poten-
tial stronger than in the RPA. Electron-hole ladder dia-
grams add a further contribution in this direction by
enhancing the probability for an electron and a hole to
come near to each other. We can summarize the discus-
sion by saying that the main attractive mechanism is the
exchange of correlated pair excitations from the Fermi sea
of the holes. There are many of them because the system
is so compressible and they are strongly coupled to the
electrons because of vertex corrections and electron-hole
correlation. Thus, they can drive a superconducting tran-
sition.

In a recent paper, Jaffe and Achcroft'? (JA) have inves-
tigated the interesting question of superconductivity in
liquid metallic hydrogen (LMH). They arrive at the con-
clusion that LMH can become superconducting in a cer-
tain density range and that the transition temperature is
around 100 K. The pairing mechanism, in their case, con-
sists of the exchange of longitudinal phonons (acoustic
plasmons) and pair excitation from the Fermi sea of the
protons. The main difference between an EHL and LMH
is in the value of the mass ratio, which is usually less than
10 in the former case and equal to m,/m, ~1836 in the
latter. This difference has a number of important conse-
quences. First, the mechanism based on exchange of
acoustic plasmons is completely nonoperative in the EHL.
Second, the transition temperature of an EHL is a very
sensitive function of the mass ratio and its behavior is the
opposite of what one would expect from an isotope-effect
argument. Finally, it is precisely the smallness of the
mass ratio that enables us to apply the GRPA scheme in
which electrons and holes are treated on an equal basis
and many-body corrections enter through local-field fac-
tors. It is interesting, in this respect, to compare the
GRPA approach with the one taken by JA for liquid me-
tallic hydrogen. In the JA method the central role is
played by the so-called Elisahberg function a?F(w),
which, in a crystalline solid, can be expressed in terms of
the electron-ion pseudopotential and the spectral density
of the phonons. In the case of liquid metallic hydrogen,
JA identify these two quantities as the electron-proton ef-
fective interaction and the imaginary part of the density-
density response function of the protons. The two quanti-
ties are determined independently in the JA scheme. For
the first one they take the result of a density-functional
calculation in LMH;!® for the second they assume a
GRPA-like form, adjusted to yield the correct compressi-
bility of LMH. In our scheme, starting from the complete
interaction between two electrons in the EHL, we can also
separate the hole-mediated part of the interaction and use
it to construct an Eliashberg function of the same form as
JA. In our case, however, both the electron-hole interac-
tion and the density-density response function of the holes
are expressed in terms of a single set of local-field correc-
tions. Even if these local fields are treated phenomenolog-
ically, they still must satisfy three independent constraints
in the limit of small wave vector. Only one of these con-
straints can be associated with the compressibility sum
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rule in its usual form. It would be very interesting to cal-
culate the local-field corrections for LMH and compare
the resulting 7, with that of JA. Unfortunately, such a
calculation is very difficult and, at present, intractable.
The STLS theory, for example, stops converging for
p > 10, while the phenomenological approach developed in
this paper predicts too large an equilibrium density and
binding energy for LMH. The difficulty is easy to under-
stand if we recall that, because of their large mass, the
protons in LMH have an effective coupling constant
r; ~2000. Thus, the GRPA scheme, which works very
well for the EHL, cannot be easily extended to treat
LMH.

This paper is organized as follows. In Sec. II we define
the model and review the GRPA theory of the effective
interaction. In Sec. III we propose a simple parametriza-
tion for the local-field corrections and calculate the pa-
rameters in a self-consistent manner. In Sec. IV we
present results for the various interactions, the excitation
spectra, and the parameters A, u, and wo. In Sec. V we
calculate the critical temperature T, for various values of
density, mass ratio, and valley degeneracy. In Sec. VI we
present a critique of the calculation and discuss the possi-
bility of experimental observation. In Appendix A we

outline the derivation of the effective interaction. In Ap-

pendix B we formulate and discuss the conditions of sta-
bility of an EHL against spin- and charge-density waves.
In Appendix C we give some details on the calculation of
T,.

II. EFFECTIVE INTERACTION

The simplest model of an EHL consists of electrons and
holes distributed in v, equivalent conduction bands with
effective mass m, and v, equivalent valence bands with
effective mass my, respectively. The carriers have an
effective charge +e/el/?, where € is the high-frequency
dielectric constant of the semiconductor. The natural
units of length and energy for this system are the exciton-
ic Bohr radius af =%%_, /ue’ and the excitonic rydberg,
Ry*=e?/2¢ a}, where u~'=m, '+m; ! is the reduced
mass. The model is thus completely specified by four pa-
rameters: the Coulomb coupling constant r; giving the
average distance between two carriers in units of the exci-
tonic Bohr radius [n ~'=+7rl(a})?, where n is the total
density of electron-hole pairs], the mass ratio p=my /m,,
and the valley degeneracies v; and v,. The absolute sign
of the charge does not matter in this model, as long as
there are two kinds of carriers with opposite charge. We
shall always call “holes” the heavier particles, irrespective
of their nature, and by this definition p is always greater
than 1.

We now introduce the density-density response matrix
Xjj(g,), which describes the linear response of the EHL
to external fields V,,V, coupling to the total density of
electrons and holes, respectively. The induced densities
are '

2
dni(g0)= 3 Xij(g0)Vi(qw), i=12. (D)
j=1

where we use the subscript 1 to denote electrons and the
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subscript 2 to denote holes. In the GRPA one assumes
that the system responds as a noninteracting one to an ef-
fective field which is the superposition of external, Har-
tree, and exchange plus correlation fields:

2
dn;(g,0)=Xoi(q,0) |Vilgw)+ 3, ¢¥j(g)dn;(q,0) |, (2)
j=1

where Xg;(2) is the polarizability of noninteracting elec-
trons (holes) and

U@ =Py([1-Gjj(g)] (3)
are the spin-symmetric polarization fields in which
41re, i€ j
Q;(g)=—" @)
€9

is the Fourier transform of the Coulomb potential be-
tween particles i and j. Here, the Gjj(q) are the spin-
symmetric local-field corrections which account for ex-
change and correlation effects between components i and
j- The designation of the “spin-symmetric” corrections
derives from the fact that those local fields are averages
over the possible spin orientations—as well as the band

indices—of the two particles:

11,intra 1l,intra

s 1| Gi +G;;
Gii -
Vi 2

11,inter 11,inter
Gii +Gii”

2 >

+(V,'—1)

(5)
Gjj=Gy, i#j

where the superscripts 11 and 1! refer to the parallel and
antiparallel spins situation and the superscripts “intra”
(for intravalley) and “inter” (for intervalley) indicate that
the two particles are in the same band or in different
bands, respectively. The four local-field corrections
GTT,intra, GN,imra’ Gﬂ,inter, and Gu,inter are, in principle,
independent. In practice, however, one can neglect transi-
tions in which a particle scatters from one band to anoth-
er, since they require a momentum transfer of the order of
100 times the Fermi momentum. In this approximation
there is no difference between G'-™™, G'™ and
G- (since, in all these cases, there is no exchange),
and we can set GN,intra:GtT,imerzGH,interEGH and
G'hinta =G For i=£j there is, of course, no question of
spin or band dependence of the local-field correction.
Comparing Egs. (1) and (2), we immediately find that

[X*)™"y(g,0) = [Xoi(g,0)] 718, — ¥i(q) , (6)

where (X*)~! is the inverse of the matrix X*. Approxima-
tions, which go under different names, to the response
functions of Eq. (1) are, indeed, approximations for the
local-field factors Gjj.

In a similar way, we introduce the spin-response matrix
X§(g,), which describes the response of the EHL to
external fields coupling to the spin density of electrons
and holes, respectively. Neglecting magnetic interactions
between electrons and holes, this matrix turns out to be
diagonal and its GRPA expression is
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Xoi(q,@)
X‘?,( ,(0)= i s 7
S @ (ga) Y
where
Yi(g)=—2;(9)Gii(q) (8)
and
1 Gi} 1,intra _ Gi:' l,intra
Gi(g)=—
i1(q) Vi >
Gﬁ ,inter G.Tll,inter
+ (Vi-——l) ii 5 ii
_ G- o
- 2‘V,'

are the spin-antisymmetric local-field factors. The local-
field factors will play a major role in the rest of this pa-
per. They can be calculated, in principle, from the self-
consistent scheme of Singwi et al.® with the modifications
needed to satisfy the compressibility and susceptibility
sum rules. In the small-g limit they vanish as g2, remov-
ing the singularity in ®;;, and in the large q 11m1t they
tend to a constant value related to the pair correlation
function at zero separation.

Let us now introduce the effective interaction between
two electrons in the EHL. In another paper'* we discuss
in detail how to use the local-field factors to construct an
effective interaction which consistently includes exchange
and correlation within the medium and with the medium.
The interested reader will find a condensed but complete
description of our method in Appendix A of the present
paper. The final result for the effective interaction be-
tween two electrons in the singlet state is

Verlg,0)=v(q)+ E 1/11,(q)X (g,0)05(q)
i,j=1

—2vi+ DY@ X (@) , (10)

where v(q)=®;(q). This expression differs from the
normally used dielectric interaction

2

v(g)/elg,0)=v(g)+ 3, Py;(9)Xji(q,0)P;1(q) (11)

ij=1

in two respects. First, the effective potential by which the
interacting electrons polarize the medium and “feel” the
polarization of the medium is not the bare Coulomb po-
tential ®;;(g) but rather the polarization potential ¥j;(g).
This difference reflects the fact that the dielectric form of
the interaction treats the interacting electrons as test par-
ticles, whereas ours treats them on the same basis as the
other electrons of the system. Second, Eq. (10) has an ex-
tra term which describes an interaction via spin fluctua-
tions of the electron subsystem. This term is multiplied
by a factor (2v;+1), 1 for longitudinal spin fluctuations
and 2v; for transverse spin fluctuations. Apart from the
precise identification of the local-field factors entering it,
Eq. (10) is the two-component, frequency-dependent gen-
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eralization of the effective interaction proposed by Kuk-
konen and Overhauser® for electrons in a simple metal.

