
PHYSICAL REVIEW B VOLUME 31, NUMBER 5 1 MARCH 1985

Effects of energy dependence in the electronic density of states
on the far-infrared absorption in superconductors
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Allen s theory of far-infrared absorption in superconductors is generalized to the case when the
electronic density of states, X(e), cannot be taken as constant in the vicinity of the Fermi level.
Such a situation can arise in several of the 215 compounds. Numerical calculations show that
X(e)&const can yield an additional frequency dependence in the absorption spectrum.

I. INTRODUCTION

One of the features of several 315 superconductors,
such as V3Si, V3Ga, and Nb3Sn, is a rapidly varying elec-
tronic density of states, N(e), in the vicinity of the chemi-
cal potential @=0. With [ I /N (e) ]dN(e) /de= 0 ( I /0,„)near @=0,where 0 „is the maximum phonon fre-
quency, it is expected that the energy dependence in N(e)
would influence experiments which measure the electron-
phonon (EP) coupling function a (A)F(A). Indeed, de-
tailed calculations' have shown that an e dependence of
N(e), which is found in the band-structure calculations,
affects the results of tunneling experiments. Unfortunate-
ly, the tunneling experiments on 3 15 superconductors are
often influenced by the proximity effect due to degraded
superconducting properties within a first few atomic
layers of the A 15 electrode near the tunneling barrier.
At the present time it is not possible to separate the ef-
fects of nonconstant N(e) from the influence of the prox-
imity effect on tunneling characteristics.

Far-infrared absorption measurements can also be uti-
lized to determine the EP coupling function of a met-
al. These experiments probe the sample through a skin
depth (which is about 100 nm for A 15 materials) and,
therefore, are less sensitive to the state of the surface than
the tunneling experiments, which probe the sample
through a coherence length (which is about 5 nm for the
high superconducting T, A 15 compounds' ). In a recent
paper" it has been shown that the far-infrared transmis-

I

sion measurements on a thin film of normal V3Si (Ref. 9)
can be explained with a transport EP coupling function
a„F which is consistent with the neutron scattering re-
sults, ' only by invoking an energy dependent N (e).
Farnworth and Timusk have shown that more direct in-
formation about a„I' can be obtained by combining the
far-infrared absorption measurements in both the normal
and the superconducting states, within Allen's golden-rule
theory. In the present work, we extend a study of the ef-
fect of nonconstant N(e) on infrared behavior to the su-
perconducting state.

In Sec. II we generalize Allen's theory to include
N(e)&const. In Sec. III we prese'nt the results of our nu-
merical calculations with a discussion and Sec. IV con-
tains conclusions.

II. THEORY

The effect of EP and electron-impurity (EI) collisions
on the ac conductivity o(q, co), at the wave vector q and
frequency co, can be obtained from the equation
(throughout this paper we take }}I= 1)

~

E
~

Retr(q, o})=a}I(q, co),

which relates the rate of energy dissipation by the electric
field E to the transition probability per unit time I (q, co)
calculated within the golden rule. In this way, Allen has
obtained the expressions for EP and EI scattering contri-
butions to the conductivity in the superconducting state:

me 2 2 1 &krak SkulkRecT, p},(co)=, y ~ gkk
~

( v},—v}, ) —1— 5(E},+E},+Q}, },—co),2 EkEk'

me krak ~k~k'
Reer, ;(co)=

3 g n;
~

V},}, ~
(v},—v}, ) —1— 5(E„+E},—co) .

3co 2 EkEk

In Eqs. (1) and (2) e is the electron charge, k labels the Bloch states, g},k ( V},}, ) is the EP (EI) scattering matrix element,
v}, (ek) is the electron velocity (band energy), n; is the impurity concentration, Q& is the phonon energy, and

1/2
Ek ~k+ ~k (3)
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where hk is the superconducting energy gap.
By using a set of coordinates in which electron energy e is one of the coordinates and by ignoring the anisotropy ef-

fects, Eq. (1) can be rewritten in the form

Reo, ph(co) = 1 +~ +, N(e) 2, N(e') 2 1 ee' D, —
dt de' Q~(e')+ Q (e) — 1—,a,+{co E—(e) E—(e')),

8a1' —~ —~ N(0) ~ N(0) ~ 2 E(e)E(e')
where

Sr1N(e)v {e)e
Qp e)=

3

is the square of the Drude plasma frequency,

N(e) = g 5(e—ek)
k

is the single-spin-band density of states, and

(4)

v (e)= gvt, 5(e—e1, ) N(e) .
k

Also, the transport electron-phonon coupling function is defined by

a„(Q)F(Q)=N(0) g ~gik i
(vk —vt, ) 5(Q —Q1, 1, )5(e—E'1, )5(e' —e1, ) g (vt, —vt, )'5(e —e1,)5(e' —e1, )

k, k' k, k'

where the (e,e ) dependence of the right-hand side is assumed to be negligible.
Now, we will use the fact, established in band-structure calculations for A 15 compounds, ' that the e dependence of

