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String melting of the floating phase in antiferromagnetic clock models
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In two-dimensional antiferromagnetic q-state clock models with odd values of q =5,7,9, . . . on a
square lattice, the low-temperature phase is a floating solid, with impurities and logarithmically
bound vortices. Both are composite objects. Inside their cores they contain vertices of vorticity 0
and +q bound together by linear interactions induced by strings. The meander entropy of these
strings competes with the positional entropy of the composite vortices. Kosterlitz-Thouless melting
is preempted by a string-melting transition, where the cores of the vortices and impurities diverge.

I. INTRODUCTION

In a conventional two-dimensional (2D) floating solid
phase, vortex excitations have a small core and are bound
in pairs logarithmically. Dislocation melting is driven by
their positional entropy: the Kosterlitz-Thouless (KT)
transition. ' As shown in this paper, the low-
temperature phase of two-dimensional antiferromagnetic
(AF) q-state clock models, with odd values of q, is a float-
ing solid which melts via a divergency of the core size of
vortices and annealed impurities.

At the smallest length scale the configurations are
described by strings and by vertices with vorticity 0 and
+q. The vertices, to be distinguished from vortices, have
a fixed core size equal to the lattice constant. A string
tension fs(i) can be associated to each type of string.
They define a set of characteristic length scales
ls(i)-fs(i) . Let ls(i) & ls(i +1).

At length scales l » ls(1), the low-temperature phase is
a floating solid with annealed impurities, and with loga-
rithmically bound vortices. At length scales l & ls(1)
these vortices and impurities display an internal structure.
They are composite objects built from vertices with flux 0
and +q, glued together linearly by several types of strings.
The vortices have total Burgers vector +nq. n takes a
specific value in each corner of the phase diagram. Im-
purities in the context of this paper are bound groups of
vertices with total Burgers vector zero. The string lengths
ls(i) determine the internal structure. If ls(2) » ls(i) for
all i &2, the vertices are clustered internally in mq vor-
tices (in general m &n).

Two types of entropy compete to melt this type of
floating phase. (i) The positional entropy St of the com-
posite vortices can lead to KT melting into a fluid with
free composite vortices. At the'KT transition tempera-
ture TKT the positional entropy exceeds the logarithmic
interaction energy between the composite vortices. (ii)
The meander entropy S~ of the strings inside the vortex
and impurity cores can lead to string melting. For each
type of string there is a characteristic temperature Ts(i)
at which its string tension fs(i) vanishes. At Ts(i) the
meander entropy exceeds the energy of the string (mea-
sured with respect to the free energy of the surrounding
floating phase). At Ts(1) the cores of the composite im-

purities and nq vortices diverge. They fall apart in small-
er composite impurities and mq vortices, depending on
the actual structure inside the core, and the relative values
of the remaining string tensions.

Several melting sequences are possible, as outlined
below.

(a) Kosterlitz Thouless -melting into an nq fluid. The
positional entropy Sp exceeds the logarithmic interaction
between the composite vortices, before their cores diverge.

(b) String melting into an mq fluid The di.vergence of
the cores of the impurities and vortices preempts KT
melting. At Ts(1) only the string tension of the least ex-
pensive strings vanish. The impurities and nq vortices fall
apart in smaller impurities and mq vortices. At length
scales ls(2) & l & ls(1), the system is in a fluid or a float-
ing solid phase. Ts(1) is the melting temperature if the
positional entropy of the mq vortices already exceeds the
value where logarithmically bound mq vortex pairs would
unbind.

(c) Crossover to a floating phase with logarithmically
bound mq vortices. Also in this case fs(1) vanishes before
the positional entropy of the nq vortices becomes large
enough to establish a KT transition. But the positional
entropy Sp at the next length scale ls(2) is still smaller
than the value where logarithmically bound nzq-vortex
pairs unbind. Ts(1) is not the melting temperature. The
floating phase does not melt. It changes its character.
The effective Gaussian coupling constant K, which
characterizes Sp, is singular at Ts. Melting, type (a) or
(b), takes place at higher temperatures, by excitations at
length scale ls(2), or can be further delayed via another
type-(c) crossover inside the floating phase.

(d) Disorder lines In the fluid .phase after the type-(a)
or -(b) melting transition, the vortices are free, but like the
impurities they are still composite objects. The tempera-
tures Ts(i), where the remaining string tensions vanish,
represent disorder lines, where the free vortices and im-
purities decay further, until the q gas is reached with free
(pointlike) q vertices. At a disorder line the fluid changes
its character. The correlation length does not diverge. No
thermodynamic singularities are expected; at most, a
broad maximum in the specific heat may occur if the en-
tropy increases rapidly at the partial breakup of the im
purities and vortices. However, one can imagine that in
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The arrows contribute factors x(di, ) to the Boltzmann

weight,
q —1

x (n)=exp g J(m)cos(2nmn/q)
m=0

(2)

In the absence of the vertex states with flux +q the model
would reduce to a so-called solid-on-solid (SOS) model.
The di, ——0, +1,+2, . . . , +(q —1)/2 arrow states would

describe steps in a 2D interface. The vertex states with

flux +q represent screw dislocations in the interface.
In specific corners of the phase diagram a specific sub-

set of steps is most favorable, leading to a specific low-

temperature ordered or floating solid phase. Distinguish
between favorable steps, unfavorable steps, and vertex
states with flux +q. As described in the next sections, the
unfavorable steps represent string excitations within the
ordered or floating solid phase, i.e., within the background
"sea" of favorable arrow states.