Equation (10) can be written in a different form that is
more convenient for the calculation of the superconduct-
ing parameters. We isolate that part of the interaction
which is mediated by the holes. Using the GRPA expres-
sions for X* and X, after a certain amount of algebra we
find

Veit(g,0)=U,(q,0)+ Uy(q,0) , (12a)
where
A X
U, = -—+<uG .)2—+
+UG11X01
X
— 2+ DG P— (12b)
1+UG11X01
and
Uy =va X5 - (12¢)

In writing these formulas we have introduced the proper
vertex function of the electrons,

=1/(1+UX01G311) , (13a)
the electronic dielectric function,
€1=1——UX01A1 s (13b)
the electron-hole effective potential,
A
Dy = (4P _ P1oA , (13¢)

11— X0 €1

the hole-hole component of the density-density response
function,
Xo2

Xop=—"7—, : (13d)
2T 1—fXo

and the hole-hole interaction function,

F=v5+ @) —‘_“- _

(13e)
— X0

In all these formulas the dependence on q and @ is under-
stood.

A few comments are now in order to explain the physi-
cal meaning of the various terms in this apparently com-
plicated expression. The first term on the right-hand side
of Eq. (12a) represents the interaction between two elec-
trons in the absence of holes. From Eq. (12b) we see that
there are three contributions to it. The first one is the
Coulomb interaction screened by electronic polarization
and multiplied by the square of the frequency-dependent
vertex correction [Eq. (13a)]. This form of the vertex
correction was first used, in the static limit, by Kukkonen
and Wilkins'> (KW) in a calculation of thermal resistivity
of the electron gas. It satisfies the Ward identities'® in the
limit of small ¢ and w, if G{; is chosen to satisfy the
compressibility sum rule and if mass renormalization is
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neglected. The second and third terms of Eq. (12b)
represent the contribution of ladder diagrams in the
particle-hole channel. The second is associated with den-
sity fluctuations and tends to reduce the repulsion between
two electrons. The third is associated with spin-density
fluctuations, both longitudinal and transverse, and in-
creases the repulsion between two electrons in the singlet
state. Equation (12¢) gives the hole-mediated part of the
interaction. It has the same structure as the phonon-
mediated interaction in a metal, i.e., the square of an
electron-phonon matrix element times the phonon propa-
gator. The electron-hole effective potential, given in Eq.
(13c¢), is a screened, vertex-corrected Coulomb interaction.
Note that, while the screening is purely electronic, the ver-
tex correction is due to both electrons (the factor A;) and
holes (the factor 1—G, in ¥;,). This last correction—
which is the analog of a phonon correction to the
electron-phonon vertex—can be quite large at finite wave
vectors for the values of the mass ratio under considera-
tion. This is like saying that Migdal’s theorem does not
apply to an EHL. In the small-g limit the electron-hole
potential should reduce to the HNW limit,!!

lim | ve4(q) | =1/[2N1(0)] , 14)
q—>

where N(0) is the electronic density of states per spin at
the Fermi surface. Our expression for v,;(q) satisfies this
condition.

With Egs. (12) and (13) we have the basis tool for inves-
tigating the possibility of superconductivity in an EHL.
The rest of this paper is just a closer examination of the
physics contained in Egs. (12).

III. LOCAL-FIELD CORRECTIONS

In this section we shall give quantitative expressions for
* the local-field corrections to be used in the calculations of
the effective interaction. A first-principles approach,
such as STLS, would lead to a cumbersome numerical
problem, if one wants to satisfy the three compressibility
sum rules for the three spin-symmetric G’s. Such a calcu-
lation is beyond the scope of the present paper and is, in
fact, not warranted at this stage. We choose, instead, a
phenomenological approach similar to the one recently
proposed by Pines et al.!” for the electron liquid. The
idea is to parametrize the local-field factors by a simple
Hubbard-like form which satisfies the sum rules in the
small-g limit and reduces to the STLS limit for large q.
Let us first consider the small-g limit of the spin-
symmetric local fields. Suppose we change independently
the densities of electrons and holes in the volume by small
amounts 8z, and 8n,. In order to do this we imagine the
transfer of electrons and holes from an external reservoir
of particles to the volume under consideration. The total
work needed for this transformation (i.e., the variation of
internal energy plus the work necessary to transfer the ad-
ditional particles from the reservoir to this system) is, per
unit volume,
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1 3%, , 1 9%,
SW= Sni{+— 8
2 onj ny=n,=n ! 2 an% ny=ny=n n2
e, Sny 5
anlanz ny=n,=n #1902
+5 lir%[v(q)(énz—ﬁn,)z] , (15)
q—

where €,(n,n,) is the energy per unit volume of a homo-
geneous EHL in which the net charge density n,—n; is
compensated by a rigid background of charge. The
Coulomb energy introduced by breaking charge neutrality
is explicitly accounted for by the last term of Eq. (15).
The necessary work 8W can also be computed by taking
the small-g limit of the Hohenberg-Kohn expansion'® for
the energy of a slightly inhomogeneous EHL. This ex-
pansion reads

€,(n+8n(r), n +8n,(r))—e,(n)

2
=—33 3 ni(—q(X)'];(¢,08n;(q), (16)
q ij=1
where €,(n) is the energy per unit volume of the homo-
geneous ground state with equal densities of electrons and
holes, and the 8n;(q) are the Fourier transforms of the in-
finitesimal density modulations 6n;(r). Equating the
right-hand sides of Egs. (15) and (16), the latter in the
small-g limit, and using the GRPA expression for (X*)!
[Eq. (6)], we find

azev(nI’nZ)

. S. —_ _.1 =
s W@ —Xa (@ 0] = — 5

ny=n,=n

+ I}in}) [6:(q)] . (17a)
Repeating the argument for a noninteracting EHL, we
find

d%€o,(n1,n7)
— lim [X5;(g,0)] = — 22 ,  (7b)
q—0 on;

ny=n,=n

where €, is the kinetic energy per unit volume of the
noninteracting EHL. We define the exchange-correlation
energy per unit volume as

euxc(n1,n2)Eeu(nlanz)—eoy(nl,nz) . (18)

Subtracting Eq. (17b) from (17a) and using the definitions
of ¥j; [Eq. (3)], we finally find

%€, xe(n1,n3)
B[ @, ()G ()] _ O Coxel1:72) :
ql_fﬂ)[ i(9)Gi(9)] dn; on; ny=ny=n 1

This set of equations represents the two-component gen-
eralization of the well-known compressibility sum rule.
The compressibility itself is given by a suitable combina-
tion of the second derivatives of the energy:
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d*e,(n,n)
K~l=n2—'—'——‘—‘—'v 3
dn
d%, ,.(n,n)
—1 2 vxc\ Py
=K7 +n——
f dn2
=K}~—1+n2 azeuzxc a 6v;c + azev;c ,
onj dn on; on, ny=n,=n
(20)
where
k7 '=3n(Eg,+Egm) 21

is the inverse of the noninteracting compressibility and
Ep, (Eg,) is the Fermi energy of the electrons (holes).
Using Eqgs. (19)—(21) it is easy to derive the important re-
sult

if—:l—Zy lim Gi1(@)+G5(q)—2G 1 (q) | ,
K g—0 (q/qr)?

(22a)

which gives the compressibility ratio in terms of the
small-g limit of the local-field factors. Here we have in-
troduced the notation

2ar; m;

1L 1 ==, (22b)
Y Y1 T2 T M

where a=(4/97)"* and qr=(37?n)!/?. This ratio van-

ishes when the compressional instability is reached. No-

tice that, since G, <0, «y/k is always less than 1.

In order to calculate the second derivatives in Eq. (19),
it is convenient to introduce a dlmensmnless exchange-
correlation energy per electron (hole), €.)(ry,x) [i denotes
electron (hole)], in which r; refers to the electron (hole)
density and x is the hole-to electron-density (electron-to
hole-density) ratio. More precisely,

€oxclni,n2)=n160(r , ny/ny) Ry*
Enzeﬁ)(rSZ, ny/ny) Ry* . (23)

Using this definition in Eq. (19), we find, after some sim-
ple algebra,

Gi(q)

e d%€wlrs,x)
(q/qp )2

T 6a? dx?

gi = (24)

x=1

The small-q limit of G,(q) is most easily calculated from
Eq. (22). Using the second part of Eq. (20) and Eq. (21),

together with the relation n d /dn = — +r, d /dr,, we find
K a¥rd | dleulr;) delrs) | i
<L 1= rp £ @5
K 6 dr, drg

where  €,(r;)=€(r,,x =1) is the dimensionless
exchange-correlation energy per particle for equal densi-
ties of electrons and holes, and [ is the reduced mass cor-

V3 2/3
responding to the effective masses m, and m,v;’".

Using Eq. (22), we find

12(q)
(q/qF)?

_gut8n | 1
2 4y

K—f—ll . (26)
K

812=
q
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Having fixed the small-g limit of the local fields, we re-
call that, within the STLS theory,

11m [Gii(@]=1— ,, , (27)

‘where Cg is the i-j pair correlation function at zero

separation. The simplest form that smoothly interpolates
between the limits of Egs. (24)—(27) is the Hubbard-like
form,

g5(1—Cg?

—_—— (28)
(1—-C)+giq®

Gijlq)=
and this is the one that we are going to use in our calcula-
tions. The pair correlation parameters C can be taken
from the results of previous workers.” 197 particular,
€9, and CY, turn out to be quite small at the densities of
interest, C <0.1, and can be safely set equal to zero in
Eq. (27). The rs dependence of the electron-hole enhance-
ment factor C12 has been calculated by Vashishta et al.”
and is given in Table I. This quantity is comparable to or
larger than unity and increases sharply when r; increases.
Recent measurements?® of the electron-hole recombination
time in an EHL in Ge are in excellent quantitative agree-
ment with this theory. On the other hand, the mass
dependence of CJ, turns out to be very slight, as can be
seen from the calculations of Chakraborty et al.'® Up to
p="50 it can be accurately fitted by the formula

1-Chp=1) 29)
T 140.0156(p—1)172

We said at the end of Sec. II that the local-field correction
G12(q) in the electron-hole potential is analogous to a
phonon vertex correction to the electron-phonon matrix
element. In the limit of very large p this correction de-
creases as p~!’2, a result somewhat reminiscent of
Migdal’s theorem.