Qz(e) can be ignored compared to the e dependence of N (e) in the vicinity of e=0. Then Eq. (4) reduces to

Reo.g ph(co) = 1 (9)
471'co co 7 z &h(co )

where

v; h(co)

2n. +~ +, 1 X e Xe'
dE dE' +

co —~ —~ 2 N(0) N(0)

Q2

( &2+ g2)1/2(&i2+ g2)1/2
(10)

After some algebra, Eq. (10) can be rewritten in the form

f dQ(co —Q)a„(Q)F(Q)D
7z &h(CO) CO

where

2A

co —0

1

D(a) —= f dx. (1+a)
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(12)
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with
~

a
~

(1. In the case when N(e)=const,

D(a)=E(1—a ),
where

(1—mx )'
E(m)= f dx

P ( 1 2)1/2

is the complete elliptic integral of the second kind, and
Eq. (11) reduces to Allen's result. 7

In an analogous manner, one gets for the impurity con-
ductivity

XEp(co) =2f a„(Q)F(Q)
r

i. + "d 1 N(e) N( —e)
2 N(0) N(0)

ln
Q (@+Q)
co (E+Q) —co

(22)

~e point out that A, Ep is related to 1/ral ph(co) by the Hil-
bert transform

Qp 1 1
Reer, ;(co)=

4«rco co r, ;( c)o

where

(13)

1 + ~ 1/r~ ph(co')
COA, Ep(co ) = dco

Oo CO —CO

(23)

As noted by Allen, result (20) implies that the total con-
ductivity cr„,(q, co) (collisionless plus EP) can be made to
satisfy the f sum rule,

1 1 2A=—D
7«c(co) 7r; co

(14)
+ oo Qp

2

0
dco Reer«, (q, co) =

8
(24)

and if Qp in the expressions for both the collisionless and the
electron-phonon conductivity is repla'ced by—

=7rncN (0) y ~
vg k ~

(vg —vl, ) 5(ek)5(ei, )
7

g k, k' (Qp) =Qp/(1+A, „) . (25)

—1

x g (t«k —t«g )'5(el, )5(eg )
k, k'

Equation (14) reduces to Allen's result
N (e) =const. In the normal state one gets

QpReo.~ ph(co) =
4«rco co r~ ph(co )

f d Q cc„(Q)F(Q)
r

1 N(e) N( —e)
2 N (0) N(0)

Qq
Reer~;(co) =

4rrco co r~;(co)

(15)

when

(16)

(17)

(18)

Qp /[1+ A.(co) ] r*(~)
cr(co) =

4«r 1 —/ co% ( co )

where

(26)

1

r*(co)

I/r~ ph(co)+ 1/r~;(co)

1+A, (co)
(27)

with 1/ral ph
and 1/r~; given by Eqs. (17) and (19) and

A, (co) =AEp(co)+ A,;(co), (28)

where A,Ep(co) is given by Eq. (22) and

1 " 1 N(e)
A,;(co)= dE

«rr co 0 2 N(0)

This ad hoc procedure makes the results of the golden-
rule theory closer to the results of a more rigorous treat-
ment ' which is based on Holstein's theory. ' The latter
gives for the local (q=0) conductivity in the normal
state'4

1 1 1 t~ 1 N(e) N( —e)
r~;(co) r; co "0 2 N(0) N(0)

(19) N( —e)
1

e
N(0)

Again, expressions (17) and (19) reduce to Allen's results
for the normal state when N (e)=const.

It is not difficult to show that

(29)

The golden-rule result for the normal-state conductivity
due to collisions (EP plus EI)

+ oo Qp
2

0
dco Reer~ ph(co) =

«p 8
(20)

Qp
Reer~(co) =

4«rco co r~ ( co )

1 /%IV (& ) = 1 /rN ph ( Co ) + 1 /rN ( (& )

(30)

(31)

with

(21)

can be cast into a form resembling the lowest-order term
in the expansion of (26) into the powers of (cow*) '. This
can be done by replacing Qp with (Qp), Eq. (25) with
k(co) instead of A,„, and by renormalizing 1/r&(co) by
[1+A,(co)], i.e.,
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1/r~(co) ~[1/r~( co)]/[1+ A,(co)] . (32) where

An analysis' of Holstein's theory also indicates that N(e)
in the equations for 1/rz ~q and 1/r~; should be inter-
preted as the quasiparticle density of states

N (e)= ——Im g G (k,a+i 0+ ),1

7T
(33)

2 1
A~ „——A„,—A, =@~(co)

Qp 2.~(co)
(34a)

or as

~X,~=~ tot —~s

2 1 1=4~(co)
Qp &z(co) [1+A(co)]'/

(34b)

where A„, and A, are the total and the surface absorp-
tion, respectively, and 4~(co) is a weakly varying function
of frequency. Equation (34a) is the golden-rule-theory re-
sult, while Eq. (34b) is a modification of (34a) which in-
cludes some strong-coupling corrections.