A string tension can be associated to each type of un-

favorable step. In ordered phases the correlation length is
inversely proportional to the string tension of the cheapest
strings. In floating solid phases the correlation length is
already infinite.

The lowest excitations are impurities, vortices, and
closed loops of strings. The vertex states with flux +q
combine into impurities and nq vortices, glued together by
the strings. In each corner of the phase diagram n has a
specific value, and the inside of the cores a specific struc-
ture.

soine cases disorder lines develop into genuine fluid-fluid
phase transitions.

The purpose of this paper is to show that in two-
dimensional AF q-state clock models with odd values of
q, the low-temperature phase is a floating phase as
described above, with strings and composite impurities
and vortices, and that string melting sequence (b) is real-
ized. It turns out that the description by means of strings,
impurities, and vortices explains and/or predicts most
properties of the model with a minimum of additional ex-
act, numerical, and analytical information.

Consider the q-state clock model with odd values of q
on a square lattice with only nearest-neighbor interactions,

q —1

g J(n)costn[8(r') —8(r)]j, (1)
&r', r& n =0

where 8(r) =2am/q, . m =0, . . . , q —1, and J(m)
=J(q —m). The phase diagram will be discussed in the
vertex representation. The angle variables 8(r) are re-
placed by bond variables

dp, (r', r) = dp, (r, r—') =[8(r') 8(r)]/—(2'/q)

located at the bonds of the dual lattice. Represent di, ——0
by the absence of an arrow at the bond (place a zero),
di, ——+1 by single arrows, di, =+2 by double arrows, etc.
Choose the arrow direction such that while looking along
the arrow B(r') —B(r) rotates clockwise. At each vertex R
(site of the dual lattice) the next flux of arrows must be
equal to 0modq because

+[8(r)—8(r')]=Omod2m .

I?. S-STATE CLOCK MODEL

Figure 1 shows the phase diagram for q =5 as function

and

A =x (0)/[x (1)+x(2)]

8 =[x(1)—x(2)]/[x(1)+x(2)] .

( A,B)=(—,', 0) represents infinite temperature. The line

B =0 corresponds to the 5-state Potts model. Along the
dashed lines in Fig. 1 the ratio J(1)/J(2) is fixed. The
phase diagram has mirror symmetry with respect to the
8 =0 axis; the transformation 8~—28 [see Eq. (1)] ex-
changes x(2) with x(1).

At B= —1 the double arrows are frozen out, at 8 =1
the single arrows, and at A =0 the zeros. For A &&1 the
model is in the ferromagnetic ground state, with only

It is well known that order-disorder transitions can be
presented as a deconfinement of linearly bound disloca-
tions. In the scaling limit at the ordered side, dislocations
interact linearly at large distances, r &g and logarithmi-
cally at short distances r & g. In the floating phase
described here, at temperatures large enough such that all
the strings are large with respect to the lattice constant, a
sequence of length scales exists. At each, the vertices
combine into more complex vortices and neutral impuri-
ties. The impurities are always free. Up to the length
scale lM, corresponding to the melting temperature, the
vortices are free (the fluid phases; asymptotical freedom).
The composite vortices at larger lengths scales I » lM in-
teract logarithmically. The crossover at lM is described
by the KT transition or the string melting transition.

For increasing q the structure inside the vortices and
impurities becomes more complex. There are (q —1)/2
different types of strings. Along specific paths through
the phase diagram, elaborate sequences of disorder lines
[sequence (d)) and of boundaries within the floating phase
with singularities in the effective Csaussian coupling con-
stant [sequence (c)] might be realized, at the high- and
low-temperature side of the string melting [sequence (b)]
or KT melting line [sequence (a)], respectively.

In Sec. II the phase diagram of the 5-state clock model
is discussed. In Sec. III the results are generalized to odd
values of q & 5. The antiferromagnetic side of the phase
diagrams is new. KT melting sequence (a) cannot be rule'd

out, but string melting sequence (b) is more likely for
most paths through the phase diagram. In particular it is
shown that string melting sequence (b) is certainly realized
at q =5 in the SOS model limit. In the same limit for
q &5 the ferromagnetic (F) and antiferromagnetic (AF)
floating phases become directly connected, and sequence
(c) is realized.

Also at the ferromagnetic side of the phase diagrams
the string language is useful. It predicts the presence of
disorder lines, and explains the crossover from the inter-
mediate floating phase (in the SOS model region) to the
first-order transition (around the Potts model).
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FIG. 1. Schematic phase diagram of the 5-state clock model.
The heavy drawn lines represent phase transitions. The heavy
dashed lines are disorder lines. The shaded areas are floating
phases. The shading follows lines of constant effective Gauss-
ian coupling constants. The light dashed lines represent paths
through the phase diagram where the ratios between the cou-
pling constants are fixed.

l

zeros. In the AF ground states at (A,B)=(0,—1) and
(A,B)=(0,1), only the single arrows or double arrows are
allowed. In both cases the model reduces to the 6-vertex
model at the so-called ice point where a11 allowed arrow
configurations (those with zero flux at every vertex) have
equal Boltzmann weight. At the ice point the 6-vertex
model, and therefore also the AF clock model at zero
temperature is in its floating solid phase.

The basic idea is to describe the melting of these three
low-temperature phases from the point of view of strings
and vortices, using exact and numerical information for
the positional entropy Sp, and a single-string approxima-
tion (see Appendix) for the meander entropy SM.