The “thermodynamic” parameters g;; can be deter-
mined self-consistently as follows. We start with an ini-
tial guess for g;;’s and use Eq. (28) with the known values
of the C s to calculate the response functions Xj; given in
Eq. (5). The densities of the two components are taken to
be n;=n and n,=nx in the calculation of €\(r,,x), and
ny=nx and n,=n in the calculation of €2)(r,,x). We
recall that the Lindhard functions for the imaginary fre-
quency iw are given by

TABLE 1. Parameters of the spin-symmetric local-field
corrections: gjf; from Egs. (24)—(26), g from Eq. (37), and c%
from Eq. (27).

vi=wn=1, p=6

rs gh 8% —&n g C(I)Z
0.0 0.25 0.25 0.0 0.50 1.0

04 0.221 0.224 0.050 0.547 1.304
0.8 0.201 0.208 0.080 0.570 2.216
1.2 0.191 0.201 0.098 0.589 4.040
1.4 0.189 0.201 0.103 0.597 5.180
1.6 0.190 0.203 0.105 0.605 6.320
1.8 0.193 0.208 0.105 0.612 7.460
2.0 0.198 0.215 0.103 0.619 8.600
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— |iw/2Eg /qF;
ReX @ Fi _ q/9Fi
Xoi(q,ia,n;)=N;(0) a/an 2 (30)
i\g,lw,n;)=IV; »
oi\q i CI/qu
where
¥(z2)=—2z—(1—z%)Ln §+i , (31)
Lnz=In|z | 4i arg(z) is the complex logarithm,
N(0)= 2K (32)

2%

is the density of states of the ith component per spin at
the Fermi surface, and gz and Ep; are the Fermi momen-
tum and Fermi energy of the ith component with density
n;. Next, we use the fluctuation-dissipation theorem to
calculate the static correlation functions

(ni(q@n;(—q))=0n; ij(rs,x39)

nj
8y + P

f doXjj(g,io) , (33)

where () is the volume of the EHL and the y;(7;,x;q) are
the partial static structure factors. The exchange-
correlation energy per particle is

2 Ts ’ had ' .
exc(rs,x)=7—TE fo dr, fo dqy(rg,x;q), (34)
where
( S’x ’q)‘_ 2 glgj 2 Ylj rS’x ’q) (35)
ij=1 n
where &; = —1 for electrons and + 1 for holes. We dif-

ferentiate this exchange-correlation energy according to
Eqgs. (24) and (25) and obtain the new values of the g;;’s to
be used as an input for the next iteration. The whole pro-
cedure usually converges within three or four iterations.

We have calculated the g;’s as functions of r, for
several values of mass ratio and degeneracy. Some typical
results are shown in Table I. The values of the g;;’s are
slowly varying functions of p, which follows from the
exchange-correlation energy being almost independent of
p in the range of interest. Thus, the single case p=6 is
representative of the situation for 1 <p <10. At small 7,
the exchange-correlation energy is dominated by ex-
change. In this limit, the g;’s can be evaluated exactly
from Egs. (24) and (26) and the result is

lim gji= 1
f 0 i = 4"/’1/3 b

lim 812 =0. (36)
rs—0

From Table I we see that the r; dependence of the g;;’s
also very slight. g%, and g3, initially decrease with in-
creasing rg, but g, increases more rapidly so that the im-
portant combination

g=g11+8%»—28% , (37

which gives the compressibility correction, keeps increas-
ing.

05

00

-0

\
\\ Geh

FIG. 1. Spin-symmetric local-field corrections in an EHL:
our model (solid line) vs STLS (Ref. 7) (dashed line).

In Fig. 1 we plot our phenomenological G’s for typical
values of r; and p and compare them with the results of
STLS theory. Although the large-g limits of the two sets
of curves are practically the same, large differences arise
in the small-g region where our local fields are consider-
ably weaker. We recall that STLS theory does not satisfy
the compressibility sum rules, whereas our model does:
this is a main source of difference between the two results.
There are, however, some features of the STLS result,
such as the peak in Gj, or the marked difference between
G;, and Gj,, which might persist after the small-g
behavior has been corrected. Our parametrization is
clearly incapable of giving such features. The STLS G’s
are presumably good for large and intermediate wave vec-
tors since they give accurate values for the correlation en-
ergy and the electron-hole enhancement factor. It is very
likely, therefore, that our parametrization underestimates
the local-field corrections. We shall see in the following
that larger local fields give a higher transition tempera-
ture. Consequently, our estimate for 7, will be probably
smaller than the actual value.

With the self-consistent parameters given in Table I, we
have calculated the ground-state energy per e-h pair as a
function of r; for various values of p. The resulting
curves are plotted in Fig. 2. The agreement with the
STLS result is not perfect but quite satisfactory for mass
ratio p up to 10. There is a shallow minimum around
rg=1.9 which becomes shallower at large values of the
mass ratio. The equilibrium 7 is almost independent of p
when v;=v,; it decreases with increasing p when v;>v,
and increases with p when v; <v,. The equilibrium values
of r; and of the compressibility enhancement are tabulat-
ed in the first two columns of Table IV. For p> 10 the
STLS theory does not converge, whereas our model
predicts a binding energy that is too large compared to the
predictions of more accurate calculations. This bad
behavior arises because the hole-hole correlation energy is
overestimated. It is therefore not justified to use the
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FIG. 2. Ground-state energy of an EHL within our model, in
the RPA, and in STLS theory (Ref. 7).

present model for large values of p.

Consider now the spin-antisymmetric local-field factors
G{/(q). Since we are neglecting magnetic interactions be-
tween electrons and holes, the spin responses of the two
components are decoupled from each other. As a first ap-
proximation we can treat each component as an indepen-
dent Coulomb liquid with an effective coupling constant
rsi =rsm;/u (ry is the average distance between two parti-
cles of the ith component measured in units of the Bohr
radius of that component). We can therefore use the
local-field correction of the electron liquid calculated at
the appropriate value of the coupling constant. A simple
parametrization of this spin-antisymmetric local-field
correction which satisfies the susceptibility sum rule for
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TABLE II. Parameters of the spin-antisymmetric local-field
corrections [Eqs. (38)—(40)}: g,; and gq,, are taken from Ref.
17, and ga:‘[(qF/th)z_(QF/qN)2]/2'

rs qw/9r q1./qr g
1 1.47 4.12 0.202
2 1.50 3.30 0.176
3 1.52 2.93 0.158
4 1.53 2.71 0.146
5 1.54 2.56 0.135

10 1.57 2.19 0.099

15 1.60 2.02 0.073

20 1.60 1.91 0.058

the electron liquid has been recently proposed by Pines.
Its form is

q* q*

1
g*+q3,  q*+4qi,

2

G%q)= (38)

where ¢,, and gq,, are r;-dependent parameters which are
given in Ref. 17 and Table II. In our effective interaction
we shall use

Gilg=Leug| (39)

i rem;/u

which is consistent with our definition of Gj [Eq. (9)].
We also define

G:(q)
(q/qp)2

gii= lim
q—0

(40)

_Having completed the phenomenological construction
of the local-field corrections, we can now calculate the ef-
fective interaction and examine its consequences.

IV. PROPERTIES OF THE EFFECTIVE INTERACTION

Consider the small-q limit of the static effective interaction in the singlet state of two electrons:

.1 4qre? 1 2
lim lim [Vg(g,0)]=—5 | — +8%51 +(2v+1
qngmO[ eft(g,0)] 2 |2 +gh1+(2vi+1)

with g defined in Eq. (37). The first two terms within the
large square brackets correspond to the spin-independent
part of the purely electronic interaction, the third term
corresponds to the spin-fluctuation part of the interaction,
and the last term—which is attractive—corresponds to
the hole-mediated interaction. The multiplying factor
(1/2y,)? of the latter corresponds to the small-g limit of
v2,(g,0). We have seen that the denominator 1—2yg of
the last term is equal to the compressibility ratio «s/x and
tends to zero as ry—r,=2.5 (vi=v,=1). Since in the
same density range the other denominator, 1—2y,g¢,, is
always close to unity, we conclude that the hole-mediated
attraction must become the dominant term as r; ap-

v1(gh )2 .
1—-2y.g%

1

2
Lo 2r 41)
271

1—2yg |’

[

proaches r,,. The question is whether the equilibrium 7
is large enough for this to happen. The answer to this
question is given in Figs. 3 and 4. We have chosen typical
values of the parameters, p=6 and 7r;=1.9, and the
local-field factors calculated in the preceding section. Not
only is the effective interaction attractive in the limit of
Eq. (41), it is also attractive at finite wave vectors up to
q ~2qr and frequencies up to w ~Egy,.

It is interesting to compare this result with that of the
RPA and with the dielectric interaction v /e given in Eq.
(11). The small-g limit of the RPA is obtained by setting
all the g’s equal to zero in Eq. (41). What one obtains in
this way is the Thomas-Fermi limit, which is always



31 POSSIBILITY OF SUPERCONDUCTIVITY IN THE. ..

—— present theory
02l - -~ no spin fluctuations

)

2
e

Veg(d Lo/ 41lfe"’/qE

rs=|.9 p=6

20 . s
00 10 20 30

e

FIG. 3. Static effective interaction between two electrons in
an EHL in our theory (with and without spin fluctuations), in
the RPA, and in the dielectric approximation. The electrons are
assumed to be in a singlet state.

repulsive (this is also, incidentally, the small-r; limit of
our interaction). The RPA interaction at finite g is shown
as a dashed-dotted line in Fig. 3. The dielectric interac-
tion v /e can be written, in the small-q limit, as

L dme? | 1 s
lim lim =75 —8n
4—-00—0 €(q,0)  gi | 27,
1 P oy
ey —gh1+812 1—2
Y1 —<Y8
(42)
——present theory
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FIG. 4. Frequency dependence of the single-state effective in-
teraction between two electrons in an EHL in our theory (with
and without spin fluctuations) for ¢ =qr; and g =2gz,.
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Both the repulsive and attractive terms are reduced rela-
tive to Eq. (41), but the second effect dominates and the
net attraction is weakened (see Fig. 3).