In the case of the superconducting state, the golden-rule
theory gives for the volume absorption

Ag „——N, (co)
2 1

Qp rs co

while the result which is analogous to (34b) would be

(35a)

where G is the electron Green's function. This density of
states includes the self-energy effects, i.e., the lifetime
broadening and the energy renormalization, and can be
quite different from its bare band-electron counterpart
No(e) when No(e)&const near e=O (Ref. 16).

Following Allen, the volume absorption A& in the
normal state can be written as

III. NUMERICAL RESULTS AND DISCUSSION

Farnworth and Timusk have shown that detailed in-
formation about the electron-phonon coupling function
a„F is contained in the derivative S (co) of the difference
between the absorption in the superconducting state and
the normal-state absorption:

S'(co) =dS(co)/dco,

S(co)=A, „—A~ „.
(36)

(37)

1/r, (co) = 1/r, pg(co)+1/2;;(co),

with 1/T»g and 1/r, ; given by Eqs. (11) and (14), and
where 4, (co) is a weakly varying function of co. However,
in contrast to the normal-state case, Eq. (35b) could not
be justified from the strong-coupling theory and is really
an ansatz based on the fact that A, should become equal
to A~, when b, ~O. In fact, one can expect that instead
of using A, (co) in Eq. (35b) one should use a different re-
normalization parameter A,,(co). On the basis of the differ-
ence between the mass renormalization parameters in the
normal and the superconducting states, it is expected that
A,, —A, =O((h/Q, „) 1n(h/Q, „)) (Ref. 17).

Finally we point out that N(e) in the equations for
1/r, ~q and 1/r, ; will also be interpreted as the normal
state quasiparticle density of states. There is no basis for
this assumption within the golden-rule theory. It is only
the requirement A, „~A~ as 6~0 that perhaps justifies
such an interpretation of N(e). Also, one intuitively ex-
pects that the effects of the lifetime broadening, due to
impurity scattering, etc., should be contained in the
theory.

Ag „——N, (co)
2 1 1

Q~ r, (co) [1+~(co)]'" ' (35b) Within Allen's golden-rule theory for N(e) =const one
has

4 — 2

S'(co) = a,+(co—2A)+ f dQa„(Q)F(Q) QE(k )+co [E(k ) —E(k )]
QpCO ~ Q k

1 —k'f dQQa„(Q)F(Q)+ — [E(k' ) —K(k' )],
p p

(38)

where

k =1— (39a)

k =1—
2

(39b)

and

1 1K(m) = dx
0 (1 x2)1/2(1 mx2)1/2

(40)

Also, two weakly varying functions, N, (co) and @~(co),
are assumed to be constant and equal to their high-

I

frequency value of 1.
Although Eq. (38) is expected to work better for the

weak-coupling superconductors than for the strong
couplers like Pb, Farnworth and Timusk have demon-
strated that Eq. (38) describes their high-resolutions mea-
surements on Pb quite well. Moreover they have solved
the integral equation (38) for a„F with the experimental
S'(co). The inverted a,+ spectrum was in good agreement
with the e I' function for Pb, measured in the tunneling
experiments.

Our program for studying the effects of nonconstant
N(e) on the far-infrared absorption is as follows. First
we calculate S'(co) for an N(e)&const by using the theory
described in Sec. II and compare that S'(co) with the cor-
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FICs. 1. Symmetrized density of states n, (e) and nt„(A)F(Q)
which are used in the numerical work.

FIG. 3. Impurity scattering times for the superconducting
and the normal states.

responding quantity calculated for N (e)=const. Second,
we invert S'(co) obtained for nonconstant N(e), assuming
that the usual theory [N(e)=const] is applicable, i.e., we
solve Eq. (38) for a„F. The resulting effective coupling
function (a„F),ff may differ from the true a,g if the ef-
fects of nonconstant N(e) are important. In our numeri-
cal calculations we use the EP coupling spectrum a„Fand
the symmetrized density of states

1 N(E) N( —e)
2 N(0) N(0)

(Fig. 1) which were used to fit the normal-state far-
infrared transmission data on thin film of V3Si (Ref. 11).