From the point of view of the strings the phase diagram
contains seven different domains. In each the set of
favorable and unfavorable steps is different. Figure 2 il-
lustrates this. Along the dashed

'

lines two of the
Boltzmann weights are equal, x (i)/x (j)= 1. At the
drawn lines x(i)/x(j)=v 2 —1 a single string of type i
would melt (because of its meander entropy) in a back-
ground sea with only steps of type j (see Appendix).
These lines give only crude estimates of the boundaries
(the fat drawn segments) between the seven domains.
Around the encircled points the approximation must be
reasonable. The continuation of the drawn lines inside the
three low-temperatur'e phases separate regions where the
nature of their lowest excitations changes.

8=-I B=O 8=I

FIG. 2. The seven domains in the 5-state clock model phase
diagram. Along the heavy dashed lines two of the three
Boltzmann weights are equal, x(i)=x(j). Along the drawn
lines x (i)/x (j)=V 2 —1 a single string of type i melts in a sea
of strings of type j (see Appendix). The heavy drawn parts ap-
proximate the boundaries between the seven domains. Their
continuation of the three low-temperature phases indicate a
change in the lowest excitations.

A. Ferromagnetic side of the phase diagram

for q =5; in the ( A, B) parametrization, they read

A'=(A +2)/(2A —1),

B'=W5B/(2A —1) .

At the first-order line the ordered phase melts directly
into a Potts gas with free q vertices (see also below). First
we will discuss the phase diagram around B = —1 then
around B =1 and finally will return to B=0 (compare
with Fig. 2). .

In the B = —1 region the ferromagnetic ordered phase

As is well known the ferromagnetic order-disorder tran-
sition in the q&4 state Potts model is first order, and
remains first order also in the direct vicinity of B =0.
The transition takes place at the self dual line
A*=(1+~q)2/(q —1). For general q the duality equa-
tions are '

q —1

x (n)'=q '~ g x (m)exp(inm2m/q),
m=0
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FIG. 3. Composite vortices in the 5-state clock model.

melts via an intermediate floating phase by two KT tran-
sitions. '

Along the line B = —1 (where double-arrow states are
frozen out), the model reduces to the so-called restricted
SOS model, which describes a 2D interface.
h(r)=e(r)/(2m/q) represents the height of a column of
atoms. Vertex states with flux +q [Fig. 3(a)] are frozen
out. The mod2m. character of the angle variables 0(r) can
be ignored, because the Burgers vector g@dl, is equal to
zero along every contour. Since nearest-neighbor columns
can only differ by dl, (r', r) =0,+1, this is known as the re-
stricted SOS model. Each dq ——0 contributes a factor
A =x(0)/x(1) to the Boltzmann weight and each step
dl, =+1 a factor 1. Finite-size-scaling calculations locate
the roughening transition at Az ——1.8. Above the
roughening temperature A & A~, the rough interface can
be characterized by its effective Gaussian coupling con-
stant E,

([h(r+ro) —h(ro)] )=(mX) 'ln(r), for r » ls(1) .

L decreases monotonically with temperature. Since the
roughening transition is driven by the spin-wave operator
cos(2mh), K has the universal value ECz ——m./2 (Refs. 2
and 9) at the roughening temperature. At the self-dual
line K has the universal value X =2m/q. From the
point of view of the SOS model, vertex states with flux
+q introduce screw dislocations. These vortices do not
appear as free vertex states of flux +q. Each q vortex and
each impurity is a bound pair of vertex states with flux
+q or flux 0 [Fig. 3(b)], which have in common that they
are sinks for double arrows [Fig. 3(a)]. Each pair is bound
linearly by a short string of double arrows. The core size
is inversely proportional to the string tension of the dou-
ble arrows.

Below the roughening transition also the single-arrow
strings have a finite string tension. In the ordered phase
the typical configuration is a sea of zeros, with as lowest
excitations: small closed loops of single arrows d~ ——+1,
free impurities, and 5-vortices [Fig. 3(b)]. The 5-vortices
are bound together linearly in neutral (+ 5)—( —5) pairs
by strings of single arrows [Fig. 3(c)]. The correlation
length is inversely proportional to the string tension of the
single arrows. The double-arrow strings have a much
larger string tension and only appear inside the core of the
vortices.

At the roughening transition into the intermediate
floating phase (Fig. 1), the correlation length diverges ex-
ponentially. The string tension of the single arrows van-
ishes but the string tension of the double arrows remains.
The single-string approximation discussed in the Appen-
dix predicts that the single arrows melt at As-1+~2.
The approximation overestimates the string entropy. Ac-
tually this value of A is close to the location of the broad
maximum in the specific heat just below the roughening
transition predicted by renormalization transformations.
From the point of view of the strings, the maximum is
due to a rapid increase of the string length. The single-
string approximation predicts that the length of the
single-arrow strings only increases rapidly very close to
As (see APPendix). This increase slows down just before
the string tension vanishes because of mutual screening.

In the intermediate floating phase, AxT &A &Az, the
typical configuration is a sea of zeros and single arrows,
with free impurities, and with 5-vortices. The massless
spin-wave excitations, i.e., the fractal structure of the
single-arrow strings, keep the (+ 5)—( —5) vortex pairs
bound logarithmically. (The distribution of the string, the
probability that the string extends in space over a distance
r from the vortex pair, decays as a power law. Pulling at
the two ends of the string gives a logarithmic response. )

Still the double arrows only appear inside the vortex cores.
The effective Gaussian coupling constant is a measure

for the positional entropy Sz. At E=XKT
=8m/q =8m/25, ' the (+ 5)—( —5) vortex pairs unbind.
Their positional entropy exceeds the logarithmic string
energy. The finite-size scaling calculation for the restrict-
ed SOS model by Luck'0 implies that X(1,—1)=0.86
[the point (A,B)=(1,—1) represents infinite temperature
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in the restricted SOS model]. Because this value is small-
er than EKT, the KT melting line ends at AKT~1. No-
tice that the line A =(~58+1)/2 is dual to the line
8 = —1 [Eq. (4)]. Therefore Luck's result for the
roughening temperature Az in the restricted SOS model
also gives a point on the KT melting line,
(A,B)=(1.46, —0.86).