A very interesting difference between our interaction
and the dielectric one is that the latter is the same between
two electrons as it is between two holes, whereas ours is
not. The limiting forms of the effective interactions be-
tween two holes can be simply obtained by interchanging
the subscripts 1 and 2 in Eqgs. (41) and (42). Equation (42)
can be easily proved to be invariant under such a transfor-
mation. This would lead one to the erroneous conclusion
that superconductivity is more likely to occur within the
hole subsystem because of its larger density of states at
the Fermi surface. In our case, instead, the effective in-
teraction between two holes is always more repulsive than
the effective interaction between two electrons: it is, in
fact, repulsive for all g’s for the values of the parameters
rs=1.9 and p=6. In Fig. 5 we have plotted the static ef-
fective interaction between two holes in the singlet state
[i.e., from Eq. (12a) with 1<>2], in the triplet state (where
the prefactor 3 of the spin-fluctuation term is replaced by
—1 as detailed in Appendix A), and without spin fluctua-
tions. These three results are widely different and show
that spin fluctuations play an extremely important role in
the hole-hole interaction. In contrast to this, the
electron-electron interaction in an EHL is almost unaf-
fected by spin fluctuations, as shown in Fig. 3. This is
easy to understand because the holes, with their large ef-
fective coupling constant (rg ~ 15 when r; ~2), are nearer
than the electrons to a ferromagnetic instability.
Mathematically, this fact is expressed by the smallness of
the denominator 1—2y,g9, in Eq. (41) for the holes. The
enhanced spin fluctuations due to the proximity of such
an instability determine a repulsive interaction in the sing-
let state or an attractive one in the triplet state. In the
latter case the total interaction can even become attractive
if the ferromagnetic instability is sufficiently near: one
can have, in principle, triplet superconductivity. In an
EHL with p~10 the attractive interaction between two

rs=1.9 =6
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FIG. 5. Static effective interaction between two holes in an
EHL, with spin fluctuations in the singlet or in the triplet state
and without spin fluctuations.
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holes in the triplet state, even if present, remains much
smaller than the attractive interaction between two elec-
trons in the singlet state. The reason is that the Fermi
liquid of heavy holes, due to its large density of low-lying
excitations, screens itself very effectively from the elec-
. trons which could mediate an attractive interaction [the
last term of Eq. (41) tends to zero for increasing mass ra-
tio]. At the same time, the spin-fluctuation effect is not
strong enough at this mass ratio. We conclude that only
electrons can form Cooper pairs in the singlet state, while
the hole subsystem remains normal.
Having thus clarified the general features of the in-
teraction, we examine more closely the various parameters
that determine the value of the critical temperature.

A. Attraction parameter A

The attraction parameter A is defined as the s-wave’
average over the Fermi surface of electrons of the static
interaction U,(q,0) [Eq. (12¢)] times the density of states
N,(0):

2q
A=N,0) [ Fldqzjz v3,(g,0

F1

where v,, and X3, are defined in Egs. (13c) and (13d),
respectively. The intimate connection between A and the
spectral distribution of density-fluctuation excitations is
due to the dispersion relation

ImX3(g, +i8
=2 'm”q“’““” do. (@44)

| XiZ( qa

Clearly, it is the low-frequency part of the spectrum
ImX*(q,«0) that gives the dominant contribution to the
static polarizability and to A. This part of the spectrum
can, in turn, be separated, more or less distinctly, into two
parts, the lower-frequency one corresponding to pair exci-
tations from the hole Fermi sea and the higher-frequency
one corresponding to the acoustic plasmon. Again, we
can say that the former contribution will be decisive in
determining the value of A. In Figs. 6(a)—6(c) we plot the
density-fluctuation spectrum ImXj,(q,w) with and
without local-field corrections, the latter being, by defini-
tion, the RPA. The differences between these two sets of
curves are striking. In the RPA most of the spectral
weight is in the collective mode, just above the upper limit
of the pair continuum (indicated by arrows in Fig. 6); even
at g¢=2qp, where the acoustic plasmon has disappeared,
the spectral weight tends to concentrate near the upper
cutoff. On the other hand, when local-field corrections
are included, the collective mode is practically suppressed
and the spectral weight shifts to the pair-excitation region.
Physically, this rather drastic change reflects the softness
of the liquid due to the exchange and correlation effects.
At the equilibrium r; considered in the figures, the pair-
excitation spectrum, although enhanced, is still rather
broad. At larger r,—as the compressional instability is
approached—the spectrum becomes more and more
peaked on the low-energy side. At the same time, A grows
larger and larger, tending logarithmically to infinity at the
critical r,. Thus, proper inclusion of the local-field
corrections has revealed the existence of a low-frequency

) [ X32(g,0)] , (43)
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FIG. 6. Density-fluctuation spectrum of the holes in the
RPA (dashed line) and GRPA (solid line) for (a) g=g, (b)
q=2qr, and (c) ¢=0.1gp. Parameters are r;=1.9, p=6, and
vi=v,=1. Arrows indicate the upper limit of the pair continu-
um. :

attractive mechanism mediated by correlated pair excita-
tions and much more effective than the usually proposed
collective mechanism.

The spectra shown in Fig. 6 explain why our theory
predicts superconductivity in the EHL, whereas the RPA
does not, but they still do not explain why the dielectric
interaction v /e should not work equally well. The spec-
tral functions are the same in the two cases, and any
difference can only arise due to the effective potential
coupling electrons to holes. In the case of the dielectric
interaction this potential is

1— (1 — Y12 )lXo
D
ven(q)=v ) (45)
° T 11—
and it is much weaker than our v, (q) or, for that matter,
the RPA v,,(q). The situation is summarized in Fig. 7.
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FIG. 7. Static electron-hole effective potential in our theory,
in the RPA, and in the dielectric approximation.

Notice that the small-q and - limit of Eq. (45), which is
the term in large round parentheses in Eq. (42) is much
smaller than the correct Heine-Nozieres-Wilkins limit
which both our theory and the RPA satisfy. The difficul-
ty with the dielectric interaction originates from including
exchange-correlation effects within the medium (the
local-field factors in the polarizabilities), but not between
the particles and the medium (vertex corrections). Note,
also, that our curve for v,,(q) still lies slightly higher than
that of the RPA because of the combined effect of vertex
corrections and the electron-hole enhancement factor.

In Fig. 8 we plot our calculated values of A versus 7
for vi=v,=1 and p=3 and 10. The behavior of these
curves versus 7; has already been discussed; their depen-
dence on mass ratio and degeneracy remains to be ex-
plained. The fact that A increases with p is mostly due to
the increase in equilibrium compressibility. We have
found that the compressibility ratio ks/k at equilibrium
density varies from ~0.25 at p=1 to ~0.20 at p=10.
This accounts for most of the increase of A with p. There
is also another effect contributing to this increase: chang-

150

FIG. 8. Interaction parameters A and u vs r; for p=3 and
10, and v;=v,=1 (also see Table III).
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ing p at constant r; means that the masses of electrons
and holes are changed according to the law
m;=p(14+1/p) and m,=u(1+p), where the reduced
mass u is kept constant so that the density, the effective
Bohr radius, and the effective rydberg do not change.
When p is increased, the electron mass m, decreases and
so does the electronic density of states at the Fermi sur-
face. Consequently, there is less electronic screening be-
tween electrons and holes, and the electron-hole potential
is strengthened.

The dependence of A on valley degeneracy can also be
understood after similar considerations. We first consider
the effect of increasing the number of hole valleys. The
total density of states of the holes at the Fermi surface is
proportional to v3”3. This gives an extra factor v3’° in the
Lindhard function X,(g,0) appearing in both the numera-
tor and the denominator of the expression for the polari-
zability of the holes, X3,(¢,0). As a consequence, the po-
larizability of the holes increases, although slightly, and
this gives a larger A. We now consider the effect of in-
creasing the number of electron valleys. Since intervalley
scattering due to Coulomb interactions is negligible, as al-
ready remarked in Sec. II, it is clear that the density of
states in Eq. (43) is the density of states of electrons in one
band. At the same time, however, all electrons contribute
to the screening of the electron-hole interaction, i.e., the
Lindhard polarizability Xo;(¢,0) has an extra factor v3/*
coming from the total density of states of the electrons.
This results in a drastic reduction of A. In Table III we
give the values of A for p=10, v;=4, and v,=1. In this
case, both the equilibrium r; and critical r; are much
smaller than in the nondegenerate case: we find r;o=1.0
and r,=1.25. One should not therefore be deceived by
the fact that the values of A are larger than in the nonde-
generate case for the same value of 7;. This is simply due
to the fact that the system is nearer to the compressional
instability than in the nondegenerate case at the same 7;.
Comparing the equilibrium values of A (Table IV), we
find A=0.27 at p=10, much less than the value, A=1.05,
in the nondegenerate case. This is what one should expect
from the argument given above.