In Fig. 2 we show S'(co) calculated for 1/r; =296 cm
(Ref. 11), Qz ——3 eV (Ref. 18), and 26=45 cm ' (Ref.
19). Note that a different choice for Az would only
change the vertical scale in Fig. 2. In generating S'(co) we
have used the unrenormalized expressions (34a) and (3Sa)
for 3& and 3, „respectively. Also, the weakly varying
functions 4&, (co) and 4'z(co) are assumed to be constant
and equal to their high-frequency value of 1. The work of
Farnworth and Timusk indicates that both of these ap-

proximations are reasonable. Later on we will examine
the effect of the renormalization factor [1+A(co)] ' on
S'(co).

The difference between S'(co) calculated for noncon-
stant N (e) (solid line in Fig. 2) and the one calculated for
N(e) =const (dashed line in Fig. 2) is mainly due to im-
purity contribution via 1/~, ; and 1/r&;, Fig. 3. S'(co)
calculated by leaving out the impurity scattering did not
depend much on the structure in N(e).

The S'(co) data for nonconstant N(e) were inverted by
solving Eq. (38) for a„F. The resulting effective spectrum
(a„F),rf is shown in Fig. 4 (solid line) together with the
true input spectrum (dashed line). There is a transfer of
weight in (a„F),rr to lower frequencies as compared to
a,„F. A similar behavior was found in the study of the in-
fluence of a peak in N(e) around the Fermi level on su-
perconductive tunneling. ' We note, however, that in the
case of infrared absorption this effect is dominated by the
impurity scattering, while in the case of tunneling the
transfer of weight in (a F),ff was obtained without expli-
citly including the impurity scattering. Another differ-
ence is that there is a new structure in (a,j'),rf at 0=34
cm ' (=4 meV) as compared to the true a,„F spectrum.
In Refs. 1 and 2 no new structure was introduced in the
effective a F due to the variation in N(e) [except for the
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FIG 2. Derivative of the absorption spectrum. Solid line is
calculated using n, (e} from Fig. 1 and the dashed line is calcu-
lated using n, (e)=1. The inset shows the extension of the two
curves to lower frequencies.
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(crn ')

FICx. 4. The effective a„F spectrum (solid line) and the true
point at„F (dashed line).
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FIG. 5. Effective at„F spectra for three different impurity
scattering parameters.

negative tail at 0 & Q,„(Ref. 1)]. To illustrate that this
new feature in (a,Q),tt is introduced by the impurity con-
tribution to the scattering times with our choice for N(e),
we have calculated and inverted two additional S'(co)
spectra for 1/~;=100 cm ' and 1/r;=500 cm ', while
keeping the remaining parameters the same as before.
The results are shown in Fig. 5. We point out that a
larger 1/v; would introduce more smearing in the elec-
tronic density of states, while we used a fixed n, (e) in ob'-

taining all three curves in Fig. 5.
It should be noted that all these effects of a nonconstant

N(e) depend on the actual form of the density of states.
For instance, a triangular model for n, (e),

n, (e)= 1 — e e(e, —e)+0 5B(e ~,.),1

2'
e, =190 cm

where e is a step function, gave an (ct,+),tt which was
shifted down with respect to ct„Eby about 0.05 and, thus,
had a negative tail.

Finally we comment that all results obtained for n, (e)
from Fig. 1 remained qualitatively unchanged when we

IV. CONCLUSIONS

We have generalized Allen's theory of far-infrared ab-
sorption in superconductors to the case of nonconstant
electronic density of states N(E). Our numerical calcula-
tions using the parameters which fit the far-infrared
transmission data on normal thin film of V3Si (Ref. 11)
show an additional frequency dependence in the derivative
S'(co), due to nonconstant N(e). As a result of this, if
S'(co) data were inverted conventionally [i.e., assuming
N(e)=const] the resulting effective a,+ spectrum will
contain an extra frequency dependence as compared to the
true microscopic EP coupling function. This situation is
analogous to the case of superconductive tunneling, ' but
in the case of infrared absorption the effect is dominated
by the impurity scattering. We stress that the energy re-
normalization due to electron-phonon interaction makes
the structure in the quasiparticle density of states, which
appears in the theory of infrared absorption and, in effect,
in the theory of tunneling, ' much sharper' than the
structure in the bare band-structure density of states
broadened by the disorder scattering.

High-resolution far-infrared absorption measurements
on good quality homogeneous A 15 samples of varying
residual resistivities can provide more information about
the importance of energy dependence in the band density
of states in these materials.
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