In the q fluid at A & AKT the typical configuration is a
sea of zeros, single arrows, free impurities, and free 5-
vortices [Fig. 3(b)]. (The strings of single arrows between
each vortex pair are evenly distributed over space. It does
not use any free energy to pull their ends further apart. )

The string tension of the double arrows remains nonzero.
The description of the 8 ~ 0 region is more complicated

but consistent with B &0, as required by the 0—+ —20
symmetry. At B =1 the model reduces again to the re-
stricted SOS model. The vertex states with flux +q are
again frozen out. This time, because step sizes
dp, =0, +(q —1)/2 cannot give rise to odd Burgers vec-
tors. According to Eq. (5), the Gaussian coupling con-
stant is four times smaller because the step size (q —1)/2
is 2 times larger:

E(A,B)=[2/(q —1)] K(A, 8) —for 8 &0 .

From this point of view the roughening transition at
A& ——1.8 is driven by the spin-wave operator
cosI[2/(q —l)]2m.hI, which indeed predicts a universal
value

ICR [2/(q —1)] m/2=+/8,

four times smaller than at 8 = —1. At the self-dual line,
K has the universal value

K*=[2/(q —1)] 2m/q =m/10 .

Around B & 1 the q vertices again only appear in groups,
but now with a net vorticity 0 or +q(q —1)/2 [Fig. 3(b)].
Each impurity and 10-vortex is a bound pair of two vertex
states with flux 5. Each is a sink for single arrows [Fig.
3(a)]. The pair is bound linearly by a short string of single
arrows. The core size is inversely proportional to the
string tension of the single arrows. The transformation
8~—28 maps a S-vortex at B = —1 into a 10-vortex at
8 = 1 [Fig. 3(b)]. The single-arrow string must be
present, because if the total vorticity encircled by a con-
tour is odd, then at least one single-arrow state must
pierce through it (for general q at least one odd step). In
this part of the phase diagram, single arrows have the
largest string tension and only appear inside the core of
the impurities and 10-vortices.

Below the roughening temperature the double-arrow
strings have a finite string tension too. -For B~0, the
typical low-temperature configuration is again a sea of
zeros, but with different low-lying excitations. It contains
small loops of double arrows, free impurities, and 10-
vortices. The 10-vortices are bound linearly in neutral
(+ 10)—( —10) pairs by strings of double arrows [Fig.
3(c)]. At AR, the string tension of the double arrows van-
ishes, while the string tension of the single arrows
remains. In the floating phase the typical configuration is

a sea of zeros and double arrows, with free impurities and
with 10-vortices. The massless spin-wave excitations, i.e.,
the fractal structure of the double-arrow strings keeps the
10-vortices bound together logarithmically.

At

K„T=Sir/[q (q —1)/2]'= 8~/100,

the positional entropy unbinds the (+ 10)—( —10) pairs
[Fig. 3(c)]. At this KT transition K is indeed four times
smaller than at 8 &0. In the q (q —1)/2 fluid the typical
configuration is a sea of zeros and double arrows, with
free impurities and free 10-vortices [Fig. 3(b)]. The
double-arrow strings are evenly distributed over space.
The string tension of the single arrows remains nonzero.

The fluid phases change into a Potts gas with free q-
vertices [Fig. 3(a)] in the 8 =0 region. In the q(q —1)/2
fluid, the string tension of the single arrows has not van-
ished yet. It binds q-vertices together in free impurities
and free 10-vortices [Fig. 3(b)]. The core size is inversely
proportional to the string tension of the single arrows.
The q(q —1)/2 fluid transforms into a Potts gas at the
disorder line. where the string tension of the single arrows
vanishes.

On the other hand, in the q fluid, the string tension of
the double arrows has not vanished yet. The q fluid with
free impurities and free 5-vortices [Fig. 3(b)] transforms
into the Potts gas at the disorder line where the string ten-
sion of the double-arrow strings vanish. In the Potts gas
the typical configuration is a sea of zeros, single and dou-
ble arrows, and free q-vertices [Fig. 3(a)].

At the disorder lines the correlation length does not
diverge'. Only a broad maximum in the specific heat can
be expected, due to a rapid increase in entropy from the
unbinding of the impurities and vortices [Fig. 3(b)] into
free q-vertices [Fig. 3(a)]. Also, the renormalization
transformation for the planar model 'predicts a maximum
in the specific heat at the fluid side just after the KT tran-
sition. In the planar model the vortices have fixed-core
sizes. The maximum is associated to a rapid increase of
entropy due to the unbinding of the logarithmically bound
vortex pairs [the dual effect of the rapid increase of the
string length just below the roughening transition; see Eq.
(3)]. The two effects give rise to two distinguishable max-
ima or smear out into one broad maximum.

In the 8 =0 region the floating phases do not appear.
The ferromagnetic solid phase melts directly into the
Potts gas via a first-order transition. Notice that around
8 =0 the (now very crude) single-string approximation
predicts string melting beyond the self-dual line (Fig. 2).
The point where the x(1)/x(0)=i/2 —1 line and the
x(2)/x(1)=V2 —1 line cross gives a zeroth-order esti-
mate of the value of 8 at the self-dual line where the criti-
cal fan closes, i.e., where the floating phase is replaced by
the first-order line,

~

8
~

=W2 —1.