In the theory of the electron-phonon interaction, the pa-

TABLE III. Interaction parameters A, u, and wo/ Ep, Vs rg at
p=10.

ts A u wO/EFh
vi=1, v,=1, p=10
1.0 0.286 0.212 1.301
1.5 0.575 0.285 1.166
2.0 1.267 0.353 0.772
vi=1, v,=4, p=10
1.0 0.293 0.212 3.603
1.5 0.591 0.285 3.225
2.0 1.418 0.353 1.909
vi=4, v,=1, p=10
1.0 0.269 0.148 0.512
1.1 0.359 0.159 0.392
1.2 0.564 0.171 0.216
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, TABLE 1IV. Equilibrium values of 7, inverse compressibility enhancement, interaction parameters,

and superconducting T, vs p.

p rs0 Ky /K Ao Ko wo/Ep, T.(€/p) K)
V1= 1, Vo= 1
3 1.9 0.244 0.634 0.385 0.550 4.38
6 1.9 0.222 0.811 0.355 0.711 215.34
10 1.9 0.201 1.052 0.339 0.879 577.64
vi= 1, Vo= 4
3 1.72 0.248 0.636 0.358 1.305 13.06
6 - L77 0.247 0.767 0.335 1.955 239.83
10 1.80 0.229 0.944 0.326 2.577 590.82
V1 =4, vy=1
8 1.03 0.226 0.257 0.151 0.462 0.409
10 0.98 0.24 0.256 0.145 0.533 0.796

rameter A is usually related to the mass enhancement of
electrons at the Fermi surface: m*/m =1+A. This for-
mula is derived under the hypothesis of Migdal’s theorem
and therefore has only approximate validity here. Prelim-
inary calculations show that the mass enhancement for
electrons in an EHL is better represented by the formula
m*/m=14A/(1+u), where u is the Coulomb repulsion
parameter to be discussed in the next section. The mass
renormalization of the holes is, instead, very small. We
have used, in our calculations, effective masses deter-
mined by band structure only. This is a reasonable ap-
proximation, at least for the calculation of the polarizabil-
ity, since, as discussed; for example, by Schrieffer et al.,?!
the low-frequency polarizability of a Fermi liquid is
essentially unaffected by a self-energy correction which
varies on a scale much smaller than the Fermi energy (al-
though mass renormalization may be large). In our case,
the relevant self-energy varies on the scale of the Fermi
energy of the holes and thus should not affect the polari-
zability of the electrons too much. While this takes care
of the renormalization of the “internal” electrons, there is
still an important effect of renormalization of the “exter-
nal” electrons which has not been taken into account so
far. We shall worry about this effect when we come to
the calculation of the critical temperature.

B. Repulsion parameter p

The repulsion parameter p is defined as the s-wave
average over the Fermi surface of the electrons of the stat-
ic interaction U,(q,0) [Eq. (12b)] times the density of
states N(0). In dimensionless units,

2q
p=nN0) [ " da(q/2g51)Uc(4,0) . (46)

The static interaction U,(q,0) is plotted in Fig. 9 for vari-
ous approximations. Our result (solid curve) lies consider-
ably above the RPA curve (dashed-double-dotted line).
Using the dielectric interaction of Eq. (11), the curve for
U,(q,0) (dashed-dotted line) woﬁld, instead, lie well below
the RPA curve.

The effective interaction U,(g,0), with the local-field
correction G{;(g) replaced by the one appropriate for the
electron liquid, can be used to calculate the electron-
electron contribution to the thermal resistivity of a simple
metal. Kukkonen and Smith?? calculated this quantity
using the Thomas-Fermi screened Coulomb interaction
(which is not very different from the RPA) and obtained a
result that was smaller than that of experiment by a factor
of 7. This is a clear indication of the fact that the RPA
underestimates the effective electron-electron interaction.
Our effective interaction, being stronger than that in the
RPA, would improve the agreement with experimental
values, whereas the dielectric interaction would make it
worse. Here, again, as in the case of the effective
electron-hole potential, we find that using a better dielec-
tric function without accounting for vertex corrections
and ladder diagrams makes a poorer approximation than
the RPA.
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FIG. 9. Purely electronic part of the interaction between two
electrons in a singlet in our theory (with and without spin fluc-
tuations), in the RPA, and in the dielectric approximation.



In Fig. 9 we have also plotted U,(q,0) without the
spin-fluctuation term (dashed line).. This term, which is
repulsive, is not very large at EHL densities and accounts
for less than 20% of the interaction at very small q.

The values of p calculated from Eq. (46) are plotted in
Fig. 8 for vi=v,=1 and p=3 and 10. This parameter de-
pends very slightly on r;, p, and valley degeneracy (see
Table III). It increases with increasing #; and decreases
with increasing p. Its value at equilibrium density varies
from py=0.42 at p=2 to uy=0.34 at p=10 in the nonde-
generate case. These values are substantially larger than
the Thomas-Fermi values (ug<0.25) and arise from the
combined effect of vertex corrections and spin fluctua-
tions.

C. Characteristic frequency g

The characteristic frequency o, is defined?* as the loga-
rithmic average over the effective electron-hole coupling
function a*F (0)/w:

«K2F (W)
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FIG. 10. (a) Typical shape of the electron-hole coupling func-
tion @?F(w) in an EHL; (b) characteristic frequency w, from Eq.
(47) vs ry for various values of p (also see Table III).
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_ 2 = Inw ,
wo=exp | fo do Y aF(co)H R 47
where
2, vez( , )
F(@)=N(0) [, dg=L-""L20 | 1mys(g, 0+ 18) |
2951
(48)

is the analog of the electron-phonon coupling function,
i.e,, a weighted average of the density-fluctuation spec-
trum of the holes, with wave vectors g spanning the Fer-
mi surface of the electrons, and the square of the
electron-hole potential as a weighting function. A typical
plot of a?F (w) is shown in Fig. 10(a). The function has a
peak around the Fermi energy of the holes and then de-
creases slowly, up to the maximum energy of a pair exci-
tation with wave vector 2qp, which is w,, =8Eg,. This
value of the energy is the natural cutoff to be used as an
upper limit in the integral of Eq. (47). With this cutoff,
the sum rule

A=2 fow doo 'a*F(w) (49)

is satisfied with an accuracy of a fraction of percent.

The electron-hole coupling function of Eq. (48) is for-
mally identical to the “Eliashberg function” used by Jaffe
and Ashcroft!? in their calculation of superconducting T,
in liquid metallic hydrogen. The actual shape of our
curve is, however, very different from that for liquid me-
tallic hydrogen. In the latter case, @’F(w) has a strong
acoustic-plasmon peak just below the upper cutoff (height
of the peak > 2.5 according to JA). The pair continuum
from the Fermi sea of the protons appears as a low-
frequency plateau with average height <0.3. In our case
there is no contribution from the acoustic plasmon and
the peak around Ep; has strength <0.2.

In Fig. 10(b) we plot the value of w, as a function of 7
for various values of p. As r; is increased from 1 to 2,
decreases from a value greater than Eg;, to a fraction of
Ep,. This is not surprising because, as the system be-
comes more compressible, its characteristic frequency is
expected to decrease. As p increases, the main change in
the density-fluctuation spectrum is the growth of the
acoustic-plasmon peak on the high-energy side: as a
consequence, @, increases. It is worth noting that the
dependence of wy on p is much stronger at small »; than
at large r,. This observation confirms our interpretation
of the effect, since the acoustic plasmon has a larger fre-
quency at smaller r; and is also better defined.

The general features discussed above remain valid in
the case of a multivalley system. The only difference con-
cerns the value of the ratio wo/Ep,. If vi=1 but v,> 1,
then Ep, =#%q2/2m,v3"? decreases, but wy is still fixed by
the Fermi momentum of the electrons gz, =qr. Thus the
ratio wo/Ep;, increases. On the other hand, if v,=1 but
v1> 1, then Eg, does not change, but w, decreases because
qre =qr/ v}/ 3. Thus the ratio wo/Ep, decreases.
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V. CRITICAL TEMPERATURE

The superconducting transition temperature 7, is
determined by the equation

F(p,iwy)=—B(p,io,)T, D, Vagp—k;io, —io,)

m,k

XF(k,iw,,) , (50)

where F(p,iw,) is the anomalous Green’s function for
electrons in the superconducting state, Vg(q,i®,) is the

normal-state effective interaction, irreducible in the
particle-particle channel, and
B(p,iw,)=G(p,iw,)G(—p,—iw,) , (51)

where G(p,iw,) is the normal electron Green’s function
and the w,=(2n+1)7T, are Matsubara frequencies. A
complete solution of Eq. (50) is a difficult numerical task
that we do not attempt in this paper. However, in view of
the fact that the net interaction is strongly attractive over
a comparatively large range of wave vectors and frequen-
cies, a reasonable estimate of 7T, can be obtained from a
McMillan?* type of formula:

1
Tc Z weeXp m , (52a)

where the renormalized parameters A* and u* are defined
as

A*=A/(A+1) (52b)
and
IJ,* = T_—{.—m . (52C)

This approximate formula, which clearly can only be used
if A* >pu*, can be obtained from a two—square-well solu-
tion of the renormalized version of the equation proposed
by Kirzhnits, Maksimov, and Khomskii (KMK).?*> These
authors use a particularly simple ansatz for the spectral
function associated with the anomalous Green’s function,
namely

flp,w)= —iImF(p, w+1id)

1
2|6 |

[8lo—€,)—8lo+€,)]¢(p),  (53)

I

where the €, are free-electron energies relative to the
chemical potential. In this way they are able to transform
Eq. (50) into a manageable one-dimensional equation for
the auxiliary function ¢(p). The KMK equation, howev-
er, neglects strong-coupling corrections. In particular, the
external Green’s functions of Eq. (51) are replaced, in
their derivation, by noninteracting Green’s functions. We
have seen in Sec. IV that mass renormalization can be
quite large for electrons in an EHL (> 50%) and we know
that the critical temperature is very sensitive to this effect.
We remedy the situation by using a modified KMK equa-
tion which is derived in the manner of the original one,
but with a Green’s function of the form
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-1
G(p,iwn)=‘.‘g—,. ,
iw, —€,

(54)

where Z=m*/m =1+ and €, is the free-particle energy
corresponding to the mass m™ which must also enter the
KMK ansatz, Eq. (53). In this way we hope to have re-
tained at least the most important renormalization effects.
Some details on the derivation of Eq. (52a) are given in
Appendix C.

In Fig. 11(a) we have plotted the transition temperature
at equilibrium density as a function of the mass ratio.
Using the relation

1 Ry*=(u/e’) Ry=(u/e’)(1.57x10° K) ,

we give T, in units of (u/€%) K. The solid line corre-
sponds to the complete result for vi=v,=1 and r,,=1.9.
The dashed line denotes the result obtained without in-
cluding spin fluctuations. Results for different degenera-
cies are also presented in Table IV. The most important
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FIG. 11. (a) Superconducting transition temperature of an
EHL at equilibrium density vs p for vi=v,=1 (solid line). The
dashed line is the result of our theory when spin fluctuations are
not included. (b) Superconducting transition temperature of an
EHL vs r, for various values of p and valley degeneracy.




31 POSSIBILITY OF SUPERCONDUCTIVITY IN THE . . . 2743

feature of these results is what we might call the “inverse
isotope effect,” or the fact that T, increases with increas-
ing mass of the holes. This effect follows from the
behavior of the interaction parameters A and u versus p,
as discussed in Sec. IV. There we saw that A increases
and p decreases with increasing p at fixed r;. The de-
crease of u* is even faster than that of y, due to the Inp
term in the denominator of Eq. (52c). At the same time,
@ decreases because Ep, ~1/p. The behavior of T, with
increasing p is, therefore, determined by the competition
of two effects: the increase of the difference A* —u* in
the exponential factor and the decrease of the prefactor
frequency wo~Ep, ~1/p. For the moderate values of p
that we are considering, the first effect dominates and one
finds a 2-order-of-magnitude increase in T, for p varying
from 3 to 10. At much larger values of the mass ratio,
the parameters A and u should essentially saturate and wg
should begin to vary as p~!/? as the acoustic-plasmon
mechanism becomes operative: the usual isotope effect
should then be recovered. For p <3 the transition tem-
perature falls rapidly to zero. Thus a relatively large mass
ratio is an important condition in achieving a reasonable
value of T,. As an example, we have considered the case
of CdS, a direct-band-gap semiconductor with one elec-
tron valley and one hole valley, p=6 and
/€%, =0.0046.2° We find T, =1 K. In the case of AgBr,
an indirect-band-gap semiconductor with one electron val-
ley and four hole valleys, p=3 and u /€% =0.0077,2° we
find T,=0.1 K. Note that the valley degeneracy of the
holes increases T, due to the larger polarizability of the
holes. Valley degeneracy of the electrons, instead, causes
a dramatic drop in T, since the attraction parameter A is
considerably reduced.

In Fig. 11(b) we have plotted T, as a function of r; for
various values of p and valley degeneracy. Here, again,
there is competition between the increase of A* —u* and
the decrease of wo~ Ep, ~1/r2 Ry* with increasing r;.
Once again, the first effect dominates and one finds the
sharply increasing curves of Fig. 11(b). This behavior is
the opposite of that predicted by other authors?”?® work-
ing with the “jellium model.”

Using the BCS relation A(0)=1.75kpT, for the zero-
temperature superconducting gap, we can estimate the or-
der of magnitude of the coherence length:

AV _p 1

1 Ry* .
A0) T my ar @ (53)

0 »
TC

$o

where Vi is the Fermi velocity of the electrons. For T,
of the order of 10~% Ry*, we find £,~ 10%a§, which is
about 10 times larger than the size of an ordinary EHL
droplet. The London penetration depth at T =0 is

8o= —— =80er3%ak . (56)
(L)P :

This is also of the order of 10%a§ for €, <10. Thus, the
two length scales are comparable and the possibility arises
that EHL is a type-II superconductor. Our calculations
are not sufficiently accurate to allow a definite conclusion
on this point. Notice, finally, that T, <<wo~ Eg, which
justifies our assumption of neglecting the temperature
dependence of Xy’s and G’s throughout the paper.

VI. CRITIQUE AND CONCLUSION

In this paper we have calculated the superconducting
transition temperature of an EHL in a model semicon-
ductor and found that, for reasonable values of density
and mass ratio, it falls within the observable range (T, ~ 1
K). This conclusion was reached by using an effective in-
teraction which goes beyond the RPA in dealing with ex-
change and correlation effects. Such effects cannot be
simply treated by a screened interaction where the dielec-
tric function includes local-field corrections: it is neces-
sary, instead, to modify the form of the interaction to al-
low for vertex corrections and particle-hole ladder dia-
grams. The latter are expressed in our scheme in terms of
local-field corrections and play a decisive role in deter-
mining the value of T,.

Let us now examine the approximations which have
been used in this paper in order to simplify the calcula-
tions. There are two main approximations: the first con-
cerns the structure of the local-field corrections and the
second, the evaluation of T, by McMillan’s formula. Our
approach. to the local-field corrections is entirely
phenomenological. In essence, we used the fact that in the
small-g limit the G’s can be calculated from the
knowledge of the exchange-correlation energy, while in
the large-¢q limit they can be related, according to previous
theories,®” to the pair correlation function at zero separa-
tion. We have proposed a simple formula, reminiscent of
Hubbard approximation, to interpolate between the two
limits. We have compared our G’s with those of STLS
theory. Although the latter are not reliable at small g
(failing to satisfy the compressibility sum rule), they
should become more reliable at larger g. If this is the
case, we can conclude that our model underestimates the
local-field corrections at intermediate wave vectors; in
particular, it does not give any of the peaks which appear
in STLS and other theories. Now we have seen that larger
fields will not do any harm to superconductivity, but rath-
er will increase the transition temperature. There is, of
course, the possibility that one of the local fields becomes
so large as to drive a finite-g instability [charge-density
wave (CDW)] in the EHL (See Appendix B). In this case
our form of the effective interaction would break down at
the transition point and should be replaced by another one
with the polarizability appropriate to the CDW state. The
breakdown of the computational scheme does not mean
that superconductivity is suppressed: on the contrary, T,
should vary continuously through the transition point.
We now turn to another aspect of our approximation to
the G’s, that is, the neglect of their frequency dependence
and imaginary parts. Unfortunately, our understanding
of the dynamic local-field correction is still at a prelimi-
nary stage. Among the few papers which address this dif-
ficult problem, we mention those by Holas, Aravind, and
Singwi?’ based on kinetic equations and first-order pertur-
bation theory, respectively. These two rather different
methods agree in giving a local-field correction which is
almost purely real and practically flat as a function of fre-
quency up to the Fermi energy. It is for this reason that
we decided to use the static limit of the G’s in our calcula-
tions.
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Our calculation of T, from Eq. (52) is certainly a very
simple one and should be regarded as a semiquantitative
estimate. First, we put all the strong-coupling effects in
the renormalization factor Z=1+A in the electron
Green’s function. This procedure evidently neglects off-
shell and finite-lifetime effects. In the same spirit we
make the KMK approximation (on-shell approximation
for the anomalous Green’s function) using the fact that
the renormalized problem, with A*=A/(A+1), is essen-
tially a weak-coupling one. Finally, we propose an ap-
proximate two—square-well solution of the renormalized
KMK equation. Now, this whole scheme may appear to
be far too simple, especially in the light of the fact that so
much effort has been invested in recent years to devise
computational schemes which can give a reliable T, in the
case of high-frequency attractive mechanisms. Rietschel
and Sham®® have solved the full self-energy equations to
calculate the T, of an electron gas due to plasmon ex-
change and found that the KMK equation can be in error
by orders of magnitude. In our case, however, the situa-
tion is not so bad because we are dealing with a low-
frequency attractive mechanism. The Cooper pairs scatter
within an attractive potential well near the Fermi surface.
This potential well can be described by its depth (i.e., the
static parameters A and u) and its width (i.e., the charac-
teristic frequency wg). It is, in this way, very similar to
the original BCS model, and a sensible evaluation of T,
can be given in terms of these three parameters without
having to consider the detailed frequency dependence of
the interaction. A comparison between various ap-
proaches to the calculation of 7T, has been carried out for
the case of a low-frequency attractive mechanism (i.e.,
A>p*) by Khan and Allen®! in the limit wo/Efp <<1.
Their results show that McMillan’s formula agrees very
well with the solution of the Eliashberg equations,
whereas the renormalized KMK equation underestimates
T.. Furthermore, the various T, differ not by an order of
magnitude, but by a factor of 2 or 3 at most. This is, in
our opinion, the magnitude of uncertainty which is
reasonable to put on our result. A more accurate solution
would probably introduce further attraction between the
electrons (for example, via plasmon exchange, which can-
not be accounted for by the two—square-well solution),
and since we have used weak local fields and strong mass
renormalization, it is likely that a better calculation will
give a higher T,.

From an experimental point of view, the main obstacle
to the observation of a superconducting EHL arises from
electron-hole recombination. This process is extremely
fast in CdS so that an EHL can be only maintained under
very intense optical pumping. Even a plasma temperature
of 1 K can prove difficult to reach in this case. On the
other hand, an EHL in AgBr has a definitely longer life-
time: This system seems, therefore, more suitable for the
observation of a superconducting EHL. Another difficul-
ty connected with electron-hole recombination is the fact
that the EHL does not grow indefinitely under optical
pumping, but rather splits into many droplets of a typical
size ~100aj. In Sec. V we estimated a penetration depth
of the order of 10%z§. Thus the Meissner effect cannot be
observed unless one finds a way of drastically increasing
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the size of the EHL. This can be achieved by means of a
potential-well technique®? in which many droplets are
forced to coalesce within a stress field. Besides the Meiss-
ner effect, another manifestation of superconductivity in
an EHL would be the appearance of an undamped acous-
tic plasmon inside the energy gap.3* This mode would ex-
ist for low mass-ratio values, where, in the normal state, it
would be substantially broader.