B. Antiferromagnetic side of the phase diagram

At the antiferromagnetic side the vortices and impuri-
ties become more complex. Moreover, the restricted SOS
models at B=+1 become "antiferromagnetic. " Again the
B = —1 region is discussed first, followed by the B = 1 re-
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gion and finally the A =0 region.
For A &1 the 8=—1 region describes an antifer-

romagnetic (AF) restricted SOS model with screw disloca-
tions. Steps d~ ——+ 1 are more favorable than zeros
di, ——0. At zero temperature (A,B)=(0,—1) both the
double arrows and the zeros are frozen out. The model
reduces to the 6-vertex model [also known as the BC-SOS
(body-centered —solid-on-solid) model] at the so-called ice
point where all Boltzmann weights are equal. The inter-
face is still rough, since K(0, —1)=m./6. " The' AF-
restricted SOS model remains in the floating phase at all
temperatures, and EC increases monotonically with tern-
perature, m. /6&K &0.86. The roughness of the interface
increases at lower temperatures. At first this sounds
counter intuitive, but is obvious from the fact that at
lower temperatures the zeros, which make the interface
more rigid become less likely.

Steps of height di, =+2 on the other hand soften the
elastic constant of the interface. Therefore K decreases
with B. The shading inside the floating phases in Fig. 1

indicates lines of constant K. Along a path where the ra-
tios between the coupling constants J(n) are fixed the in-
terface roughness is likely to increase' with temperature.

The q-vortices [Fig. 3(b)] are bound in pairs by strings
of zeros [Fig. 3(d)]. The background sea now consists of
single-arrow strings. The strings of zeros are present be-
cause the vorticity is odd, while every contour on the
(square) lattice intersects an even number of bonds. If the
total enclosed Burgers vector is odd, at least one zero or
double arrow must pierce through the contour (for general

q at least one even step).
At first the strings look like a peculiarity of the square

lattice. For example, it seems as if the strings are absent
in a clock model at a triangular lattice. There the arrows
are located at a honeycomb lattice (the dual lattice), and
the contours can intersect an odd number of bonds. The
situation is more complex however, because it is impossi-
ble to draw a configuration with only single arrows (the
number of bonds at each vertex is odd). In this paper the
discussion is restricted to the square lattice.

The low-temperature floating phase has the properties
discussed in the Introduction: The typical configuration
is a sea of single arrows, with massless spin-wave excita-
tions (fractal meanders of single-arrow steps), small closed
loops of zeros, free impurities, and logarithmically bound
(+ 10)—( —10) vortex pairs. The core of the impurities
and 10-vortices consist of two 5-vortices [Fig. 3(b)] bound
linearly by a string of zeros [Fig. 3(d)]. The 10-vortices
are bound in neutral pairs logarithmically by fractal
strings of single arrows. Close to 8 = —1 the presence of
the double arrows remains restricted to the core of the 5-
vortices.

Along a path with fixed 8 and increasing A the posi-
tional entropy Sz and meander entropy S~ do not com-
pete; the string tension of the zeros becomes smaller but E
increases with temperature. The single-string approxima-
tion discussed in the Appendix predicts that the string
tension of the zeros vanishes at As ——~2 —1=0.414. At
A~ the floating solid melts into a q fluid, by string melt-
ing sequence (b).

On the one hand Luck's numerical result

K(1,—1)=0.86 excludes the possibility of sequence (c),
because this value of K at (A,B)=(1,—1) is the upper
bound for all A &1. At As, and everywhere else for
A & 1, K is smaller than the value KKr ——8m/25, where
logarithmically bound (+ 5)—( —5) vortex pairs would
unbind. Therefore the 5-vortices are free inside the 10-
vortex and impurity cores.

On the other hand, the exact result K(0—,1)=n./6 ex-
cludes KT melting sequence (a), because the value of K at
(A,B)=(0,—1) is a lower bound for all A close to
B = —1. At A~, and everywhere else around 8= —1, K
is larger than KzT ——8m. /100 where the logarithmically
bound (+ 10)—( —10) vortex pairs unbind.

Therefore string melting sequence (b) from the floating
solid into the q fluid must be realized in the SOS model
limit, close to 8= —1. Notice that the F and AF floating
phases are disconnected (Fig. 1).

Again the description in the 8 =1 region, although
more complicated, is consistent with B &0. Also the re-
stricted SOS model at 8 =1 becomes antiferromagnetic.
According to (5) K(0, 1)=[2/(q —1)] n./6 is four times
smaller than at ( A,B)=(0,—1). Again K increases
monotonically with temperature, since zeros decrease the
height fluctuations.

As in the ferromagnetic domain, the q-vertices are
strongly bound in impurities and in vortices with flux

+q(q —1)/2 by a short string of single arrows [Fig. 3(b)].
At larger length scales these q (q —1)/2-vortices are
bound together in neutral impurities or vortices with flux

+2q(q —1)/2, by longer (weaker) strings of zeros [Fig.
3(d)]. The transformation 8~—28 maps a (+ 5)—(+5)
vortex pair at 8 = —1 into a ( —10)—( —10) vortex pair at
8 = 1 [Fig. 3(d)]. The strings are present, because the vor-

ticity q(q —1)/2 is not an even multiple of the step size

(q —1)/2, while each contour on the (square) lattice inter-

sects an even number of bonds. If the total enclosed
Burgers vector is not an even multiple of (q —1)/2, then

at least one step different from +(q —1)/2 must pierce
through the contour.