Although we have considered only EHL’s in this paper,
the model is applicable to an electron-hole system in ther-
modynamic equilibrium provided that hybridization be-
tween electron and hole bands can be neglected. Such a
system would be free of recombination effects, and should
exhibit the phenomenon of superconductivity if the densi-
ty, masses, and dielectric constants have favorable values.
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APPENDIX A: EFFECTIVE INTERACTION
IN AN ELECTRON-HOLE LIQUID

In this Appendix we derive the effective interaction be-
tween two electrons in an EHL. Since this interaction
must be irreducible in the particle-particle channel, all the
Feynman diagrams contributing to it must belong to one
of the following three classes: (i) diagrams which are
reducible in the direct particle-hole channel (i.e., if we call
p1,D2 the four-momenta of the incoming particles and
P1—4, P> +q those of the outgoing particles, the channel
with particle-hole momentum g), (ii) diagrams reducible
in the “crossed” particle-hole channel (i.e., the one with
particle-hole momentum p,—p,—gq), and (iii) diagrams
irreducible in both particle-hole channels as well as in the
particle-particle channel. The general expansion of the di-
agrams belonging to the first class is shown in Fig. 12(a).
Here the block I is assumed to contain all the diagrams
which are irreducible in the direct particle-hole channel.
I'? therefore represents the sum of all diagrams of class
(i). The labels on the external lines indicate the species of
the particles (electrons or holes) and their spin orientation
relative to an arbitrary axis: i=(i,0;). We are consider-
ing, for the moment, a single electron valley and a single
hole valley. Thus both I and I'? are 4X4 matrices
(D)i,0,;j,0; and (C;0,; jro; A summation over the inter-
mediate label k is implied in Fig. 12(a). In order to solve
the diagrammatic equations indicated in Fig. 12(a), we
need two essential approximations. First, we assume that
I (and therefore also I'%) does not depend on the momenta
of the incoming particles, but only on the momentum
transfer g. Second, we assume that the intermediate lines
in Fig. 12 can be replaced by free-particle Green’s func-
tions. With these two approximations the integral over
the internal four-momentum can be easily done and gives
the Lindhard function per component per spin orienta-
tion: Xok,0,(9)=Xox(g)/2. The equation for ['%g), ex-
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FIG. 12. (a) Diagrammatic representation of the Bethe-

Salpeter equation for the interaction reducible in the direct
particle-hole channel. (b) Same as (a) for the interaction reduci-
ble in the crossed particle-hole channel. (b) Illustration of the
relationship between the particle-hole irreducible interactions
I'', I, and I'.

pressed in matrix notation, becomes
T¥q)=L(@)Xo(q@)L(g)+1(g)Xo(g)[%q) ,

where

(A1)

Xodk,o4;1,0,=X0k,0,8k,180,.,0, »

and the matrix product is understood. This equation can
be easily solved to yield

CUq)=L(qX(9)(g), (A2)
where X(q) is defined via the relation

X1 '=[Xo(@) ] —L(g) . (A3)

The meaning of the matrix X(g) is easy to understand
from Fig. 12. It represents, within our approximations,
the sum of all diagrams beginning with a particle-hole
fluctuation in the o; component of the species labeled i
and ending with a particle-hole fluctuation in the o; com-
ponent of the species labeled j. This is the diagrammatic
definition of the partial density-density response function
giving the density induced in the o; component of the ith
species by a potential which couples linearly to the density
of the o; component of the jth species.

Equation (A2) involves 4 X 4 matrices. In a nonmagnet-
ic system, however, its spin dependence can be simplified
leading to a set of two equations involving 2 X 2 matrices.
In order to do this we observe that any matrix entering
Eq. (A2)—say, I(g)-can be regarded as a set of four 22
matrices in spin space (Z;;)"""/ =L,o,;j,0,- If there is iso-
tropy in spin space, each of the I;;’s has the form (22
matrix)

Ii}T Ii}l

T T
Iij I,]

;= , (A4)

with only two independent components I;}' and I} (be-
cause Ijj'=Ij' and Ij'=I]"). Such a matrix can be
brought to a diagonal form with eigenvalues I} and I;;
given by
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IF=I}"+1} . (A5)

Returning to Eq. (A2), we see that it can be rewritten as

2
L?j(q)=“2 Li(@)Xu(9) y(g),
=1

(A6)

where each “term” is a product of three 2 X2 matrices in
spin space. Diagonalizing both sides of Eq. (A6), we find
the eigenvalues
2
ritg= 3 Iifl@Xa@Ij(g) . (A7)
ki=1

Specializing to the case of interaction between two elec-
trons with antiparallel spin, we find

Ly Mgy =5[T5 ()T (9]
2
== U (@XH(I; (q)
kl=1

— I (@Xia(@)y; (q)] . (A8)

Let us now examine more closely the meaning of the
function )(,71t (g) and Xj;(g). From our identification of
X}!(g) and X 1(q) as the partial density-density response
functions, and from Eq. (AS5), it follows that X ,j is equal
to one-half of the (i,j) component of the density-density
response matrix introduced in Sec. II. Similarly, X;; is
equal to one-half of the spin-spin response function of
Sec. IL. Explicit expressions for X* in terms of Xy’s and
I?*’s can be easily worked out from Eq. (A3), and we find
that they coincide with one-half of the expressions of Egs.
(6) and (7) for X* and X¢ only if we make the identifica-
tions

15 (@) =20%(q) , (A9b)

with ¢;* defined in Egs. (3) and (8) (with v;=1). Using
the fact that the spin-antisymmetric polarization field is

diagonal, we finally find

2
4= 3 ¥ik(@Xu(@y(@) —[¥E@ X (@8, -
kl=1

(A10)

We now consider the second class of diagrams, those
which are reducible in the crossed particle-hole channel.
The general expansion for the diagrams of this class is
shown in Fig. 12(b). We concentrate on the interaction
between electrons with antiparallel spin since this case en-
compasses both the singlet and the triplet states. Further-
more, it is evident that this class of diagrams only exists if
i =j. The interaction block I’ in Fig. 12(b) differs from
that of Fig. 12(a) because the incoming particle-hole pair
has a four-momentum p; —p,—gq and a spin component
S,=+1 along the z axis. The difference between I'',I",
and I'®is illustrated in Fig. 12(c). Diagrams of I'' can be
connected in two different ways, either in the “horizontal”
channel (1 joins 3, 2 joins 4) or in the “vertical” channel (1
joins 4, 2 joins 3). Diagrams of I'* can only be connected
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in the vertical channel and diagrams of I' can only be
connected in the horizontal channel. Since the system is
spin isotropic there is no difference between correspond-
ing diagrams in I'", I'", and I, and we find

I'p1,p2,9)=I""(p1,p2,0)—1"(p1,p2,9) -

This result is exact and does not depend on our approxi-
mations. Now introducing those approximations plus the
correspondence just derived between I’s and v’s, we can
calculate the sum I'° of the diagrams of class (ii) and find

(A11)

" py—pr—q)=—i (p1—p2—q)1Xi (p1—p2—q)
=2[¢i(p1—P2—1Xi(p1—P2—q) »
(A12)

where the minus sign arises from the exchange character
of this class of diagrams. It is this part of the interaction
which is mediated by transverse spin fluctuations
(particle-hole pairs in a triplet state with S,=+1). For
two electrons in a Cooper pair, the initial momenta are
p1=—p2=po~(pr,0), and the scattering event reduces
to a rotation of the line joining the two electrons in
momentum space. The magnitudes of the momentum
transfers ¢ and |2pr—q| can be expressed in terms of
the angle 6 of this rotation as follows,

q=2ppsin(6/2), |2pr—q|=2prcos(6/2), (A13)

and the effective interaction can be regarded as a function
of 8. From the requirement of antisymmetry of the wave
function, if the two electrons are in the singlet state this
function can be expanded in a series of Legendre polyno-
mials with even I, while, if they are in a triplet state, it can
be expanded in series of Legendre polynomials with odd I.
Using Eq. (A13), it can be proved that, for any function f,

foﬂldcose | f(g)P;(cosO)
:(—1)’f0 |dcosl | f(|2pr—q])

X Py(cos0) . (A14)

Thus the argument p; —p, —g=2pr—q in Eq. (A12) can
be replaced by ¢ without any change if the two electrons
are in the singlet state or with the change of the sign if
they are in a triplet state:

I (q) for singlet,

r'gi,tl(pl—pz-q)ﬁ _F?‘i’m( (A15)

q) for triplet .

Finally, we consider the third class of diagrams, those
which are irreducible in the particle-hole and particle-
particle channels. The simplest diagram of this class is
given by the bare interaction line ¢;(g). More complex
diagrams of this class exist in higher orders of perturba-
tion theory and roughly describe a nonlinear coupling be-
tween intermediate density or spin fluctuations. We
neglect these diagrams here and this is the origin of the
linear structure of Eq. (10). Collecting the results and
writing them in invariant notation, we find, for two iden-
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tical particles in a pair,

: 2
Vel @li=v(@+ X ¥i(@Xu(@vy(q)
kl=1

+[¥5(@) X5 (g)ar 0y , (A16)
where o;'0,=1 in the triplet and —3 in the singlet. This
gives Eq. (10) for v;=1. In order to arrive at Eq. (12), we
first separate out the purely electronic part of the interac-
tion, i.e., what remains of Eq. (10) after setting Xq,=0.
The proper electronic vertex appearing in this part of the
interaction is obtained as the solution of the equation.

Ag)=1=2T {i()Ay(q) , (A17)

which is the local version of the Bethe-Salpeter equation
for this quantity. I * is the proper part (in the sense of
Noziéres) of the irreducible interaction I . It is related to
the latter by the relation

T Hp1,p2,q)=I*(p1,p2,9)—v(g) > —20(9)Gq) ,
(A18)

following from the fact that an irreducible diagram other
than the bare interaction line is always proper. This
proves Eq. (12a). The expression for €; in terms of A,
also follows from the general definition of the dielectric
constant using the local approximation. The detailed
derivation of Eq. (12) is only a matter of straightforward
algebra and is not given here.