Again the low-temperature floating phase has the prop-
erties described in the Introduction: The typical configu-
ration is a sea of double arrows, with massless spin-wave
excitation (fractal meanders of double-arrow steps), small
closed loops of zeros, free impurities, and logarithmically
bound (+ 20)—( —20) vortex pairs. The cores of the im-
purities and 20-vortices [Fig. 3(d)] consist of two 10-
vortices [Fig. 3(b)] bound linearly by a string of zeros.
Moreover these 20-vortices are bound in neutral pairs log-
arithmically by fractal structured double-arrow strings.
Close to 8 =1 the presence of the single arrows remains
restricted to the core of the 10-vortices.

At the string-melting line the floating phase melts into
a q(q —1)/2 fluid. Again the possibility of sequence (c)
is excluded because the value K ( 1, 1)=0.22 at
( A,B)=(1,1) is the upper bound for all A & 1, 8 & 0, and
smaller than KKT ——8n./100 where logarithmically bound
(10)—( —10) vortices unbind. After the string tension
vanishes, the 10-vortices are free. Again KT melting, se-
quence (a) is excluded because K(0, 1)=m/24 is the lower
limit of K around 8 = 1, and is larger than KxT
=8m. /400, where the logarithmically bound (20)—( —20)



272 MARCEI den NIJS 31

vortex pairs would unbind.
Hence, string melting sequence (b) into the q(q —1)/2

fluid must be realized close to B = l. Indeed the results
are completely symmetric with respect to the B= —1 re-
gion.

In the A =0 region the zeros are the most favorable
states. The AF five-state Potts model at B =0 is believed
to remain disordered at all temperatures. The floating
phases at A =0 melt before (or at) B=0. The behavior
along A =0 is more characteristic for paths with fixed
J(2)/J(l) ratios than the'behavior along B =+1 (Fig. 1).

If vortices could be ignored, the model would transform
continuously from a BC-SOS model with only dp, =+1
steps, into a BC-SOS model with only d~ ——+(q —1)/2
steps. ' This suggests that X decreases monotonically from
X(0,—1)=m/6 to K(0, 1)=[2/(q —1)] m/6. However,
the 0~ —28 symmetry implies that IC(A, B)=4—IC(A,B)
(for B&0). K is not a monotonic function of B, but de-
creases with B for B &0, and increases with B for B &0.
Vortices [Fig. 3(e)] renormalize K to a smaller value by an
amount proportional to their fugacity 1+B. This renor-
malization is considerable because it must overtake the
monotonic behavior. Around B =0 the effective Gauss-
ian coupling constant might become very small.

The rate by which K(O,B) decreases is crucial. In con-
trast to the B =+1 region, KT melting sequence (a) and
string melting sequence (b) compete.

In the floating phase around B = —1 the typical config-
uration is a sea of single arrows 'with massless spin-wave
fluctuations. It contains small closed loops of double ar-
rows, free impurities, and logarithmically bound 10-
vortices The .cores of the 10-vortices and impurities are
more complicated now, because they consist of q-vertices
glued together by double arrows only [Fig. 3(e)]. KT
melting sequence (a) preempts string melting sequence (b)
if X becomes smaller than XKT ——8m/100 before the
string tension of the double arrows vanishes. String rnelt-
ing leads directly to the AF Potts fiuid with free q-
vertices but no zeros. KT melting sequence (a) into a 2q .

fluid with free 10-vortices [Fig. 3(e)] would be followed by
a disorder line into the AF Potts fluid.

In the floating phase around B =1 the typical configu-
ration is a sea of double arrows with massless spin-wave
fluctuations. It contains small closed loops of single ar-
rows, free impurities, atid logarithmically bound
(+ 20)—( —20) vortices. The cores of the impurities and
20-vortices consist of q-vertices glued together by single-
arrow strings [Fig. 3(e}]. KT melting sequence (a)
preempts string melting sequence (b) if IC becomes smaller
than KKT ——8m /400 before the string tension of the single
arrows vanishes. String melting sequence (b) would lead
directly to the AF Potts fluid with free vertex states with
flux +q but no zeros. KT melting sequence (a} into the
2q (q —1)/2 fluid [Fig. 3(e)] would be followed by a disor-
der line into the AF Potts fluid.

No additional information about the variation of X
along the A =0 is available. The single-string approxima-
tion predicts that the string tension vanishes at

~
Bs

~

=1—W2. K must decrease by more than a factor
of 2 between B= —1 and Bs to establish KT melting se-
quence (a). String melting sequence (b) is more likely.

III. GENERALIZATION TO ODD VALUES OF q & 5

Generalization of the q =5 results to q =7,9, 11,13, . . .
is straightforward, but increasingly obscured by the com-
plexity of the impurities and vortices. Figure 4 shows the
phase diagram for q=7. For q&7 the phase diagram
remains similar. The major difference with respect to
q =5 is that the F and AF floating phases become direct-
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FIG. 4. Schematic phase diagram for the 7-state clock model.
See caption of Fig. 1.

Figure 1 shows the string-melting possibility. The
string-melting line is shown as a straight line, because Fig.
1 is only meant to be a schematic phase diagram. Actual-
ly Fig. 2 suggests a convex curve. Figure 2 also suggests
that along the string-melting line, three sections can be
distinguished. Close to B=—1 (B=+1), the floating
phase melts into a q fluid [a (q —1)/2 fluid]. Close to
A =0 it melts into an AF Potts fluid with free q-vertices
but without zeros. In between it could melt directly into
the Potts gas. Note however that the single-string approx-
imation is only expected to work well close to the B =+1
and A =0 axes (see Appendix). Figure 2 cannot be taken
too seriously. Notice that Fig. 2 also indicates the ex-
istence of a disorder point in the AF Potts model where
the Potts gas transforms into an AF Potts fluid without
zeros.