The above derivation of the effective interaction can be
easily extended to the case of several equivalent electron
and hole valleys. Rather than working out the general
form of the interaction, we introduce at the outset the ap-
proximation of neglecting intervalley scattering. This ap-
proximation enables us to express the effective interaction
in terms of only two independent local-field corrections,
G® and G°. Indeed, the problem becomes equivalent to
finding the effective interaction in a system of hypotheti-
cal electrons and holes having spin v; —5. Thus, the
derivation goes through as in the nondegenerate case with
a few obvious changes to take into account the value of
the pseudospin. In particular, the matrices I;; in Eq.
(A4) become 2v; X 2v; matrices. The square matrices I ;
can be brought to a diagonal form with eigenvalues

Iif =L+ Qv — DI}, Ii =I'-I}", (A19)

and the possibly rectangular matrices I ;; are brought, by
the same transformation, to a form with a single nonvan-

ishing element in the upper left corner:
I =(viv)' 2L, i#j (A20)

(I;7 =0 as before). The X ,’;L correspond to the density-
density ( + ) and spin-spin ( —) response functions divided
by 2(v;v; )1/2, This leads to the identification

L@ =2(vivp)""2(q), Ij(q)=2(viv;))'*Yfi(q) ,
(A21)

which generalizes Eqs. (A9). Insersting these results into
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Eq. (A8), we easily verify that Eq. (A10) remains valid.
Similarly, Eqgs. (A11) and the first of Egs. (A12) remain
valid, which gives

Ti(p1—p2—q)=—2v;[Yfi(p1 —p2— @) IX&(p1 —P2—q) ,
(A22)

proving the presence of the degeneracy factor v; in front
of the transverse spin-fluctuation term. Transforming the
argument p; —p,—q to g for the singlet interaction, and
adding the totally irreducible term v(g) plus the other
term I'°(g), we arrive at the result of Eq. (10).

APPENDIX B: CONDITIONS OF STABILITY
FOR AN ELECTRON-HOLE LIQUID

In this Appendix we discuss the important question of
whether spin-density or charge-density waves (SDW’s and
CDW?’s) can occur in an EHL before the superconducting
transition and suppress it. It is well known from general
considerations and from detailed calculations that strong
Coulomb correlations in the electron liquid act to inhibit
spin instabilities. In the electron gas, for example, a tran-
sition to the ferromagnetic state is expected>* only at a
very large value of the coupling constant, r, ~70. In the
EHL the effective coupling constant for each component
is r¢m; /u. Even at a mass ratio 10, a ferromagnetic insta-
bility of the holes would occur at r,~7, which is well
beyond the range of attainable r,. It seems, therefore,
very likely that if any instability other than the supercon-
-ducting one is going to occur in an EHL, it is going to be
a CDW. In the case of a simple metal it has been shown>*
that both exchange and correlation favor this instability,
while the main opposing force is the rigidity of the ionic
background. There is no such background in the EHL,
the holes themselves being a highly mobile plasma. Thus
it seems that we have found a very good candidate for a
CDW instability. The presence of a CDW is not, howev-
er, incompatible with superconductivity. Its main effect
on the electrons is to add a self-consistent periodic poten-
tial that does not interfere with the pairing in time-
reversed states. The electronic density of states is changed
near the Fermi surface by an amount proportional to
G /Er, where G is the amplitude of the self-consistent po-
tential. This is presumably a very small correction. There
is, however, one important point that must be checked. If
CDW:’s (or, for that matter, SDW’s) occurred as continu-
ous transitions at a certain critical density (i.e., with infin-
itesimal amplitude), a zero-frequency collective mode
would appear that would make our interaction singular in
the low-frequency limit. This singularity is unphysical
and simply means that the homogeneous paramagnetic
ground state which we assumed in constructing the in-
teraction is no longer a good starting point. It is impor-
tant, therefore, to be sure that we are not using our effec-
tive interaction beyond a second-order transition point.
Here we give the conditions that ensure the stability of the
ground state against such continuous transitions. Let us
consider CDW’s first. At 7 =0 the energy of an EHL
with an infinitesimal CDW in it is given by the
Hohenberg-Kohn expansion of Eq. (16), where the &n; are
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the amplitudes of the CDW and the summation over g is
restricted to the wave vector of the CDW. The CDW will
not occur spontaneously if the energy of this state is
higher than the energy of the homogeneous ground state.
Thus, the condition for stability against infinitesimal
CDW’s of wave vector Q is that the response matrix
X°(Q) be negative definite (i.e., that all its eigenvalues be
negative). Using the GRPA expression for X, we find that
this condition corresponds to the set of inequalities

[1—91X01(Q,0)1[1— 92X 2(Q,0)]

— 30X 01(0,00X5(Q,0) > 0
and (B1)
X01(@,0) +X2(Q,0)

—[¥11(Q) + 12 @) Wo1(6,00X05(0,0) <O .

Similarly, the condition of stability against infinitesimal
SDW’s of wave vector Q is X5(Q,0) <0 for i=1,2, or, ex-
plicitly,

1—9;(QX0;(Q,0)>0, i=1,2. (B2)

In the limit of small Q, Egs. (B1) and (B2) reduce to the
requirement that the compressibility and spin susceptibili-
ty of the system be positive and finite. These conditions
are always satisfied in our calculation. The problem now
arises whether inequalities (B1) and (B2) can be violated at
finite Q@ while being satisfied for Q—0. Since v(g) and
Xo(g,0) are both rapidly decreasing functions of g, this
possibility is unlikely, unless the local-field factors in-
crease very rapidly in the small-q region. Such a behavior
could arise if, for example, the local-field factors had a
strong peak at intermediate wave vector. Our parameter-
ized local fields, however, do not have any peak, and ine-
qualities (B1) and (B2) are satisfied, in our model, for all
values of Q. The effective interaction remains regular
throughout the range of our calculations.

APPENDIX C: APPROXIMATE FORMULA
FOR THE CRITICAL TEMPERATURE

In this Appendix we give some details on the derivation
of the approximate formula for 7, [Eq. (52a)]. The
KMK equation is

1 €k
¢(p)_—§2€kK(p,k)tanh 3T, o(k), (ChH
where
o ImU,(p—k,
K(p,K)=U(p—k)+= [ ge U=k O )
T 0

€+l |+ lex] -

The electronic interaction U, is approximated by its static
limit. €, and € are free-electron energies measured with
respect to the chemical potential.

The modified KMK equation is derived in exactly the
same way as the original one, using, instead of the free-
particle Green’s function, the modified Green’s function
of Eq. (54). The KMK ansatz [Eq. (53)] is also expressed
in terms of the renormalized energies e, =€,Z -1
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=€m/ m*. As a result of these modifications, the kernel
of Eq. (C2) is simply multiplied by a factor Z ~2, and all
the free-electron energies in Egs. (C1) and (C2) are re-
placed by renormalized energies. It is convenient to ex-
press the magnitude of the vectors p and k in terms of the

por=— [ do ¢(w')5i7tanh —zi"f— Zzﬁ;—l(z—)
where

plw)=[2m*(w+Ep 1%,
and we have set K(p,k)=K(|p|, |k|; |p—k]|).

In Eq. (C4) we set p(w)=p(w')=p(0)=g.
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corresponding free-electron energies, i.e., we introduce

=€, 0'=€, kdk=m*do'=mZdo . (C3)

The modified equation (C1) becomes
|pl@)+p(’) | dg oK ( "a) 4
Ipl@)—pla)| 79 9R1@@59 (c4)
(C3)

This approximation is

justified for the dynamic part of the kernel since the characteristic frequency is a small fraction of Ep,, and it is also
reasonable for the Coulomb part of the kernel because this quantity depends very slightly on w and o'.
Using Eq. (C2) in Eq. (C4), together with Eq. (12) and the definitions of 1 and a’F(w) [Eqgs. (46) and (48)], we rewrite

Eq. (C4) as

dw)=—puZ ! f dm d(o' )—tanh +Z-! f

2T

I

2T,

dco oo’ )—-—tanh

© 5 2
x [ o) e (C6)

We put an upper cutoff Ep; for the o’ integral and define the trial function

dos |60|> <@g
¢oo’ ‘COI > o

dlw)= l

(c7n

where @, is the characteristic frequency of Eq. (47). Evaluating Eq. (C6) at zero frequency, we find

71 @ 1 o
$(0)=¢o=Z t%f" do w,tanh o,

—pzZ- (‘ﬁo 2T

where we set tanh(w’/27T,)~1 in the high-frequency in-
tegrals (o' >wp) and neglect @’ with respect to € in the
first integral.

The integrals over @' can be evaluated analytically and
we find

do=2Z"" [¢Oln (A—n)
c
Ep
+é, {Q—pln -—H}, (C9)
@
where A is defined in Eq. (49), and
= [ ® dec?F(e)2 €
Q= fo dea’F(e)SIn |1+ o (C10)

Here, ¥y =e°, where c is the Euler constant, 2y /r=1.14.
Evaluating (C6) at a frequency large compared to wg, we
can drop the dynamic part of the kernel as well as the
mass renormalization Z, and we find

EF]

w=—pln ¢>0-—,u,1n b - (C11)

fo 2F(e)—de+¢ S, L«

Epy do'

+¢o [,

Ep dco ® 2F(€);+—!2w;|—d6J

Y } , (C8)

!

Equations (C11) and (C9) form a set of homogeneous
equations which has a nontrivial solution only if

V4
T,=1.14wpexp | ———F— (C12)
c o€Xp k—y*( 1 +Q)
In order to estimate Q, let us take the simple model
2 [}
a‘Flo)=A—— |1— O, —w) , (C13)
wm wm
in which the spectrum vanishes for @ > ®,,. The charac-
teristic frequency in this model is
wy=wne "7, (C14)

which, for wo~ Ep,, gives the reasonable cutoff
@y ~4.5Ep,. Evaluating Q for this model, we find

Q=0.822A . (C15)

Notice that McMillan’s formula gives Q =0.64A. We un-
derestimate the critical temperature if we take Q=A.
This gives Eq. (52a).
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