To summarize, melting starts as a string-melting line at
B=+1. It is likely that the transition remains type (b)
until A =0. The nature of the string melting may change
however along the line, because the fluid changes its char-
acter (three different ones; see Fig. 2). It remains possible
that string melting is replaced beyond a multicritical point
close to A =0 by KT melting (plus a disorder line}.



31 STRING MELTING OF THE FLOATING PHASE IN. . . 273

ly connected, possible sequence (c).
Figure 4 is a 2D interaction of a [(q —1)/2]-

dimensional phase diagram [see Eq. (1)]. Let

2 =x(0)/[x(1)+x(2)+ +x [((q —1)/2)] .

Choose B such that, at B =0, x (1)=x (2)=
=x((q —1)/2) (the Potts model), that at B = —1 only
x (0) and x (1) are nonzero (the restricted SOS model with
only steps d~ ——0, +1), and that at B =1 only x(0) and
x((q —1)/2) are nonzero (the restricted SOS model with
steps di, ——0, +(q —1)/2. The dashed lines in Fig. 4 are
representative of paths where the ratios between the cou-
pling constants J(n) are fixed [see Eq. (1)]. These paths
start at infinite temperature ( A,B)=(2/(q —1),0), and in
most cases [if all J(n) are negative] the +(q —1)/2 steps
become dominant at low temperatures. At zero tempera-
ture (A,B)=(0,1) the model reduces to the 6-vertex
model.

The number of string types increases to (q —1)/2. The
analog of Fig. 2 becomes quite complex, and varies with
the actual two-dimensional intersection of the phase dia-
gram. The vortices and impurities in different regions of
the phase diagram are again composite objects of q-
vertices and strings. The cores contain larger groups of
linear bound q-vertices. The analog of Fig. 3 contains
more complex structures. Apart from this complication
the discussion of the preceding section carries over.

The ferromagnetic side of the phase diagram is similar
to q =5. At the roughening transition the string tension
of the least expensive string type vanishes: The single-
arrow string tension close to B = —1, and the
[(q —1)/2]-arrow string tension close to B =1. Depend-
ing on the actual 2D intersection of the phase diagram, a
cascade of (overlapping) disorder lines could appear after
the KT melting line. At each disorder line one of the
remaining string tensions vanishes, and the free impurities
and free vortices dissociate stepwise in a specific order.
Around the points where the two critical fans close, the
structure of the phase diagrain may well be more compli-
cated than shown in Fig. 4. At the first-order transition
around B =0 all string tensions vanish simultaneously.

The important new aspect of the phase diagram is the
direct connection between the ferromagnetic floating
phase and the AF floating phase, i.e., the appearance of
sequence (c) (see the Introduction). Recall that the fer-
romagnetic floating phase around B = 1 contains logarith-
mically bound q(q —1)/2 vortices. The AF floating
phase contains logarithmically bound 2q(q —1)/2 vor-
tices. The latter are pairs of q(q —1)/2 vortices, bound
linearly by strings of zeros. Due to meander entropy, the
string tension of the zeros vanishes again at As —v 2 —1,
but in contrast to q =5, the q(q —1)/2 vortices remain
bound logarithmically at A & Aq. Recall that E increases
monotonically with A (the introduction of zeros reduces
the roughness) from

E'(0, 1)=[2/(q —1)] m. /6

(the 6-vertex model) to

K(1,1)= [2/(q —1)]20.86

(Luck's finite-size scaling result' for the restricted SOS
model). Logarithmically bound q(q —1)/2 vortices un-
bind when the effective Gaussian coupling constant is
larger than the universal value Kzr ——8m[q(q —1)/2] .
At q =7 the relevant values of E are XKr ——0.057,
K(0, 1)=0.058, and EC(l, 1)=0.096. In the absence of
the strings of zeros the KT melting line would extend into
the antiferromagnetic side all the way to zero temperature
(A,B)=(0,1). Therefore string melting sequence (b) is re-
placed by sequence (c). For q &5 close to B= —1 the F
and AF floating solid phases are directly connected. At
A~ the floating phase changes its character and has an Is-
ing singularity in its effective Gaussian coupling constant
L.

The behavior along paths where the ratios between the
J(n) are fixed (the dashed lines in Fig. 4), remains more
speculative. As at q =5, K decreases with temperature,
and all possible sequences (a)—(d) compete. The relevant
string tensions depend strongly on the ratios of the
Boltzmann weights along the actual path. The structure
of the strings inside the impurities and the 2q(q —1)/2
vortex cores is determined by these ratios. The lowest
string tension determines the core size (in most cases the
di, =+[(q —1)/2 —1] strings}.

Generically, the type-(c) line in the B =1 region first
changes into a string melting line, and closer to A =0
(perhaps) into a KT melting line. Depending on the actu-
al path (draw the analog of Fig. 2) several sections along
the string melting line, separated by the end points of the
disorder lines, might be distinguishable. At each segment
another specific string tension causes the initial breakup
of the vortex and impurity cores.

IV. CONCLUSIONS

The purpose of this paper is to point out the possibility
of string melting of a two-dimensional floating solid
phase, the divergence of the core size of impurities and
vortices, and to show that this takes place in AF q-state
clock models with odd values of q. A more detailed study
of the singularities at string-melting transitions is in pro-
gress. The single-string approximation (see Appendix) is
not sufficient since it ignores screening between strings.

The discussion of the two previous sections shows that
the description of the AF q-state clock model by means of
strings and vortices makes it possible to understand
and/or predict the properties of the phase diagram with a
minimum of exact, numerical, and analytical information.
In particular it is shown that the antiferromagnetic low-
temperature phase is a floating solid with composite im-
purities and vortices. Still both types of melting se-
quences (a) and (b) (see Introduction) might be realized for
suitable values of the interactions. However, string melt-
ing seems more likely. Moreover, the floating solid in the
AF five-state clock model certainly melts by the string-
inelting mechanism (b) in the SOS model regions B =+1.
The new aspect in the phase diagram for q =7,9, 11, . . . is
that the F and AF floating phases are directly connected
[sequence (c); see Introduction and Fig. 4].
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Here I present two final remarks. It has been argued'
that AF q-state clock models with odd values of q belong
to the same universality class as ferromagnetic 2q-state
clock models. This is reflected by the type-(a) melting
and the possibility of a low-temperature ordered phase
(driven by the cos[4nh/(q —1)] operator ) with (checker-
boardlike) sublattice magnetization (8 }z ——( 8 }z
+n(q —1)/q. The universality argument ignores varia-
tions in the core size and limitations to the range of the
Gaussian coupling constant E in the actual model. At
zero temperature (the 6-vertex model} the effective Gauss-
ian coupling constant K takes the value K(0, 1)=[2/
(q —1)] m/6. If string melting could be ignored, then the
phase diagram would be the same as for the 2q-state clock
model, but zero temperature would be located inside the
intermediate floating phase of the 2q-state clock model.
This is because K(0, 1) is smaller than the universal value
K~ ——[2/(q —1)] m/2, where the roughening transition
takes place.

The phase diagram of the AF 3-state clock model has
already been discussed elsewhere. ' The model is disor-
dered at all T &0. The positional entropy is already
larger than at the KT melting transition
(K(0)=[2/(q —1)] m/6 is smaller than Kx~ ——Sm/
[(q —1)q] }. E increases if ferromagnetic next-nearest-
neighbor interactions are introduced. Indeed we found a
so-called critical fan and type-(a) melting. The string
melting possibility only plays a role for values of the fuga-
city around a critical value where we found that the criti-
cal fan might close.

Monte Carlo renormalization results for the AF 5-state
clock model'" seem to be in agreement with Fig. 1, but ad-
ditional numerical evidence for the proposed phase dia-
grams is needed. It must be realized however that for in-
creasing q the impurities and vortices become increasingly
more complex and larger. Only at length scales larger
than the core size is the floating phase a meaningful con-
cept. Finite-size effects become increasingly important.
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APPENDIX

The purpose of this appendix is to obtain an estimate
for the temperature dependence of the string tension. The
free energy of one isolated string can be calculated via the
transfer-matrix method. Assume that the string follows
the bonds of a square lattice, and let z be the fugacity of
the string per unit length with respect to the free energy
of the surrounding phase. The partition function Z(n, t)
of a string which runs between site ( no, to) and
( n +no, t + to ) satisfies the recursion relation

Z(n, t) =z Z(n, t)+ g z ~ ~Z(n+m, t —1) . (Al)

In this approximation the string is not allowed to bend
backwards in "time" t. The transfer matrix is equivalent
to the time evolution of a single fermion in the one-
dimensional tight-binding model. Villain' used the same
approximation in the context of commensurate-
incomm. ensurate transitions, to model meander fluctua-
tions in a honeycomb network of domain walls. The
Fourier transform

Z(n, t) = J Z(k, t)exp(ikn)dk (A2)

gives the eigenmodes

Z (k, t + to ) =exp[ fs(k)—t]Z (k, to ),
with the decay rates

1 —z2fs(k)=in Z
1+z —2z cos(k)

(A4)

The slowest decaying mode k =0 determines the string
tension of the string, and its average length ls ——I/fs(0).
String melting takes place when the meander entropy
exceeds the energy. At the string-melting transition,

zs =~2—1 (A5)
the k =0 mode does not decay anymore, fs(0)=0.
Above the string-melting temperature the string is infi-
nitely long. Up to z =0.3 the string length /z remains
less than two lattice constants. Therefore all the compos-
ite vortices and impurities in the clock model have their
minimum size (with the strings as short as possible) until
reduced temperatures of the order of (z —zs)/zs ———0.25.

On the one hand, the single-string approximation un-
derestimates the meander entropy, because it neglects
backbending of the string. On the other hand, it overesti-
mates the entropy, because it neglects Pauli exclusion
from other strings.

The next-best approximation, which takes both effects
into account, is the Ising model. Its droplet excitations
form closed loops of strings (Bloch walls). The string be-
tween two vortices is described by the Bloch wall between
two dislocations in the dislocation pair correlation func-
tion (dual to the spin-spin correlation function).

The Ising model approximation does not change the re-
sults. Its critical temperature is still given by (A5), and
the string tension (mass gap) vanishes linearly (yr ——1).

The Ising approximation still ignores the response of
the sea of favorable arrow states to the presence of the
strings. In the floating solid phase this response can be
described by effective interactions between the strings.
The leading one is a pair interaction with a R distance
behavior. This is believed to be sufficiently short range
not to change the critical behavior of the Ising model (see,
e.g, Pfeuty and Toulouse' ).

Notice that the vertices inside the impurity and vortex
cores already deconfine when fs becomes of the same or-
der of magnitude as the density of impurities and vortices
(screening). The details of the thermodynamic singulari-
ties at the string-melting transition itself are not described
by this model. (The Ising model with finite fugacity of
open strings is dual to the Ising model in a magnetic field
and has no phase transition. )
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